
METHODOLOGY ARTICLE Open Access

Deconvolution of bulk blood eQTL effects
into immune cell subpopulations
Raúl Aguirre-Gamboa1†, Niek de Klein2†, Jennifer di Tommaso1†, Annique Claringbould2,
Monique GP van der Wijst2, Dylan de Vries2, Harm Brugge2, Roy Oelen2, Urmo Võsa1,3, Maria M. Zorro1,
Xiaojin Chu1,4, Olivier B. Bakker1, Zuzanna Borek1, Isis Ricaño-Ponce1, Patrick Deelen2,5, Cheng-Jiang Xu4,7,
Morris Swertz1,5, Iris Jonkers1, Sebo Withoff1, Irma Joosten6, Serena Sanna1, Vinod Kumar1,7, Hans J. P. M. Koenen6,
Leo A. B. Joosten7, Mihai G. Netea7,8, Cisca Wijmenga1, BIOS Consortium, Lude Franke1† and Yang Li1,4,7*†

* Correspondence: Yang.Li@
helmholtz-hzi.de
†Raul Aguirre-Gamboa, Niek de
Klein Jennifer di Tommaso are
contributed equally to this work.
†Lude Franke and Yang Li are jointly
directed this work
1Department of Genetics, University
of Groningen, University Medical
Center Groningen, Groningen, the
Netherlands
4Centre for Individualised Infection
Medicine (CiiM) & TWINCORE, joint
ventures between the
Helmholtz-Centre for Infection
Research (HZI) and the Hannover
Medical School (MHH),
Feodor-Lynen-Str. 7, 30625
Hannover, Germany
Full list of author information is
available at the end of the article

Abstract

Background: Expression quantitative trait loci (eQTL) studies are used to interpret
the function of disease-associated genetic risk factors. To date, most eQTL analyses
have been conducted in bulk tissues, such as whole blood and tissue biopsies, which
are likely to mask the cell type-context of the eQTL regulatory effects. Although this
context can be investigated by generating transcriptional profiles from purified cell
subpopulations, current methods to do this are labor-intensive and expensive. We
introduce a new method, Decon2, as a framework for estimating cell proportions
using expression profiles from bulk blood samples (Decon-cell) followed by
deconvolution of cell type eQTLs (Decon-eQTL).

Results: The estimated cell proportions from Decon-cell agree with experimental
measurements across cohorts (R ≥ 0.77). Using Decon-cell, we could predict the
proportions of 34 circulating cell types for 3194 samples from a population-based
cohort. Next, we identified 16,362 whole-blood eQTLs and deconvoluted cell type
interaction (CTi) eQTLs using the predicted cell proportions from Decon-cell. CTi
eQTLs show excellent allelic directional concordance with eQTL (≥ 96–100%) and
chromatin mark QTL (≥87–92%) studies that used either purified cell subpopulations
or single-cell RNA-seq, outperforming the conventional interaction effect.

Conclusions: Decon2 provides a method to detect cell type interaction effects from
bulk blood eQTLs that is useful for pinpointing the most relevant cell type for a
given complex disease. Decon2 is available as an R package and Java application
(https://github.com/molgenis/systemsgenetics/tree/master/Decon2) and as a web
tool (www.molgenis.org/deconvolution).
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Background
For many of the genetic risk factors that have been associated to immune diseases by

genome-wide association studies (GWAS), the molecular mechanism leading to disease

remains unknown [1]. Most of these genetic risk variants are located in the non-coding

regions of the genome, implying that they play a role in gene regulation [2, 3]. Expres-

sion quantitative trait locus (eQTL) analysis provides a way to characterize the regula-

tory effect of these risk factors in humans, and many eQTL studies have now been

carried out using bulk tissues, for example, whole blood [4, 5]. However, bulk tissues

comprise many different cell types, and gene regulation is known to vary across cell

types [6–8]. In recent years, efforts to describe eQTL effects in purified cell subpopula-

tions have been carried out in specific cell types [9]. Unfortunately, the length and cost

of the study protocols have limited these studies to small sample sizes and only a few

cell types. Current developments on single cell (sc) RNASeq technologies have given

rise to sc-eQTLs, an approach that, although promising, is still bound to a limited

number of individuals, which thereby limits the number of detectable cell type inter-

action (CTi) eQTLs. Nevertheless, the ability to pinpoint the CT in which a risk factor

exerts an eQTL effect could help us to understand its role in disease.

Statistical approaches to detect CT effects using tissue expression profiles have

mainly been developed to evaluate gene by environment interaction (GxE) terms, for

example to detect CT eQTLs for myeloid and lymphoid lineages using only whole

blood gene expression and by evaluating the interaction between genotype and cell pro-

portions for neutrophils and lymphocytes in whole blood [10]. A second study linked

eQTL genes to proxy genes through correlation; these proxy genes were then associ-

ated with intrinsic or extrinsic factors such as cell proportions or inflammation markers

[11]. However, these efforts focused on exploiting only one GxE term, or on indirectly

linking the CT proportions to given eQTL, rather than directly ascertaining the inter-

action between all the main cell proportions comprising the bulk tissue and genotype.

Unfortunately, quantifying cell proportions, in particular rare subpopulations (total

abundance ≤3% in circulating white blood cells), is expensive and time-consuming.

Hence, quantifying immune cell proportions in large functional genomics cohorts is

not common practice.

Here we present and validate Decon2, a computational and statistical framework that

can (1) predict the proportions of known circulating immune cell subpopulations

(Decon-cell), and (2) combine these predicted proportions with whole blood gene ex-

pression and genotype information to assign bulk eQTL effects into CTi eQTLs

(Decon-eQTL). Our two-step framework provides an improvement over previously

published methods. Unlike earlier methods [12], Decon-cell does not rely on any prior

information about transcriptome profiles from purified cell subpopulations. It only re-

quires quantification of the cell proportions comprising the bulk tissue, in this case

whole blood. Decon-cell identifies signature genes that correlate with cell proportions

in a bulk tissue. Secondly, Decon-eQTL is the first approach in which all major cell

proportions (the major cell types for which the sum of proportions per sample is ap-

proximately 100%) of bulk blood tissue are incorporated into an eQTL model simultan-

eously. Decon-eQTL can then be used to systematically test for any significant

interaction between each CT and genotype, while also controlling for the effect on ex-

pression of the other cell types.

Aguirre-Gamboa et al. BMC Bioinformatics          (2020) 21:243 Page 2 of 23



We generated the Decon-cell predictive models using data from the 500FG cohort

[13], where quantification of immune cell types was carried out using FACS [14] and

RNA-Seq-based bulk whole blood transcriptome profiles were available for 89 samples

[15]. By using a cross-validation approach, we were able to accurately predict 34 out of

73 cell subtypes using only whole blood gene expression. For validation, we applied

Decon-cell to three independent cohorts (Lifelines Deep [16], n = 627; Leiden Longevity

cohort [17], n = 660 and the Rotterdam Study [18], n = 773) for which both blood

RNA-seq and measured cell proportion data are available (neutrophils, lymphocytes

and CD14+ monocytes and granulocytes). Additionally, we benchmarked Decon-cell

prediction performance against two other existing methods that quantify immune cell

composition using gene expression profiles from whole blood on these three independ-

ent cohorts. After showing that we can accurately predict circulating immune cell pro-

portions, we applied Decon-cell to estimate cell proportions in 3194 individuals from

the BIOS cohort [16, 19–21] for whom both whole blood RNA-seq and genotypes were

available. The BIOS cohort is a valuable resource for functional genomics studies where

extensive characterization of the genetic component on gene expression [11] and epi-

genetics [22] have been performed. We integrated whole blood expression and geno-

type information and predicted cell proportion with Decon-eQTL to deconvolute 16,

362 significant whole blood cis-eQTLs top effects into CT interacting eQTLs (CTi

eQTLs). These deconvoluted CTi eQTL results were comprehensively validated using

transcriptome profiles from purified cell subpopulations [23], eQTLs and chromatin

mark QTLs from purified cell types [9] and eQTLs from single-cell experiments [24].

