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Abstract

Background: High throughput methods, in biological and biomedical fields, acquire a
large number of molecular parameters or omics data by a single experiment.
Combining these omics data can significantly increase the capability for recovering
fine-tuned structures or reducing the effects of experimental and biological noise in
data.

Results: In this work we propose a multi-view integration methodology (named
FH-Clust) for identifying patient subgroups from different omics information (e.g., Gene
Expression, Mirna Expression, Methylation). In particular, hierarchical structures of patient
data are obtained in each omic (or view) and finally their topologies are merged by
consensus matrix. One of the main aspects of this methodology, is the use of a
measure of dissimilarity between sets of observations, by using an appropriate metric.
For each view, a dendrogram is obtained by using a hierarchical clustering based on a
fuzzy equivalence relation with Łukasiewicz valued fuzzy similarity. Finally, a consensus
matrix, that is a representative information of all dendrograms, is formed by combining
multiple hierarchical agglomerations by an approach based on transitive consensus
matrix construction. Several experiments and comparisons are made on real data (e.g.,
Glioblastoma, Prostate Cancer) to assess the proposed approach.

Conclusions: Fuzzy logic allows us to introduce more flexible data agglomeration
techniques. From the analysis of scientific literature, it appears to be the first time that a
model based on fuzzy logic is used for the agglomeration of multi-omic data. The
results suggest that FH-Clust provides better prognostic value and clinical significance
compared to the analysis of single-omic data alone and it is very competitive with
respect to other techniques from literature.
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Background
Nowadays, high throughput methods, in biological and biomedical fields, acquire a large
number of molecular parameters by a single experiment [1]. In particular, such measured
parameters are collected in “omics” datasets (e.g., genomics, transcriptomics, methy-
lomics). Among multiple measured parameters, DNA genome sequence, RNA expression
and DNA methylation are representative instances. For individually analysing such
data, several methodologies have been introduced in literature, even though, recently,
a number of studies pointed out the best performance coming from the integration of
multi-omics data. For instance, analysing each omic (or view in the machine learning
jargon), set separately, fundamental patterns can be detected from data, however some
fine-tuned structures, such as cancer sub-types, can be highlighted by both gene expres-
sion and DNA methylation information, so that multi-omics analysis can reduce the
effects of experimental and biological noise in data [2]. From literature, three kinds of
integration methodologies emerge:

• early integration, builds a single feature-based matrix by concatenating each omic
dataset (i.e., view) and applies a single-omic analysis;

• intermediate integration, builds a joint representation of data given the views;
• late integration, each omic is analysed separately and the solutions are integrated.

In general, late integration methods, and in particular clustering, are preferred when
the analysis combines continuous and discrete data together. For a review of integration
approaches and their comparisons, the reader may refer to [3]. In this work, a multi-view
clustering methodology, named FH-Clust, is introduced (see Fig. 1 for its general schema)
for identifying patient subgroups from different omics information or datasets (e.g., Gene
Expression, Mirna Expression, Methylation). Specifically, for each omic dataset a fuzzy-
based hierarchical clustering approach is adopted and finally the results are merged
by consensus matrix. The idea behind the proposed approach comes from observing
that a hierarchical clustering dendrogram can be associated with a Łukasiewicz fuzzy

Fig. 1 Proposed approach: a Data preparation; b Data normalization and feature selection; c Multi-omics
hierarchical agglomerations; d Data integration; e clustering and visualization
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similarity-based equivalence relation, so that a consensus matrix, that is the represen-
tative information of all dendrograms, is derived by combining multiple hierarchical
agglomerations following an approach based on transitive consensus matrix construction.

