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Abstract

Background: Phytochemicals and other molecules in foods elicit positive health
benefits, often by poorly established or unknown mechanisms. While there is a
wealth of data on the biological and biophysical properties of drugs and therapeutic
compounds, there is a notable lack of similar data for compounds commonly
present in food. Computational methods for high-throughput identification of food
compounds with specific biological effects, especially when accompanied by
relevant food composition data, could enable more effective and more personalized
dietary planning. We have created a machine learning-based tool (PhyteByte) to
leverage existing pharmacological data to predict bioactivity across a comprehensive
molecular database of foods and food compounds.

Results: PhyteByte uses a cheminformatic approach to structure-based activity
prediction and applies it to uncover the putative bioactivity of food compounds. The
tool takes an input protein target and develops a random forest classifier to predict
the effect of an input molecule based on its molecular fingerprint, using structure
and activity data available from the ChEMBL database. It then predicts the relevant
bioactivity of a library of food compounds with known molecular structures from the
FooDB database. The output is a list of food compounds with high confidence of
eliciting relevant biological effects, along with their source foods and associated
quantities in those foods, where available. Applying PhyteByte to the human PPARG
gene, we identified irigenin, sesamin, fargesin, and delta-sanshool as putative
agonists of PPARG, along with previously identified agonists of this important
metabolic regulator.

Conclusions: PhyteByte identifies food-based compounds that are predicted to
interact with specific protein targets. The identified relationships can be used to
prioritize food compounds for experimental or epidemiological follow-up and can
contribute to the rapid development of precision approaches to new nutraceuticals
as well as personalized dietary planning.
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Background
While a select set of essential nutrients for humans has been well characterized, there

is an abundance of lesser-known compounds in the human diet, representing a type of

exposure that has been referred to as the “dark matter” of the human exposome [1, 2].

These dietary bioactive compounds can have meaningful effects on human phenotypes,

to the extent that some, such as lutein and several flavonoids, are under discussion for

the establishment of dietary recommended intakes [3]. Despite the potentially import-

ant cumulative effects of these compounds, little is known about their bioactivity in the

body due to the difficulty of experimentally assaying thousands of compounds for activ-

ity against thousands of potential gene products, combined with the complexities of ab-

sorption, microbial interactions, and metabolism [4]. Cheminformatic methods,

including quantitative structure activity relationship (QSAR) models, can provide in

silico approaches to prioritize compounds and foods in experimental and epidemio-

logical settings when only the structure of a food compound is known. Pharmaceutical

drugs can provide a critical set of anchors for such models, as their primary biological

mechanisms of action are typically well characterized.

Computational approaches to generating hypotheses related to food and food

compound bioactivity have been introduced [5, 6]. However, existing methods have

focused primarily on literature mining based on natural language processing, rather

than optimizing for the output of food compound activities related to a given input

gene or protein of interest. Methods described to date have used relatively basic

QSAR methods, such as comparisons based on Tanimoto similarity scores, which

may fail to capture important signals. Additionally, there can be significant utility

in identifying the food(s) that contains a compound of interest both as a source

material or in the formulation of a novel product. The growth of relevant data-

bases containing pharmaceutical and food composition information continually of-

fers opportunities to revisit and improve QSAR tools. The United States

Department of Agriculture (USDA) has a long history of producing high-quality

data for its food composition databases [7], and inclusion of established or poten-

tial health effects would be a useful extension of these data.

Here, we develop and demonstrate a machine learning-based approach, PhyteByte,

that assigns putative bioactivity to food compounds based on a training set of pharma-

ceutical drugs. We show the efficacy of PhyteByte using the specific example of

PPARG, the known target of the thiazolidinedione (TZD) drug class.