We also systematically compared the performance of Decon-eQTL against the most

used method [10] that detect cell type eQTL effects using whole blood expression

profiles.

Results
Decon-cell accurately predicts the proportions of known immune cell types

In order to assign the cell types from which an overall eQTL effect from a bulk tissue

sample (e.g. whole blood) arise, we need three types of information: genotype data, tis-

sue expression data and cell type proportions (Fig. 1). Here we propose a computa-

tional method that predicts the cell proportions of known immune cell types using

gene signatures in whole blood expression data using a machine-learning approach.

Decon-cell employs the regularized regression method elastic net [26] to define sets of

signature genes for each cell type. In other words, these signatures were selected as

having the best prediction power for individual cell proportions.

There are 89 samples in the 500FG cohort with both whole blood RNA-seq and

quantification of 73 immune cell subpopulations by FACS. This data was used to build

the prediction models for estimating cell subpopulations by Decon-cell. First, we deter-

mined which of the 73 cell subpopulations could be reliably predicted by Decon-cell. A

within-cohort cross-validation strategy was employed by randomly dividing 89 samples

(Fig. 1) into training and test sets (70 and 30% of the samples, respectively). After gen-

erating a model using each training set, we applied the prediction models of each cell

type to the samples in the test sets. We compared the predicted and measured cell pro-

portion for each cell type using Spearman correlation coefficients to evaluate the
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prediction performance. We repeated this process 100 times and then used the mean

of the correlation coefficient in all 100 iterations to evaluate the prediction perform-

ance. We were able to predict 34 out of 73 cell subpopulations using whole blood gene

expression data at a threshold of mean R ≥ 0.5 across all 100 iterations (Fig. 2a, Supple-

mentary Fig. 1, Supplementary Table 1). The number of signature genes selected in our

models for predicting cell proportions varied across the cell types, ranging from 2 to

217 signature genes (Supplementary Fig. 2A, Supplementary Table 1), and they were in-

dependent of the average abundance of these cell types in whole blood (R = 0.02, Spear-

man correlation coefficient, Supplementary Fig. 2A). In particular, cell types that are

abundant in whole blood (granulocytes-neutrophils, CD4+ T-cells and CD14+ mono-

cytes) were predicted with high confidence (correlation between predicted and mea-

sured values, R ≥ 0.73). Remarkably, we were also able to predict a number of less

Fig. 1 Workflow of application of Decon2 to predict cell counts followed by deconvolution of whole blood
eQTLs. Using whole blood expression and FACS data of 500FG samples, Decon-cell predicts cell proportions
with selected marker genes of circulating immune cell subpopulations. Validations of Decon-cell were
carried out on three independent cohorts for which measurements of neutrophils/granulocytes,
lymphocytes and monocytes CD14+ were available along with expression profiles of whole blood.
Benchmarking of Decon-cell was performed against CIBERSORT [25] and xCell [12]. Decon-cell was applied
to an independent cohort (BIOS) to predict cell counts using whole blood RNA-seq. Decon-eQTL
subsequently integrates genotype and tissue expression data together with predicted cell proportions for
samples in BIOS to detect cell type eQTLs. We validated Decon-eQTL using multiple independent sources,
including expression profiles of purified cell subpopulations, eQTLs and chromatin mark QTLs (cmQTLs)
from purified neutrophils, monocytes CD14+ and CD4+ T cells [9], and single-cell eQTL results [24].
Benchmarking of Decon-eQTL was carried out for comparison with a previously reported methods that
detected cell type–eQTL effects using whole blood expression data, i.e. the Westra et al. [10]
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abundant cell subpopulations, including NK cells, CD8+ T-cells, non-NK T-cells (CD3-

CD56-), CD4+ central memory, CD4+ effector memory T-cells and regulatory T-cells

(Supplementary Fig. 2A), as determined by FACS. Cell types with a low prediction per-

formance (R < 0.5) are those that have few signature genes with expression levels that

correlate sufficiently (i.e. absolute R < 0.3) with the measured cell proportions in whole

blood (Supplementary Fig. 2B-C). For each of the 34 predictable cell types, we used

Decon-cell to build models for predicting their cell counts using all 89 samples from

the 500FG cohort. These models were applied to 3194 samples in an independent co-

hort (BIOS cohort) to predict cell proportions of circulating immune cell types for the

subsequent deconvolution of eQTL effects.

In addition to within-cohort validation, we tested our cell proportion models using

three independent cohorts (LLDeep, n = 627; LLS, n = 660; RS, n = 773) in which cell

type abundances were quantified using a Coulter counter for neutrophils (granulocytes

for RS), lymphocytes and CD14+ monocytes (Fig. 2b, Supplementary Fig. 3A-B). In

LLDeep, we were able to accurately predict these three cell types with Spearman correl-

ation coefficients of R = 0.73, R = 0.89 and R = 0.73, respectively. For LLS and RS, the

prediction performance was similarly accurate for neutrophils and lymphocytes (R =

0.76 for neutrophils, R = 0.84 for lymphocytes), but less so for monocytes (R = 0.50 for

CD14+ monocytes and proportions in LLS and R = 0.74 for granulocytes, R = 0.83 for

lymphocytes and R = 0.28 for CD14+ monocytes in RS).

Fig. 2 Prediction of cell proportions using whole blood transcriptome by Decon-cell. a Distribution of
prediction performance (Spearman correlation coefficient) of the 34 predictable cell types in 100 iterations
of prediction within the 500FG cohort. b Cross- cohort validation in an independent Lifelines-Deep cohort
(n = 627): the measured and predicted cell proportions for neutrophils (given by granulocytes in 500FG),
lymphocytes and monocytes are compared

Aguirre-Gamboa et al. BMC Bioinformatics          (2020) 21:243 Page 5 of 23



Next, in order to benchmark Decon-cell, we compared its prediction performance

against two other existing tools that quantify the abundance of known immune cell

types using bulk whole blood expression profiles: CIBERSORT [25] and xCell [12]. We

obtained the predicted proportions by CIBERSORT and enrichment scores of circulat-

ing immune cells by xCell for the samples in three different cohorts: LLDeep, LLS and

RS (Supplementary Fig. 4A-B). For each cell type, Decon-cell outperforms CIBERSORT

and xCell (Supplementary Fig. 3B). The scatterplots of predicted vs measured values

(Supplementary Fig. 3 A, Supplementary Fig. 4 A-B) further demonstrate that the better

performance of Decon-cell is not due to cell proportion outliers.

Finally, we evaluated whether the signature genes showed CT expression in their rele-

vant purified cell types using BLUEPRINT [23] RNA-seq data from the purified cell

subpopulations. Here we focused on cell types with more than three samples measured,

which included neutrophils, CD14+ monocytes, CD4+ T-cells and B-cells. The signa-

ture genes showed overall higher expression in their relevant cell subpopulations com-

pared to other cell subpopulations. Interestingly, the signature genes were also able to

cluster the samples of the relevant CT using unsupervised hierarchical clustering (Sup-

plementary Fig. 5A-D). Together, our results demonstrate that the gene signatures

identified by Decon-cell using only whole blood gene expression data are predictive for

the proportions of circulating immune cell subpopulations.

To facilitate the cell proportion prediction of new samples using whole blood RNA-

seq, we have made the Decon-cell prediction models and gene signatures available in

an R package (Decon-cell) and as a web tool (www.molgenis.org/deconvolution). These

two implementations allow users to pre-process their RNA-seq expression counts and

estimate cell proportions using the pre-established models for 34 cell types in whole

blood. In addition, the Decon-cell R package allows users to generate Decon-cell-like

gene signatures to predict their own cell proportions, which requires the input of bulk

expression profiles and cell proportions to generate new Decon-cell predictive models.

Decon-eQTL identifies which cell types contribute to the whole blood eQTL effect

As we know, eQTL analysis using whole blood bulk expression data fails to distinguish

between a general eQTL present in all cell types and an effect mainly found in a subset

of the cell types. We therefore propose a new approach, called Decon-eQTL, that as-

signs the overall bulk eQTL into CT effects. Using the cell proportions in whole blood,

it is possible to formally test if the genetic effect is interacting with the cell proportions.