Methods
Cluster analysis or clustering is an unsupervised technique that aims at agglomerating a
set of patterns in homogeneous groups or clusters [4, 5]. Hierarchical Clustering (HC) is
one of several different available techniques for clustering which seeks to build a hierarchy
of clusters, and it can be of two types, namely agglomerative, where each sample starts in
its own cluster, and pairs of clusters are merged as one moves up the hierarchy, or divisive,
where all samples start in one cluster, and splits are performed recursively as one moves
down the hierarchy [6]. Thus, HC aims at grouping similar objects into a cluster, and were
the endpoint is a set of clusters where each cluster is distinct from each other, and the
objects within each cluster are broadly similar to each other. HC can be performed either
on a distance matrix or raw data. Agglomerative HC starts by treating each observation
as a separate cluster, and it repeatedly executes the following two steps: (1) identifies the
two clusters that are closest together, and (2) merges the two most similar clusters. This
process continues until all the clusters are merged together.

The main output of HC is a dendrogram, which shows the hierarchical relationship
between the clusters distances. Many distance metrics have been developed and the
choice should be made based on theoretical concerns from the domain of study.

Later on, it is necessary to determine how the distance is computed (e.g., single-linkage,
complete-linkage, average-linkage). As with distance metrics, the choice of linkage crite-
ria should be based on theoretical considerations from the application domain.

In non-fuzzy clustering (or hard clustering) data is divided into distinct clusters and
each data point can only belong to exactly one cluster. In fuzzy clustering, data points
can potentially belong to multiple clusters. For example, in hard clustering, given some
parameters, a “symptom” can be (in a mutually exclusive way) present or absent (red or
blue) whereas, in fuzzy clustering, that “symptom” could (simultaneously) be of some
grade red and some other grade blue. In Fig. 2, a comparison between hard and fuzzy
categorisation is shown. The reader can refer to [7] for a recent comparison between
hard and fuzzy clustering. In this work, we introduce a data integration methodology
based on fuzzy concepts. In particular, we associate a dendrogram to a fuzzy equivalence
relation (i.e., Łukasiewicz valued fuzzy similarity), so that a consensus matrix in a multi-
view clustering, that is the representative information of all dendrograms, can be obtained
from multiple hierarchical agglomerations [8, 9]. The main steps of fuzzy agglomeration
can be summarised as follows:

1. Characterisation of membership functions;
2. Computation of a fuzzy similarity matrix (or dendrogram) for all models, at a given

time;
3. Construction of a consensus matrix for all hierarchical agglomerations.

Membership functions

When dealing with clustering tasks, Fuzzy Logic (FL) permits to obtain a soft clustering
instead of an hard clustering of data [10]. Specifically, data points can belong to more
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Fig. 2 Hard vs Fuzzy in symptom risk example: a Hard categorization; b Fuzzy categorization

than one cluster simultaneously. The fundamental concept in FL, upon which all the
subsequent theory is constructed, is the notion of fuzzy set, a generalisation of a crisp set
from classical set theory.

A fuzzy set generalises a crisp set by allowing its characteristic function, i.e., its
membership function, assuming values in the interval [ 0, 1] rather than in the set
{0, 1}. In this way, a given item belongs to the fuzzy set with a degree of truth
ranging from do not belong at all (i.e., its membership function assumes value 0)
to completely belong (i.e., the membership function assumes value 1). In FL applica-
tions, fuzzy sets make it possible to represent qualitative (non-numeric) values (i.e.,
linguistic variables such as High, Medium, Low) for approximate reasoning, infer-
ence or fuzzy control systems. Linguistic variables can be represented by fuzzy sets
through a transformation step called fuzzification, and it is achieved by using dif-
ferent types of membership functions representing the degree of truth to which
a given input sample belongs to a fuzzy set (see “Membership Functions” section
in Supplementary Material).
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Fuzzy similarity matrix

A measure of similarity or dissimilarity defines the resemblance between two samples or
objects. Similarity measure is a significant means for measuring uncertain information.
Fuzzy similarity measure is a measure that depicts the closeness among fuzzy sets and has
been used for dealing issues of pattern recognition and clustering analysis.