Implementation

In order to identify functional relationships between a food compound and a drug,

along with its associated bioactivity data, we used data from two sources: ChEMBL and

FooDB. ChEMBL is a manually curated database of almost 2 million (1,879,206 in ver-

sion 25) bioactive molecules with drug-like properties [8, 9]. These data were retrieved

from ebi.ac.uk/chembl/ on 9/27/2019. FooDB (version 1.0) is a comprehensive resource

on food constituents, chemistry and biology, with over 85,000 compounds in its reposi-

tory [10]. These data were accessed from foodb.ca on 9/27/2019. As allele-specific

binding data are not available in ChEMBL, PhyteByte currently does not have the

means to incorporate genetic variants into its prediction.
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The PhyteByte computational pipeline is outlined in Fig. 1 (along with details related

to a specific gene input; see Results & Discussion). The processing of data through

PhyteByte is initiated by selection of an input protein target query, from which drugs

acting on that target (sourced from ChEMBL) are obtained to provide computational

fingerprints of their molecular structure. The fingerprints are processed by a predictive

model to yield likely bioactivity for food compounds (sourced from FooDB), which in

turn are queried in FooDB to retrieve foods containing those compounds, with quanti-

fied amounts where available.

Specifically, a target specification (provided in the form of an HGNC gene symbol)

serves as input for a query to ChEMBL that retrieves chemical structures for molecules

Fig. 1 Schematic data flow for PhyteByte from protein target input to predicted bioactive food compounds
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with evidence of relevant bioactivity for the protein encoded by that gene. Bioactivity is

defined as an IC50 (inhibitory concentration: the concentration of the molecule re-

quired to inhibit the biochemical function of the target by 50%) or EC50 (effective con-

centration; the concentration of the molecule required to induce 50% of the maximal

response or effect on the target) of < 20,000 nM based on the user-specified compound

effect type (antagonist vs. agonist). Because ChEMBL does not contain explicit annota-

tions as to the effect type, a heuristic is used in which the strength of antagonists and

agonists are evaluated using IC50 and EC50 values, respectively. Compound structures

are retrieved as simplified molecular-input line-entry system (SMILES) strings. SMILES

strings are a dense, character-based representation of chemical compounds (for ex-

ample, “COC1 = CC(=CC(=C1OC)O)C2 = COC3 = C(C2 =O)C(=C(C(=C3)O)OC)O”

for irigenin, a compound in Table 1). The SMILES strings are then converted into FP2

binary fingerprints using the Pybel Python package [11], which acts as a wrapper for

the OpenBabel chemical file format interconversion tool. FP2 fingerprints are a binary

compound representation (as a 1024-bit vector) formulated based on the occurrence of

specific linear fragments up to 7 atoms in length. Further details on the SMILES and

FP2 formats are available from the Open Babel publication [12] and online Wiki

(https://openbabel.org). A set of negative examples, chosen to be 10 times the size of

Table 1 Top food compound results from PhyteByte for input of PPARG

Compound Synonyms CAS
IDa

FooDB ID Scoreb Novel
finding

Foodsc

Pirinixic acid 2-Methylthioribosyl-trans-zeatin;
WY-14,643; CXPTA

50892–
23-4

FDB001402 0.96 False pea, wheat

Amorfrutin A 3-Hydroxy-4-isopentenyl-5-
methoxybibenzyl-2-carboxylic acid

80489–
90-3

FDB001743 0.88 False pigeon pea

Irigenin 5,7,3′-Trihydroxy-6,4′,5′-
trimethoxyisoflavone

548–
76-5

FDB008016 0.79 True lima bean, iris
kemaonensis,
leopard lily

Xanthoxylol (−)-Piperitol 54983–
95-8

FDB000580 0.72 False herbs and
spices,
Asarum
sieboldii

Sesamin (+)-Asarinin; Fagarol 607–
80-7

FDB012573 0.72 False sesame,
flaxseed, fats
and oils

2,3-
Dihydrobenzofuran

2,3-Dihydro-1-benzofuran;
Coumaran; Dihydrocoumarone

496–
16-2

FDB007352 0.72 True fenugreek

(+)-Fargesin (+)-Spinescin; 2-(3′,4′-
Dimethoxyphenyl)-6-(3″,4″-
methylenedioxyphenyl)-3,7-
dioxabicyclo(3,3,0)octane;
Methylpluviatilol; Planinin