More explicitly, we include both the genotype and all major CT proportions of interest

in a linear model, and systematically test if there is a significant interaction effect be-

tween genotype and each of the cell proportions in the variation of gene expression in

whole blood. At the same time, the model used by Decon-eQTL controls for the effects

of the remaining cell types on gene expression. In this way, whole blood expression

data, genotypes and (predicted) cell proportions can be integrated to assign a CTi effect

from a bulk eQTL (Fig. 1).

We applied Decon-eQTL to 3198 samples (BIOS cohort) with transcriptome levels

(RNA-seq), genotype information and cell proportions predicted by Decon-cell. Whole

blood cis-eQTL mapping yielded 16,362 whole blood eQTLs (false discovery rate

(FDR) ≤ 0.05). For each of these whole blood cis-eQTLs, we applied Decon-eQTL with
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a focus on 6 major cell subpopulations: granulocytes, CD14+ monocytes, CD4+ T-cells,

CD8+ T-cells, B-cells and NK cells. These cell types were selected because the sum of

their relative percentages was close to 100% and none of these cell type pairs had an

absolute correlation coefficient R ≥ 0.75. Decon-eQTL computationally assigned 4139

CTi eQTLs from these subpopulations, reflecting 3812 genes and 3650 SNPs. 25% of

the whole blood eQTLs have a significant (FDR ≤ 0.05) CTi eQTL effect given Decon-

eQTL. The majority (31%) of the total CTi eQTL effects detected were found to be as-

sociated to granulocyte proportions, possibly because granulocytes comprise ~ 70% of

circulating white blood cells (Fig. 3a). The majority (74%) of CTi eQTLs detected by

our method were assigned to a single cell type (Supplementary Fig. 6A). Similarly, we

find almost no sharing between cell types in single-cell eQTLs from 112 individuals.

However, it should be noted that these eQTLs are likely not exclusively present for this

particular cell type in biology, but that the statistical power given our sample size was

sufficient to detect the interaction effects that we describe as CTi eQTL in this particu-

lar cell type. Decon-eQTL was only able to find a few cases of sharing of CTi eQTLs

between cell types, likely due to a lack of power of the interaction model. An example

Fig. 3 Deconvolution of whole blood eQTLs into CTi eQTLs. Decon-eQTL detects CTi eQTLs by integrating
proportions of cell subpopulations (predicted by Decon-cell), gene expression and genotype information. a
Number of deconvoluted CTi eQTLs in each cell type using whole blood RNA-seq data of 3189 samples in
BIOS cohort. b Distribution of Spearman correlation coefficients between expression levels of CTi eQTL
genes and cell counts for each cell subpopulation. The CTi eQTL genes show positive and statistically
higher correlation (Spearman) with the relevant cell type proportions as compared to the rest (T-test p-
value < 0.05) in an independent cohort (500FG)
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of such a shared CTi eQTLs can be seen for the NOD2 gene, where Decon-eQTL de-

tected a strong granulocyte-eQTL effect alongside a smaller opposite effect in CD14+

monocytes. This opposite effect has also been previously described in eQTL studies on

purified CD14+ monocytes and neutrophils [8]. These results demonstrate that the ef-

fects of cell proportions on gene expression should be taken into account when inter-

preting eQTLs derived from bulk tissues.

Decon-eQTL prioritizes genes to relevant cell types

CTi eQTL genes are expected to have higher expression levels in their relevant cell

types, and their expression in whole blood should therefore be correlated with the

proportions of these relevant cell types. To test this, we evaluated if the expression

levels of the CTi eQTL genes detected in the BIOS cohort were correlated with

their relevant cell proportions, and compared this to the correlation with non-

relevant cell types. We calculated the Spearman correlation coefficients between

the expression of the identified CTi eQTL genes and the measured cell proportions

in the 500FG cohort (n = 89). We then compared the correlation coefficients we

obtained here with those between expression and the remaining cell proportions.

For each of the six cell subpopulations we evaluated in Decon-eQTL, their CTi

eQTL genes had a significantly higher correlation with their relevant cell subpopu-

lation than with other cell types (T-test, p-value < 0.05) (Fig. 3b). As such, this re-

sult shows a significant association between CTi eQTL genes and the proportion

of their relevant CT in an independent cohort.

Next, we evaluated whether the significant CTi eQTL genes were over-expressed in

their relevant cell subpopulation compared to eQTL genes that were found to be non-

significant CTi eQTLs for the same cell type. For this purpose, we made use of the puri-

fied neutrophil, CD14+ monocyte, CD4+ T-cell and B-cell RNA-seq data from the BLUE-

PRINT dataset. We include these cell types because they were the only ones with more

than three samples measured. For each of the four cell types, we observed that the expres-

sion of CT eQTL genes detected by Decon-eQTL was significantly higher (T-test, p-value

≤0.05) than the expression of non-significant Decon-eQTL genes (Fig. 4a). We also ob-

served that the deconvoluted eQTL genes from granulocytes showed a relatively wider

range of variation than the CT eQTL genes from the other three subpopulations. We hy-

pothesized that this could be explained by the fact that granulocytes comprise ~ 70% of

the cell composition in whole blood, thus giving us the power to detect eQTL for lowly

expressed genes in granulocytes. This is partly supported by the observation that the vari-

ation of expression in whole blood of granulocyte CTi eQTL genes was significantly

greater than for those CTi eQTL genes deconvoluted to the other five cell subpopulations

(F-test, p-value ≤0.05, Supplementary Fig. 7).

Furthermore, by using publicly available transcriptome profiles (GSE78840 [27]) of

purified NK cells and CD4+ T cells, we assessed if the differentially expressed genes

across the two cell types were enriched for eGenes of deconvoluted CT eQTLs. Here

we observed that the CD4+ differentially expressed genes (Adjusted P-value ≤0.05)

were significantly enriched for CD4+ T cell eQTLs (Fisher exact P = 1.8 × 10− 17),

whereas NK cell differential genes (Adjusted P-value ≤0.05) were significantly enriched

for NK cell eQTLs (Fisher exact P = 2.3 × 10− 18) as shown in Fig. 4b.
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In summary, we were able to show that the eQTL genes detected by Decon-eQTL

are transcriptionally active in their relevant cell type because that is where they are

more highly expressed.

CT eQTLs identified by Decon-eQTL in whole blood are replicated in purified cell eQTL

datasets

To validate the CT eQTLs defined by Decon-eQTL, we utilized eQTLs identified from

purified neutrophils, CD4+ T-cells and CD14+ monocytes [9]. We first compared the

absolute effect sizes of eQTLs from purified cells that are also significantly deconvo-

luted CTi eQTLs to the effect sizes of eQTLs from purified cells that are also non-

significant deconvoluted CTi eQTLs for this cell type. For all three cell populations, ef-

fect sizes in our deconvoluted CTi eQTLs were significantly higher than the effect sizes

of eQTLs without a significant CTi eQTL (Wilcoxon test, p-value ≤0.05, Fig. 4c). Next,

we assessed the specificity of our deconvoluted CTi eQTLs by evaluating CTi eQTL ef-

fect sizes in non-relevant cell subpopulations. For example, we compared the effect

sizes of deconvoluted granulocyte CTi eQTLs against those with non-significant decon-

voluted granulocyte CTi eQTLs using the effect sizes of purified CD4+ T-cell eQTLs.