A binary fuzzy relation that is reflexive, symmetric, and transitive is known as a sim-
ilarity relation. Fuzzy similarity relations are the generalisation of equivalence relations,
in binary crisp relations, to binary fuzzy relations. In details, a fuzzy similarity relation
can be considered to effectively group elements into crisp sets whose members are simi-
lar to each other to some specified grade and it is a generalization of classical equivalence
relation as described in “Fuzzy Similarity” section in Supplementary Material. In order
to introduce the fuzzy similarity, in the following, we focus on the properties of the
Łukasiewicz t-norm (tL) and the bi-residuum. In this way we obtain a fuzzy equivalence
relation that can be used for building dendrogram. For more details in the derivation of
these results see “Fuzzy Similarity” section in Supplementary Material.

Dendrogram and consensus matrix

If a similarity relation is min-transitive (i.e., t = min) then it implies the existence of
the dendrogram (see “Dendrogram and Consensus Matrix” section in Supplementary
Material for details). The min-transitive closure of a relation matrix R can be easily
computed and the overall process is described in Algorithm 1.

The last ingredient to accomplish an agglomerative clustering is a dissimilarity relation.
Here we considered the following result [11]:

Lemma 1 Letting R be a similarity relation with the elements R〈x, y〉 ∈[ 0, 1] and letting
D be a dissimilarity relation, which is obtained from R by

D(x, y) = 1 − R〈x, y〉 (1)

then D is ultrametric iif R is min-transitive.

In other words, we have a one-to-one correspondence between min-transitive similarity
matrices and dendrogram and between ultrametric dissimilarity matrices and dendro-
grams. Finally, after the dendrograms have been obtained each time, a consensus matrix,
i.e., the representative information of all dendrograms is obtained by combining the
transitive closures (i.e., max-min operation) [11]. The overall approach is described in
Algorithm 2. The overall workflow of the proposed approach is summarised in Fig. 3.
In particular, for each omic data set Xi a fuzzification step is adopted for obtaining the
new data set Yi (see Supplementary Material). Successively, adopting a fuzzy similarity
measure the similarity matrix Si is computed and to guarantee the transitive closure of
the matrix a new matrix Ci is computed (see Algorithm 1). Finally, all the Ci matrices
are collected for obtaining the consensus matrix A and the overall final dendrogram (see
Algorithm 2).

In Fig. 4, we show an example that summarize a realistic agglomeration result. We plot
in Figs. 4a-b-c three input hierarchies obtained on datasets that should be combined.
In this case, four sequences of patients are considered, namely s1, s2, s3 and s4, respec-
tively. In Fig. 4d, we show the final result by agglomerating dendrograms. We observe that
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Fig. 3 Workflow of the fuzzy based hierarchical clustering

the output hierarchy contains clusters (s1, s2, s3) and (s1, s2, s3, s4) at different levels and
each of these clusters (e.g., (s1, s2, s3)) are repeated at least in two out of the three input
dendrograms. Moreover, it is worth stressing that the proposed approach, based on the
agglomeration of dendrograms, can also be applied with commonly used metrics (e.g.,
Euclidean distance). In Fig. 5, we show a comparison between the dendrograms obtained
by using an Euclidean metric and a similarity based approach (i.e., Łukasiewicz t-norm),
respectively. In this realistic example, we simulate three omic data sets with 10 rows (i.e.,
number of patients) and 100 columns (i.e., features). We split the single datasets in two
partitions (or clusters) such that the first 5 rows are random samples from a standard nor-
mal distribution with variance 1 and the other 5 rows have the same distribution with

Fig. 4 Combination algorithm: a-b-c input dendrograms; d combined hierarchy
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Fig. 5 Crisp Hierarchical Clustering vs Fuzzy based Hierarchical Clustering: a dendrogram of Euclidean based
Hierchical Clustering; b dendrogram of similarity based Hierachical Clustering

Algorithm 1: Min-transitive closure
1: Input: relation Si
2: Output: transitive relation Ci = ST

i
3: Elaborate:

1. Compute S∗
i = Si ∪ (Si ◦ Si)

2. if S∗
i �= Si replace Si with S∗

i and go to step 1
else Ci = ST

i = S∗
i and the algorithm terminates.

variance 0.5, obtaining a sort of an overlap. We observe that both methods find two sep-
arated clusters, but the similarity based approach in Fig. 5b, permits to obtain a perfect
separation of the source partitions.