68296–
27-5

FDB017481 0.69 True tea, herbs
and spices

delta-Sanshool N-Isobutyl-2,4,8,10,12-
tetradecapentaenamide; g-Sanshool

78886–
65-4

FDB003203 0.65 True herbs and
spices
(general)

Sanshodiol (5-Chloro-2-hydroxyphenyl) acetic
acid

54854–
91-0

FDB002461 0.65 True herbs and
spices

Samin NA FDB018392 0.61 True fats and oils
a Chemical Abstracts Service Registry Number for the compound
b Score represents the predicted probability of the compound acting as a PPARG agonist
c For results presented, data on compound amounts in food as extracted from FooDB were available only for sesamin in
sesame, range: 62.7 mg/100 g to 644.5 mg/100 g
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the positive set, is also retrieved at random from the full set of ChEMBL molecules.

The negative examples are converted to FP2 fingerprints after filtering such that no

negative compound has a Tanimoto similarity score > 0.6 with any molecule in the

positive set. The Tanimoto coefficient is defined as an association coefficient (in com-

parison to a distance coefficient) that measures similarity, here as chemical similarity

based on SMILES representation of the molecule [13]; formulae for the Tanimoto coef-

ficient are presented elsewhere [14]. No explicit upper limit for molecular mass of the

bioactive molecules is set, but we note that the vast majority (> 98%) of molecules in

ChEMBL are categorized as small molecules.

Next, a random forest model is trained (using the sklearn Python package) to classify

compounds as to their bioactivity against the protein of interest. Inputs consist of the

binary fingerprints (a binary feature vector of length 1024) and class labels (positive if

evidence of bioactivity for the target exists in ChEMBL, or negative if not). The random

forest classifier is an ensemble learning method that trains a set of independent deci-

sion trees to discriminate between positive and negative examples. Given a new com-

pound (in this case, a food compound), binary predictions from each individual

decision tree are averaged to output a probability of bioactivity. Models in PhyteByte

use 100 component trees, with all additional parameters following sklearn defaults. The

training and testing dataset split is created by assigning a random 30% of compounds

to the testing dataset (including a consistent random seed for reproducibility), with the

remaining 70% assigned to the training dataset. We note that after evaluation, the final

model used to process food compounds is trained on the full dataset. An initial indica-

tion of model performance is evaluated in a 30% held-out testing set using the F1 score,

or the harmonic mean of precision and recall. This metric is calculated as F1 ¼ 2�
precision�recall
precisionþrecall where precision is the fraction of predicted bioactive compounds that have

evidence for bioactivity in ChEMBL, and recall is the fraction of compounds with evi-

dence for bioactivity in ChEMBL that are predicted to be bioactive. True positive (TP)

is defined as bioactivity in ChEMBL and predicted to be bioactive; false positive (FP) is

defined as no bioactivity in ChEMBL but predicted to bioactive; false negative (FN) is

defined as bioactivity in ChEMBL but not predicted to be bioactive. Thus, precision =

TP / (TP + FP), recall = TP / (TP + FN), and F1 is calculated as above.

Using this trained model, the full set of food compounds available from FooDB are

then characterized as to their probability of bioactivity with respect to the input pro-

tein. The list of probable dietary bioactive compounds is presented as output, along

with their concentrations in foods as available in FooDB and an indication of whether

the relationship is novel (i.e. does the compound lack existing evidence of bioactivity

for the input protein in ChEMBL?). PhyteByte source code and installation instructions

are available at https://github.com/seanharr11/phytebyte, accompanied by the readme

text file with its detailed information of code usage in Additional file 1.