Notably, we observed no statistically significant differences using effect sizes from non-

relevant cell subpopulations (see off-diagonal comparisons in Supplementary Fig. 8),

which further supports the biological relevance of our deconvoluted CTi eQTLs. How-

ever, when comparing the effect sizes in the purified eQTLs of only the CTi eQTLs that

Fig. 4 Validation of CTi eQTLs. a The expression of CTi eQTL genes in purified cell subpopulations from
BLUEPRINT [23] are significantly higher in the relevant cell subpopulation when compared to other available
cell subtypes (green for granulocyte eQTL genes showing expression for purified neutrophils; orange for
monocytes; purple for CD4+ T cells; pink for B cells). b Genes differentially expressed (Adjusted p-value
≤0.5) between CD4+ T cells and NK cells are significantly enriched for CT eQTLs effects on CD4+ T cells
(dots in purple, Fisher exact P = 1.8 × 1017) and NK Cells (dots in yellow, Fisher exact P = 2.3 × 1018),
respectively. c CTi-eQTLs (FDR≤ 0.05) show significantly larger effect sizes in the purified cell eQTL data [9]
compared to the rest of the whole blood eQTLs for which we do not detect a cell type effect, as shown for
deconvoluted granulocyte eQTLs in neutrophil-derived eQTLs (green),monocytes (orange) and CD4+ T
cells (purple)
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were significant across all three available cell subpopulations, we were not able to find

significant differences (Fig. 4d). For example, the effect size of neutrophil CTi eQTLs is

the same across neutrophils, monocytes CD14+ and CD4+ T cells.

To further demonstrate that the CTi eQTLs assigned by Decon-eQTL are biologically

meaningful, we made use of the K27AC and K4ME1 epigenetic QTLs characterized in

purified neutrophils, CD4+ T-cells and monocytes CD14+ [9]. In a similar fashion to

the above comparison of effect sizes with purified eQTLs, we compared the absolute ef-

fect sizes from both K27AC and K4ME1 QTLs from eQTLs for which Decon-eQTL de-

tects a significant CTi effect to the effect sizes of the other whole blood eQTLs. Here

we observed that for corresponding cell types, e.g. evaluating granulocyte CT eQTLs in

K27AC QTLs from purified neutrophils, the distribution of the absolute effect sizes is

significantly higher for the chromatin mark QTLs (cmQTLs) than for non-significant

CT eQTLs, which provides epigenetic evidence that our method is able to correctly as-

sign cell type eQTL effects, as shown in the diagonal comparisons for both K27AC

QTLS (Supplementary Fig. 9) and K4ME1 QTLs (Supplementary Fig. 10). Notably, for

the non-relevant cell subpopulations, we observed that only one comparison (granulo-

cytes vs. CD14+ monocytes) shows statistically significant higher effect sizes for K27AC

QTLs and K4ME1 QTLs. For the rest of the non-relevant comparisons (shown in the

off-diagonal of both Supplementary Fig. 9 and Supplementary Fig. 10), there are no sta-

tistically significant differences. Comparing the eQTL effect sizes in purified KC27AC

and K4ME1 QTLs of only the significant CTi eQTLs across all three available cell sub-

populations shows that the effect sizes from the relevant cell type are significantly

stronger for all pairings except those between granulocytes and CD14+ monocytes

(Supplementary Fig. 11).

In addition to the comparison of effect sizes, we compared the allelic concordance

between deconvoluted eQTLs and eQTLs from purified cell subtypes [9]. For each

available cell type (neutrophils, CD14+ monocytes, and CD4+ T cells), we evaluated

whether the direction of the eQTL effect on deconvoluted CT eQTLs was the same as

the one observed from purified cell subpopulations. The allelic concordance between

the deconvoluted eQTLs and purified eQTLs was high across cell types: 99% for gran-

ulocyte eQTLs (compared to neutrophil eQTLs), 96% for CD14+ monocytes eQTLs

and 99% for CD4+ T cells (Fig. 5a). These rates of allelic concordance are significantly

higher for granulocyte and CD4+ T-cell CTi eQTLs compared to those between whole

blood eQTLs and eQTLs from purified cell subpopulations (Fig. 5b; Neutrophils, Fisher

exact p-value = 3.91 × 106; CD4+ T cells Fisher exact p-value = 0.005), whereas the al-

lelic concordance for deconvoluted CD14+ monocyte eQTLs is the same as for whole

blood eQTLs and purified CD14+ monocyte eQTLs (Fig. 5b). We also compared the al-

lelic concordance of deconvoluted CTi eQTLs of specific cell types against the eQTLs

of non-relevant purified subpopulations. Interestingly, the allelic concordance across

non-relevant cell subtypes is consistently lower (off-diagonal Supplementary Fig. 12,

Bonferroni-corrected Fisher exact p-value < 0.0001 for all comparisons). Higher allelic

concordance across cell types was seen between deconvoluted granulocyte eQTLs and

CD14+ monocyte eQTLs with a 95% allelic concordance, which shows that the direc-

tion of effect is often shared between related cell types.

Finally, we evaluated the allelic concordance rates for CTi eQTLs assigned by Decon-

eQTL and K27AC QTLs from purified cell subpopulations. Here we observed a
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consistently high allelic concordance rate: 92% for granulocyte eQTLs (in purified Neu-

trophils), 87% for CD14+ monocytes and 92% for CD4+ T cells (boxed diagonal com-

parisons in Supplementary Fig. 13). These concordance rates are significantly higher

than the ones between the whole blood eQTLs and K27AC QTLs from purified cell

subpopulations (Supplementary Fig. 14) for neutrophils (Fisher exact test p-value =

9.06 × 10− 14), CD14+ monocytes (Fisher exact test p-value = 3.33 × 10− 4), CD4+ T cells

(Fisher exact test p-value = 8.64 × 10− 9). Moreover, we noticed a consistent decrease in

allelic concordance rates when assessing the concordance of CT eQTLs in K27AC

Fig. 5 Allelic concordance of CTi eQTLs with eQTLs from purified cells. CTi eQTLs show high allelic
concordance compared to eQTLs from purified cell subpopulations9. (a) for granulocyte eQTLs (green), CTi
eQTLs achieved an allelic concordance of 99% compared to eQTLs from purified neutrophils. Similarly, the
allelic concordances were 96 and 99% for CD14+ monocytes and CD4+ T cells, respectively. Except for
monocytes, these values are higher than those observed for whole blood eQTLs when comparing to eQTLs
from purified subpopulations, as shown in panel (b)
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QTLs of non-relevant cell subpopulations (off-diagonal comparisons, Supplementary

Fig. 13). Taken together, the results from allelic concordance rates between deconvo-

luted CTi eQTLs and eQTLs/K27AC QTLs from purified cell subpopulations add a

further layer of evidence to support the biological relevance of deconvoluted CT

eQTLs.

CTi eQTLs identified by Decon-eQTL in whole blood show high allelic concordance with

single-cell RNA-seq eQTLs

To replicate the deconvoluted CT eQTLs in the cell subtypes that were not available in

Chen et al. [9] purified cell eQTLs, we utilized the recent single-cell RNA-seq eQTLs

(sc-eQTLs) identified in CD14+ monocytes, NK cells, CD4+ T-cells, CD8+ T-cells and

B-cells [24], as well as new single cell eQTL data that was processed in the same way.

In total, we used sc-eQTLs from 112 individuals. We selected all significant eQTLs for

each of the cell types (non-classical and classical monocytes were combined) and com-

pared them to the direction of the eQTL effect given by Decon-eQTL, hereby observing

an allelic concordance of 96.42% (Fig. 6a).

Decon-QTL outperforms conventional interaction method

To our knowledge, our approach is the first to model the effect of multiple components

of bulk blood RNA-seq simultaneously in an attempt to fully deconvolute gene expres-

sion levels into more precise cell type x genotype effects. Previous studies have used an

interaction effect between genotype and cell proportions of one specific cell type to de-

tect cell type eQTL effects using whole blood gene expression [10, 11], or used the cor-

relation of the eQTL effect with cell type proxy genes [10, 11].

Fig. 6 Allelic concordance of CTi eQTLs with eQTLs from single cell RNAseq. a Comparison in allelic
direction between CTi eQTLs and eQTLs from single cell RNAseq experiments in 6 cell types. b Comparison
in allelic direction between Westra model eQTLs and single cell eQTLs. In both panels coloured diamonds
are FDR < 0.05, grey circles are FDR > = 0.0 in the single cell data, and the size is the -log10(p-value) of the
predicted cell type interacting eQTLs
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The Westra et al method has often been used to detect cell type eQTL effects using

bulk expression data and cell proportions [28–31]. In brief, it focuses on the effect of

the GxE interaction (where E represents cell proportions) to explain the variation in

gene expression and only incorporates one cell type at a time. To properly compare

Decon-eQTL with the ‘Westra method’, we applied both methods to the BIOS cohort

and detected CT eQTLs for the six cell subpopulations. Replication of CT eQTLs iden-

tified by the Westra method was done as described above for Decon-eQTL. Here we

observed that the eGenes (i.e. genes with eQTLs) detected by the Westra method show

significantly higher expression for granulocytes (p = 3.0 × 10− 12, observed in purified

neutrophils) and CD4+ T cells (p = 5.0 × 10− 13) and B cells (p = 5.1 × 10− 11), but not for

CD14+ monocytes (p = 1, see Supplementary Fig. 15A). Next, we found that the distri-

bution of effect sizes in eQTLs from purified cells is significantly higher for the CT

eQTLs detected using the Westra method when compared to the rest of the whole

blood eQTLs (p = 2.2 × 10− 47, p = 9.6 × 10− 08 and p = 1 × 10− 47 for neutrophils,

CD14+ monocytes and CD4+ T cells, respectively; boxed-diagonal comparisons in

Supplementary Fig. 15B), showing similar results to the ones from Decon-eQTL

(Supplementary Fig. 8).

When we compared the allelic concordance rates between the direction of effects

given by the interaction term from the Westra method to those found in eQTLs from

purified cell subpopulations, we observed that the allelic concordances for granulocytes

eQTLs (99%, evaluated in neutrophils, p > 0.05) and CD4+ T cells 93% (p > 0.05) (Sup-

plementary Fig. 16) are comparable to those observed for Decon-eQTL (Fig. 4a). Con-

versely, the allelic concordance rate for CD14+ monocytes is only 62%, significantly

lower than the results from Decon-eQTL (96%, p = 0.001). Finally, for granulocytes,

CD4+ T cell eQTLs and monocytes, we overlapped the results from Westra method

and Decon-eQTL with the eQTLs from purified cell types (Chen et al [9]) (Supplemen-

tary Fig. 17). For all three cell types, we found that Decon-eQTL is able to detect a lar-

ger number of eQTLs. For neutrophils, the Westra method has a higher replication

rate (Fisher p-value = 0.002). For CD14+ monocytes, both methods had the same repli-

cation rate (Fisher p-value = 0.737). For CD4+ T-cells, Decon-eQTL had a better repli-

cation rate (p-value = 7.47 × 10− 12).

Finally, we compared the difference in allelic concordance with sc-eQTLs. The overall

allelic concordance of Decon-eQTL CTi QTLs with sc-eQTLs (96.42%, Fig. 6a) is

higher than that achieved by the Westra model (p = 1.235 × 10− 08), where we observed

an overall allelic concordance of 84.67% (Fig. 6b). For both non-classical monocytes

(Fisher p-value = 0.045) and CD4+ T-cells (Fisher p-value = 7.896 × 10− 07), Decon-

eQTL has a significantly better allelic concordance. For CD8+ T-cells (Fisher p-value =

0.230), classical monocytes (Fisher p-value = 0.0513), B-cells (Fisher p-value = 0.055)

and NK cells (Fisher p-value = 0.242), there is no significant difference. Nevertheless,

Decon-eQTL shows a higher allelic concordance for NK cells, classical monocytes, and

CD8+ T cells (93.8% vs 83.9, 96.2% vs 89.2, and 100% vs 93.5% respectively), while for

B cells it has lower concordance (33% vs 100%).

Overall, these results demonstrate that Decon-eQTL is able to detect more CTi

eQTLs that can be replicated in purified eQTL dataset than previously reported

methods, especially in less abundant cell types such as CD14+ monocytes. However,

the detection of interaction effects between genotype and cell proportions in order to
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dissect bulk (in this case whole blood) expression data and CTi eQTLs remains an area

of great opportunity that could still be explored, particularly given the constantly in-

creasing number of samples present in functional genomic cohorts and the growing

numbers of purified and sc-eQTL datasets that can be used for validation.

Discussion
We have developed a novel statistical framework, Decon2, that predicts the proportions

of known immune cell subtypes using gene expression levels from whole blood (Decon-

cell). These predicted cell proportions can then be used together with genotype informa-

tion and expression data to deconvolute a whole-blood eQTL effect into cell type interact-

ing effects (Decon-eQTL). Using a set of samples with both whole blood RNA-seq data

and cell frequencies of 73 cell subpopulations, we demonstrated that Decon-cell was able

to predict 34 independent cell subpopulations. The performance of Decon-cell has been

validated in multiple independent cohorts and benchmarked with existing methods. The

Decon-cell models were then applied to a cohort of 3189 samples for which whole blood

RNA-seq data was available, resulting in predicted cell counts for these samples. By inte-

grating bulk expression data, genotype and predicted cell counts of the BIOS cohort,

Decon-eQTL was able to dissect whole blood eQTL effect into CTi eQTLs without puri-

fying immune cell subpopulations. The results of Decon-eQTL were then validated again

using several independent data types: 1) eQTLs from purified cell subpopulations, 2)

chromatin QTLs of purified cells, 3) gene expression from purified cell types and 4)

eQTLs derived from single-cell protocols. Compared with existing methods, Decon-eQTL

consistently shows superior performance. To sum up, the proposed framework is useful

for (re)-analyzing both existing and new bulk blood tissue datasets in order to detect CTi

eQTL effects and can be applied and tested on other tissues once cell count proportions

become available. Cataloging and further interpreting the role of CTi eQTLs will improve

our understanding of the functional role of the SNPs associated with complex diseases at

the level of specific cell subtypes.

The main advantage of our Decon-cell method for predicting cell proportions is that

it does not rely on the gene expression measured in purified cell subtypes when defin-

ing signature gene sets. Moreover, our method does not require the definition of

marker genes based on their differential expression compared to other cell subpopula-

tions, unlike previously reported methods [12]. The signature genes defined by Decon-

cell are determined using a completely unsupervised approach that applies regularized

regression to select the optimal combination of genes to accurately predict a certain

circulating cell proportion. The majority of these marker genes are differentially

expressed across purified cell subpopulations, but not all. Nevertheless, these signature

gene sets are still correlated to the cell proportions in whole blood. In summary, we

have shown that Decon-cell can accurately predict the proportions of circulating im-

mune cell subpopulations in three independent cohorts and that it out-performs previ-

ously reported methods within these cohorts.

Our Decon-eQTL method for detecting a CTi eQTL effect with bulk blood tissue ex-

pression data is, to our knowledge, the first attempt to simultaneously model whole

blood gene expression profiles into its major components. In contrast to a previous

method where single cell type (G x E) effects were evaluated one at a time [10, 31],

Decon-eQTL incorporates all the major cell proportions simultaneously to better
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dissect the overall genetic effect of gene expression signal into cell subpopulation ef-

fects. We have shown that CTi eQTL genes found with Decon-eQTL have higher ex-

pression and higher effect sizes in purified neutrophils, CD14+ monocytes and CD4+

T-cells than do non-CTi genes, and we find significantly higher allelic concordance for

two out of four tested cell types with sc-eQTLs than with a conventional interaction

model (Fig. 6a and b). Moreover, we have also shown the biological relevance of the

deconvoluted CTi eQTLs by validating our results on cmQTLs where CTi eQTLs have

significantly higher effect sizes and allelic concordance rates are significantly higher

than those of whole blood eQTLs. Finally, we have also demonstrated that Decon-

eQTL can replicate sc-eQTLs derived from scRNA-seq data, showing a higher allelic

concordance with sc-eQTLs than when using only whole-blood eQTL effects.

There are also limitations to our method. The CTi eQTLs detected by Decon-eQTL

tend to be eQTL exclusive for the specific CT, suggesting that the CT with the strongest

eQTL effect was selected by Decon-eQTL. This is likely due to the partial collinearity

present between the CT proportions included in the model (as shown by their correlation

structure in Supplementary Fig. 18A-B). Thus, the genetic effect of one cell type might be

masked by another CT with a correlated cell proportion. The highest correlation coeffi-

cient among cell types included in the model was 0.75 (between granulocytes and B cells).

Therefore, deconvoluting CTi eQTLs for partially correlated cell proportions could lead

to false negative results for cell types with relatively weaker eQTL effects.