Results & discussion
We have demonstrated the functionality and output of PhyteByte using the input gene

PPARG (CHEMBL235), whose protein product is the target of the thiazolidinedione

(TZD) drug class. TZDs are widely prescribed to treat type 2 diabetes, and additionally

may have broader cardiometabolic benefits [15]. However, TZDs also have documented
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side effects and FDA-issued alerts of adverse effects [16], suggesting a potential benefit

of identifying alternative or complementary food-based bioactives. Details of the Phyte-

Byte pipeline as realized for PPARG agonists are presented in Fig. 1. 2977 positive com-

pounds were retrieved from ChEMBL, along with 297,700 negative compounds. The

trained model exhibited an F1 score (harmonic mean of precision and recall) of 0.94 in

a 30% held-out set, indicating a reasonably strong discriminative capacity within the set

of molecules in ChEMBL. This score may be biased upwards due to limitations in the

set of pharmaceutical compounds explored to date, but nonetheless indicates an ability

to classify potential food compounds effectively.

When used to score compounds from FooDB, the model identified a series of mole-

cules with potential agonist bioactivity for PPARG. Table 1 lists the 10 molecules with

a predicted bioactivity confidence of greater than 0.60 that also had associated foods in

FooDB; tabulated results include the identified food compound, common synonyms,

CAS and FooDB identifiers, PhyteByte output score, whether the compound-PPARG

interaction is a novel finding, and foods reported to contain that compound. Molecules

such as pirinixic acid (or WY-14643) and xanthoxylol have been shown to activate

PPARG [17–19], albeit the latter only as an activator of PPARG transcription [20].

Other molecules have little to no existing evidence in the scientific literature of acting

as PPARG agonists. These include irigenin (an O-methylated flavone found in lima

bean), sesamin (a lignan found in sesame and flaxseed), fargesin (a lignan from tea,

herbs and spices), delta-sanshool (an n-acyl amine from herbs and spices), and the lig-

nan sanshodiol (from herbs and spices). Such molecules could be prioritized for de-

tailed experimental validation. Complete output of PhyteByte for PPARG as input and

resulting identified compounds scoring above 0.50 is presented in Additional file 2.

Tools such as PhyteByte consider only small molecules and are limited by the content

of the input databases. Importantly, these resources are expected to become increas-

ingly comprehensive, especially for food compounds. For example, efforts are underway

by the USDA to expand their food composition databases [7], and recent investigations

have identified additional compounds produced during food processing [21] and by hu-

man microbiota [22], which may promote certain health effects. While QSAR models

are susceptible to false positives due to activity cliffs (key discontinuities in the

structure-activity landscape), outputs from PhyteByte are intended to be only putative

structure-activity relationships to be explored further through complementary compu-

tational and laboratory methods [23]. Experimental and/or epidemiological assessment

eventually will be required to validate at least some subset of the algorithmic predic-

tions before this tool could be used in clinical settings or for dietary recommendations.

In future versions of the software, we anticipate more flexibility in both the inputs

and databases. For example, inputs may include phenotypes (to be linked to a set of

target gene products), and user-defined food compound datasets following a pre-

defined schema may be used to complement FooDB. Additionally, as more follow-up

testing of food compound-target interactions is performed, those results can be used as

a complementary source of interactions for PhyteByte and form the basis for a catalog

of all such interactions for a single food. Complementary data streams, such as those

based on text mining [5], pharmacology networks [24] or drug interaction data (to

identify potential similar food compound interaction effects), could provide additional

support for food compound-phenotype links. Future work also should include more
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fine-grained annotations of positive training molecules (based on type of effect on the

target, strength, and mechanism of action) as well as alternative QSAR modeling ap-

proaches [25].

Conclusions
PhyteByte is a machine learning-based tool for discovery of interactions between food

compounds and specific proteins or phenotypes. The software enables prioritization of

these compounds for future research and hypothesis generation for condition-specific

dietary interventions. Applied to the PPARG gene, this tool recovered known ligands

and generated the basis for new hypotheses useful for cell-based assays or epidemio-

logical inquiries. Our work provides additional proof-of-concept for the emerging field

of “computational nutrition” based on food compounds, building on previous research

that applied cheminformatic approaches to assign putative biological function to mole-

cules of interest.

Availability and requirements
Project name: Phytebyte.
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License: AGPLv3.
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