In our model, we included the six major blood cell types, but there are many more

cell types available for which our method is not able to detect a CTi eQTL estimate.

Furthermore, we only tested Decon-eQTL using genome-wide whole blood cis-eQTLs

main effects. Such eQTL effects are very likely shared across multiple cell types, how-

ever we are only able to detect its interaction with only one cell type due to statistical

power and co-linearity (Supplementary Fig. 6A), which is also seen in the sc-eQTLs

with limited (112) samples (Supplementary Fig. 6B). Nevertheless, this does not imply

that the CTi eQTL are exclusive for, or only present in, that specific cell type, as we ob-

serve in Fig. 4d, where the effect sizes of the significant CTi eQTLs in purified subpop-

ulations are not significantly different across all three purified cell subpopulations. Yet

this difference in the effect-size of CTi eQTLs between relevant and non-relevant cell

types can be seen in histone modification QTLs (as shown in Supplementary Fig. 11),

likely due to the cell type-specificity of epigenetic marks. Lastly, Decon2 has only been

tested in whole blood, where large numbers of samples are available, and therefore it is

not known how it will perform in other tissues.

The proposed framework of Decon2 is generic for predicting cell subpopulations in bulk

tissues (Decon-cell) and re-distributing the overall eQTL effect into cell types (Decon-

eQTL). Both methods have been implemented in freely available software. In both the R

package and the user interface-based webtool, we provide the models for predicting cell

subpopulation in whole blood that were constructed and validated in this work so that in-

terested users can estimate immune cell subpopulations in whole blood in healthy people of

western European ethnicity, as our models were built using a Dutch cohort (500FG).

Conclusion
In summary, Decon2 is a computational method that can accurately assign CT effects

in whole blood functional genomic cohorts. It can be applied to any dataset for which
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genotypes and expression data is available and could potentially aid in understanding

the molecular effects of genetic risk factors associated with complex diseases at the

cell-subpopulation level. Our method makes it possible to create CT gene regulatory

networks that could explain the different effects that each CT has on a complex disease

in a cost-efficient way. Since Decon2 only requires gene expression and genotype infor-

mation to deconvolute bulk blood eQTLs into CTi eQTLs, it is possible to re-analyze

existing bulk blood RNA-seq data for which genotypes are also available. In this sce-

nario, we would use Decon-cell to predict cell proportions in whole blood and obtain

CT information on many more eQTLs through an increase in sample size. In addition

to whole blood, the methods behind Decon2 can potentially be generalized to use tran-

scriptional profiles derived from any other type of bulk tissue, such as biopsies from tu-

mors or other solid tissues implicated in complex disease etiology. However, the

method has not yet been tested in other tissues. Our methods can hence aid in the de-

tection of genetic effects on gene expression in rare cell subpopulations in bulk tissues.

Methods
RNA-seq data collection in 500FG cohort

We selected a representative subset of 89 samples from the 500 participants of the

500FG cohort, which is part of the Human Functional Genomics Project (HFGP). Our

subset was balanced for age and sex based on the original distribution in the cohort.

RNA was isolated from whole blood and globin transcripts were subsequently filtered

by applying the Ambion GLOBINclear kit. The samples were then processed for se-

quencing using the Illumina TruSeq 2.0 library preparation kit. Paired-end sequencing

of 2 × 50-bp reads was performed on the Illumina HiSeq 2000 platform. The quality of

the raw reads was checked using FastQC (http://www.bioinformatics.babraham.ac.uk/

projects/fastqc/). Read alignment was performed with STAR 2.3.0 [32, 33] using the hu-

man Ensembl GRCh37.75 as reference, and the aligned reads were sorted using SAM-

Tools [34]. Lastly, gene-level quantification of the reads was done using HTSeq [35].

RNA-seq preparation and data processing in the BIOS cohort

RNA was isolated from whole blood and globin transcripts were subsequently filtered

by applying the Ambion GLOBINclear kit. Library preparation was performed using

the Illumina TruSeq v2 library preparation kit. Next, Illumina HiSeq 2000 was used for

paired-end sequencing of 2 × 50 bp reads while pooling 10 samples per lane and expect-

ing > 15 million read pairs per sample. Read sets were generated using CASAVA,

retaining only those reads that passed Illumina Chastity Filter.

Quality control of the reads was evaluated using FastQC (http://www.bioinformatics.

babraham.ac.uk/projects/fastqc/). Adaptor sequences were trimmed out using cutadapt

(v1.1) with default settings. Low quality ends of reads were removed using Sickle

(v1.200) (https://github.com/najoshi/sickle).

Reads were then aligned using STAR 2.3.0e [33]. All SNPs present in the Genome of

the Netherlands (GoNL) with MAF ≥ 0.01 were masked from the reads to avoid refer-

ence mapping bias. Read pairs with at most eight mismatches and mapping to at most

five positions were used. Quantification of counts per genes was done using Ensembl

v.71 annotation (which corresponds to GENCODE v.16).
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Genotype data of the BIOS cohort

Genotype information was independently generated for each of the cohorts, further de-

tails on data collection and methods used for genotyping can be found in their papers

(CODAM [36], LLDeep [16], LLS [17], RS [18] and NTR [21]).

Genotypes were harmonized to GoNL with Genotype Harmonizer [37] and imputed

with IMPUTE2 [38] using GoNL as reference panel. SNPs with an imputation score

below 0.5, a Hardy-Weinberg equilibrium P-value smaller than 1 × 10− 4, a call rate

below 95%, or a MAF smaller than 0.05 were filtered out. For further analysis, only

eSNPs from whole blood cis-eQTL top effects were subsequently used in Decon-eQTL.

Quantification of cell proportions in 500FG cohort

Inclusion criteria and further description of the participants of the 500FG cohort can

be found at http://www.humanfunctionalgenomics.org. A total of 73 manually anno-

tated immune cell subpopulations were quantified using 10-color flow cytometry. To

minimize biological variability, cells were processed immediately after blood sampling

and typically analyzed within 2–3 h. Cell populations were gated manually as previously

described [14].

Cis-eQTLs in the BIOS cohort

For cis-QTL mapping, we tested for association between genes and SNPs located within

250 kb of a gene center. SNPs with MAF ≥ 0.01, call rate = 1 and Hardy-Weinberg equi-

librium p-value ≥0.0001 were included. eQTLs were declared to be significant at FDR <

0.05. Pre-processing of RNA-seq and QTL mapping was performed using a custom

eQTL pipeline that has been described previously [11].

Normalization and correction of gene expression data for deconvolution of eQTL effects

Total read counts from HTSeq were first normalized using the trimmed means of M

(TMM) values32. TMM expression values were then log2 transformed. For predicting

cell proportions, we used scaled expression data in both the 500FG and BIOS cohorts.

For the deconvolution of eQTLs, the expression was log2 transformed and corrected

for the effects of cohort, age, sex, GC content, RNA degradation rates, library size and

number of detected genes per sample using a linear model. The corrected expression

data was then exponentiated to maintain the original linear relationship across read

counts (gene expression) and cell proportions.

General description of Decon2

Decon2 is a statistical framework for estimating cell counts using molecular profiling

such as expression data from heterogeneous samples (Decon-cell) and consecutive de-

convolution of expression quantitative trait loci (Decon-eQTL) into each cell subpopu-

lation. To predict cell proportion levels using Decon-cell built in models, it’s only input

is a matrix As input Decon-cell takes a table of normalized gene expression counts,

with samples as columns and genes as rows, and outputs a table of predicted cell count

proportions for cell types that were included in the training model.. Decon-cell also en-

ables the user to generate its own custom models, for which it requires a matrix of gene

expression to train the model and a matrix of measured cell proportions; this will
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output a list with one specific model for each of the cell types included. A matrixtable

of normalized gene expression levelscounts, a matrixtable of predicted or measured cell

count proportions, and a matrixtable of genotype dosages (0 for homozygous reference,

1 for heterozygous, and 2 of homozygous alternative), lastlyand a table with the SNP +

gene combinations to test, are used as input for Decon-eQTL, and this outputs for each

SNP + gene combination the beta and p-value of the cell-type dependent eQTL effect.

See supplemental Fig. 20 for a graphical overview.

Prediction of cell proportions using gene expression levels from bulk tissue (Decon-cell)

For cell count prediction, expression data is TMM normalized, log2(expression+ 1)

transformed and z-transformed (scaled). We proposed that the abundance of molecular

markers such as gene expression could be used as proxies to predict cell proportions.

This can be represented as:

Ckj ¼ βki Y ij þ ekj ð1Þ

where expression data is Yij for genes i = 1, 2, …, G and samples j = 1, 2, …, N and cell

count data is Ckj for sample j in cell type k (k = 1, 2, …, K). βki represents the coeffi-

cients of gene i in determining cell counts of cell type k of a complex tissue. ekj is the

error term.

In order to select only the most informative genes for predicting cell counts, we im-

plemented a feature selection scheme by applying an elastic net (EN) regularized re-

gression [26]. In the EN algorithm, the βk Y are estimated by minimizing:

Ck−βkY
�� ��2 subject to 1−αð Þ βk

�� ��2 þ α βk
�� ��

1
≤s ð2Þ

s is a tuning parameter that limits the number of features that will be included in the

final predictor model. We estimate the best s per cell type by applying a 10-fold cross-

validation approach, where the most optimal penalty parameter (α) was obtained.

Deconvolution of eQTL effects (Decon-eQTL)

Decon-eQTL models the expression level in the bulk tissue by considering the genetic

contribution of multiple cell types present in the system. For identifying the CT eQTL

effect, the interaction term between a particular cell type and genotype was tested for

statistically significant contribution to the explained variance on the expression levels

of particular genes, while accounting for the remaining cell proportions. If we consider

a generic eQTL linear model for whole blood it can be described as:

y ¼ aþ β:g þ e ð3Þ

where y is the measured gene expression, a the modeled non-genetic dependent ex-

pression, g the genotype coded as 0, 1 or 2, β. g the genotype-dependent expression and

e the error, e.g. unknown environmental effects. Here, all three terms are modeling the

effect of the mixture of different cell types present in blood. In an RNA-seq-based gene

expression quantification of a bulk tissue, one could express gene expression levels (y)

as the sum of counts (ψ) per K cell types:
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y ¼
XK

k¼1
ψk ð4Þ

For every cell type, the expression level can be written as a generic eQTL model (eq. 3)

weighted by the cell proportions. ψk is a combination of the genetic and non-genetic con-

tribution of the cell type to y. The non-genetic contribution per cell type is β. c, where c is

the cell count proportions. The genetic contribution is βk. g : ck. For k cell types the ex-

pression is then:

y ¼
XK

k¼1
ψk ¼ Σk : βk :ck

� �þ Σk : γk: g � ck
� �þ e ð5Þ

where y is the measured expression levels, k is the total number of cell types, ck is the

cell count proportions of cell type k, g is the genotype and e is the error term. Since we

are assuming a linear relationship between total gene expression and the levels of ex-

pression generated by each of the cell types composing a bulk tissue, the cell propor-

tions are scaled to sum to 100% such that the sum of the effect of the cell types equals

the effect in whole blood. Here we assume that the true sum of the cell counts should

be very close to 100% of the total PBMC count, which is why we include the 6 cell

types that together form the top hierarchy given the gating strategy used to quantify

the cell subpopulations [14]. The genotype main effect is not included in the model be-

cause the sum of the genotype effect per cell type should approximate the main effect.

Because the contribution of each of the cell types to expression level y cannot be

negative, we constrain the terms of the model to be positive using Non-Negative Least

Squares [39, 40] to fit the parameters to the measured expression levels. However, if

the allele that has a negative effect on gene expression is coded as 2, the best fit would

have a negative interaction term, which would be set to 0. To address this, we want the

allele that causes a positive effect on gene expression to always be coded as 2. However,

the effect of an allele can be different per cell type, therefore the coding of the SNP

should also be different per cell type. We therefore run the model multiple times, swap-

ping the genotype encoding for one of the interaction terms each time. The encoding

that gives the lowest R-squared is then chosen as the optimal genotype encoding. For

the encoding, we limit the number of genotypes that have an opposite genotypic encod-

ing to a maximum of one interaction term, as we have observed that this leads to no

significant difference when compared to using all possible configurations and limits the

number of models that have to be run from k2 to (2*k) + 2.

To test if there is a CT interaction effect, we run the linear model of eq. 5 and, for

each CT, run the same model with the cell proportion:genotype interaction term re-

moved. For example, when testing two cell types the full model is:

y ¼ β1:c1 þ β2:c2 þ γ1:g � c1 þ γ2:g � c2 þ e ð6Þ

and the two models with the interaction terms removed are:

y ¼ β1:c1 þ β2:c2 þ γ1:g � c1 þ e

y ¼ β1:c1 þ β2:c2 þ γ2:g � c2 þ e ð7Þ

For both the full model and the CT models, we calculated the sum of squares using

the different genotype configurations detailed above. For both the full and the CT

models, we then selected the genotype configuration with lowest sum of squares. Then,
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for each CT, we tested if the full model could significantly explain more variance than

the CT model using an ANOVA.

We then applied our strategy to 16,362 significant whole blood cis-eQTL top effects

detected using the BIOS cohort. We then correct the p-values for multiple testing using

FDR for each of the cell types, i.e. granulocyte eQTL p-values were corrected for 16,

362 tests in the same way as CD4+ T cells eQTL p-values were corrected for the exact

same number of tests.

Westra et al. interaction model

In the Westra et al. model, expression data is normalized in the same way as in Decon-

eQTL. The effect of the cell type is predicted using a genotype * cell count interaction term:

y ¼ I þ β1:G þ β2:cþ β3:c x G þ e

where y is expression, I the intercept, G the genotype, c the cell count and c x G the cell

count x genotype interaction term. Additional restrictions are set on the p-values. For

neutrophils, if (the β of the neutrophil x G interaction term) * (the β of the G interaction

term) < 0, the p-value is set to 1. For CD4+ and monocytes, if (the β of the neutrophil x G

interaction term) * (the β of the G interaction term) > 0, the p-value is set to 1.

Comparison between allelic concordance

For the comparison between allelic concordances, we counted the concordant and dis-

cordant eQTLs for each of the cell type comparisons and did a Fisher exact test be-

tween each of the groups. The p-values are Bonferroni-corrected.

Single-cell eQTLs

The sc-eQTLs were obtained for 112 individuals in the same way as described in Van

der Wijst et al. [24] For the allelic direction comparison, we used all significant eQTLs.

Classical monocyte and non-classical monocyte eQTLs were combined and jointly

compared to Decon-eQTL Monocytes.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.1186/s12859-020-03576-5.

Additional file 1 : Supplementary Figure 1: Prediction performance of Decon-cell within 500FG: The Y-axis rep-
resents the 73 immune cell types quantified by FACS in the 500FG cohort. The bar plot on the left panel shows
the mean Prediction Performance (Spearman correlation coefficient between predicted and measured cells across
100-fold cross validations). On the right panel, box plots represent the distribution of the Prediction Performance
within 100 iterations of the cross validations. A cutoff of mean Prediction Performance ≥0.5 was applied to define
predictable cell types (green). Supplementary Figure 2. Signature genes selected for prediction of cell propor-
tions by Decon-cell: (A) Total number of marker genes (genes selected in ≥80% of all models in the 100 iterations)
per predictable cell type. Different colors indicate different subpopulations. (B) The number of genes significantly
correlated with cell counts (Spearman correlation, adjusted P ≤ 0.05) (y-axis) shows the total number of significantly
correlated genes, while the x-axis shows the prediction performance (x-axis). (C) Distributions of the total number
of “strongly” correlated genes (absolute Spearman correlation ≥0.3) between predictable and unpredictable cell
subpopulations. Supplementary Figure 3. Comparison of prediction performance between Decon-cell and other
existing methods. (A) Performance of Decon-cell: the measured (x axis) and predicted cell proportions (y-axis) were
compared for neutrophils (given by granulocytes in 500FG), lymphocytes and monocytes CD14+ and granulocytes
in three independent cohorts (shown by row, from top to bottom: LLDeep (n = 627); LLS (n = 660); RS (n = 773)). (B)
Comparison of prediction performance for Decon-cell, CIBERSORT and xCell in three independent cohorts for a
total of 4 major immune subpopulations. Supplementary Figure 4. Prediction performance of xCell and CIBER-
SORT in three independent Dutch populations (LLDeep, n = 627; LLS, n = 660; RS, n = 773). (A) Scatter plots show-
ing the measured cell proportions of circulating immune cells on the x-axis and the xCell enrichment score on the
y-axis. (B) Scatter plots showing the measured cell proportions of circulating immune cells on the x-axis and the
predicted cell proportions given by CIBERSORT) on the y-axis. Supplementary Figure 5. Expression of marker
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genes selected by Decon-cell. Expression levels (scaled, log2(TPM + 1)) of signature genes in the data in three puri-
fied cell subpopulations: CD4+ T cells (A), neutrophils/granulocytes (B) and monocytes (C) in the data from BLUE-
PRINT. Cell subpopulations are indicated in different colors by columns. Correlation of each of the signature genes
and the cell subpopulation percentage in the 500FG cohort is shown on by the green bar at the left-hand side of
heatmap figure, i.e. darker green corresponds to higher correlations. Supplementary Figure 6. Many of the CTi
eQTL are cell type exclusive. Colored bar plot on the left shows the total number of significant CTi eQTLs in whole
blood eQTLs (as also shown in Fig. 2a). Gray bar plot shows the total number of eQTLs shared across the possible
combinations of the six cell subpopulations under study. Supplementary Figure 7. Variation of gene expression
across samples for deconvoluted cell-type eQTLs genes in whole blood. Granulocyte eQTL genes show significantly
higher variance across the BIOS samples (F test p-value ≤0.05) compared to those from monocytes, CD4+ T cells,
CD8+ T cells, B cells and NK cells. Supplementary Figure 8. Validation of CTi eQTLs using effect sizes of eQTLs
from purified cells. CTi eQTLs (FDR ≤ 0.05) from the BIOS cohort show a significantly bigger effect size in purified
cell eQTLs [9] from their relevant cell subtype as compared to other whole blood eQTLs (diagonal boxed compari-
sons). The off-diagonal comparisons show that these eQTL genes are specific to a cell subpopulation because the
differences in effect sizes are non-significant in all but one case (CD4+ T cell eQTL genes in monocyte-derived
eQTLs). Supplementary Figure 9. Validation of CTi eQTLs using effect sizes of K27AC QTLs from purified cells. CTi
eQTLs (FDR ≤ 0.05) show a significantly bigger effect size for K27AC QTLs that have peaks located in the promoter
region of the eGenes from their relevant cell subtype compared to the rest of the significant whole blood eQTLs
(diagonal boxed comparisons). The off-diagonal comparisons show that these eQTL genes are specific to a cell sub-
type because the differences in effect sizes are non-significant in all but the comparisons across Neutrophils and
Monocytes (CD14+). Supplementary Figure 10. Validation of CTi eQTLs using effect sizes of K4ME1 QTLs from
purified cells. CTi eQTLs (FDR ≤ 0.05) show a significantly bigger effect size for K4ME1 QTLs (where the eGenes is
the closest gene tagging the K4ME1 QTLs peak) from their relevant cell subtype compared to the rest of the signifi-
cant whole blood eQTLs (diagonal boxed comparisons). The off-diagonal comparisons show that these eQTL genes
are specific to a cell subtype because the differences in effect sizes are non-significant in all but the comparisons
between neutrophils and monocytes (CD14+). Supplementary Figure 11. Validation of CTi eQTLs using allelic
concordance with eQTLs results from purified cells. CTi eQTLs (FDR ≤ 0.05) show high allelic concordance with their
respective purified cell eQTLs. Top row shows allelic concordance of deconvoluted granulocyte eQTLs (all in green)
against neutrophils, monocytes and CD4+ T cells. Second row shows deconvoluted monocyte eQTLs against puri-
fied cell eQTLs in the same order as the top row. Bottom row shows the same comparisons as for deconvoluted
CD4+ eQTLs. Allelic concordance of the off-diagonal (comparing CTi eQLTs with non-relevant cell types) show a
consistent decrease in allelic concordance. P-values are Bonferroni-corrected Fisher exact tests between groups.
Supplementary Figure 12. Validation of CTi eQTLs using allelic concordance with K27AC results from purified
cells. CTi eQTLs (FDR ≤ 0.05) show a high allelic concordance in their respective purified cell K27AC QTLs. Top row
shows allelic concordance of deconvoluted granulocyte eQTLs (all in green) against neutrophils, monocytes and
CD4+ T cells derived from K27AC QTLs. Second row shows deconvoluted monocyte eQTLs (all in orange) against
purified cell K27AC QTLs in the same order as top row. Bottom row shows the same comparisons as for deconvo-
luted CD4+ eQTLs (all in purple). Allelic concordance of the off-diagonal (comparing deconvoluted eQTLs with
non-relevant cell types) show a consistent decrease in allelic concordance when compared to the relevant cell type
comparisons. P-values are Bonferroni-corrected Fisher exact tests between groups. Supplementary Figure 13. Al-
lelic concordance between whole blood eQTLs and K27AC QTLs for purified neutrophils, CD14+ monocytes and
CD4+ T cells. Supplementary Figure 14. Comparison of whole blood eQTLs with eQTLs from single cell RNA-seq
Whole blood eQTLs show 89% allelic concordance for significant eQTLs derived from scRNA-seq data, comprising
monocytes CD14+, B cells, CD4+ T cells, CD8+ T cells and NK cells. Supplementary Figure 15 Validation of cell
type eQTLs detected in the BIOS cohort using the Westra et al method: (A) Expression of eGenes in purified cell
subpopulations from BLUEPRINT (green for granulocyte eQTL genes showing expression for purified neutrophils;
orange for monocytes; purple for CD4+ T cells; pink for B cells). (B) CT eQTLs detected by the Westra method show
a significantly larger effect size in purified cell eQTLs [11] as compared to the rest of the whole blood eQTLs.
Boxed-diagonal shows the comparisons with relevant cell types where the effect differences are stronger. Supple-
mentary Figure 16 Allelic concordance rates of cell type eQTLs detected using the Westra et al method and
eQTLs from purified cells. Top row shows allelic concordance of granulocyte CT eQTLs against neutrophils, mono-
cytes and CD4+ T cells. Second row shows CT monocyte eQTLs against purified cell eQTLs in the same order as
top row. Bottom row shows the same comparisons for CT CD4+ eQTLs. Supplementary Figure 17 Comparison
of Decon-eQTL with Westra et al method. Overlap of CT eQTLs detected with Decon-eQTL and the Westra et al
method and those found to be significant in purified cell subpopulations for granulocyte QTLs (A), CD4+ T cells (B),
and monocytes (C). Supplementary Figure 18 Distribution and correlation among circulating cell proportions.
(A) Scatter plots show the correlations between different cell subpopulations in 89 samples from 500FG. Blue line
indicates a fitted linear model. Diagonal plots depict the overall density distribution per cell type. Upper right tri-
angle shows the Pearson correlation coefficient for each pairwise comparison. (B) Correlations between different
cell subpopulations in the BIOS cohort obtained by prediction using Decon-cell. Supplementary Figure 19.Gen-
eral overview of the Decon2 method. (A) Gene expression can be used to predict cell count percentages of cell
counts that are already trained in the Decon-Cell model. Additionally, the model can be trained on different cell
types if expression data and cell count proportions are available. (B) Decon-eQTL models the cell type dependent
eQTL effect using expression, genotype, and measured cell count proportions or, if unavailable, predicted cell count
proportions.

Additional file 2 : Supplementary Table 1: Ensembl IDs and symbol names of the marker genes selected by
Decon-cell for the 34 predictable circulating immune cell proportions.

Additional file 3 : Supplementary Table 2: Summary statistics from Decon-eQTLs for the 16,362 whole blood
eQTLs.
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