Results and discussion
In the following we describe the behaviour of the proposed methodology on multi-omics
benchmark datasets.

Algorithm 2: Combination of dendrograms
1: Input Ci, 1 ≤ i ≤ L L input similarity matrices (dendrograms)
2: Output similarity matrix (dendrogram) A

1. Aggregate the similarity matrices to a final similarity matrix
A = Aggregate (C1, C2, . . . , CL)

a. Let A∗ be the identity matrix
b. For each Ci calculate e A∗ = A∗ ∪ (A∗ ◦ Ci)

c. If A∗ is not changed A = A∗ and goto step 3 else goto step 1.b
3: Create the final dendrogram from A

Omics datasets

We consider 10 multi-omics cancer datasets available from The Cancer Genome Atlas
(TCGA) [3]. TCGA is a large multi-omic repository of data on thousands of cancer
patients. All datasets contain three omics: gene expression, miRNA expression and
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Table 1 Datasets description: Three omics are provided for each dataset, respectively DNA gene
expression, miRNA and Methylation

#Cases DNA miRNA Methy Multi-Omics

Dataset - ORI LN RF ORI LN RF ORI LN RF ORI LN RF

AML 170 20531 2000 1997 5000 2000 1999 705 558 553 26236 4558 4529

BIC 621 20531 2000 2000 5000 2000 2000 1046 891 854 26577 4891 4854

COAD 220 20531 2000 2000 5000 2000 2000 705 613 591 26236 4613 4590

GBM 274 12042 2000 2000 5000 2000 2000 534 534 534 17576 4534 4534

KIRC 183 20531 2000 1999 5000 2000 1999 1046 796 754 26577 4796 4752

LIHC 367 20531 2000 2000 5000 2000 2000 1046 852 826 26577 4852 4366

LUSC 341 20531 2000 2000 5000 2000 2000 1046 878 850 26577 4878 4850

SKCM 448 20531 2000 2000 5000 2000 2000 1046 901 874 26577 4901 4874

OV 287 20531 2000 2000 5000 2000 2000 705 616 600 26236 4616 4600

SARC 257 20531 2000 2000 5000 2000 2000 1046 838 805 26577 4838 4805

The number of features at each variable selection method is shown. ORI: Original variable dimension, LN: Logarithm and
normalisation and, RF: Random Forest based on Mean Decrease Gini index

DNA methylation1. In Table 1 are summarised the main properties of the datasets,
namely, Acute Myeloid Leukemia (AML), Breast Invasive Carcinoma (BIC), Colon Ade-
nocarcinoma (COAD), Glioblastoma Multiforme (GBM), Kidney Renal Clear Cell Carci-
noma (KIRC), Liver Hepatocellular Carcinoma (LIHC), Lung Squamous Cell Carcinoma
(LUSC), Skim Cutaneous Melanoma (SKCM), Ovarian serous cystadenocarcinoma (OV),
Sarcoma (SARC). The number of patients ranges from 170 for AML to 621 for BIC.

Multi-view clustering algorithms

For validating the effectiveness of our model, we compared it against several categories of
multi-view clustering algorithms2:

• K-means and Spectral Clustering techniques [3];
• LRACluster [12]: It is a low-rank approximation based integrative probabilistic model

to fast find the shared principal subspace across multiple data types;
• PINS [13]: Perturbation clustering for data integration and disease subtyping (PINS)

is able to address subtype discovery, as well as integration of multiple data types. The
algorithm is built upon the resilience of patient connectivity and cluster ensembles to
ensure robustness against noise and bias;

• SNF [14]: Similarity network fusion (SNF) allows for discovery of disease subtypes
through integration of several types of high-throughput data on a genomic scale. SNF
creates a fused network of patients using a metric fusion technique and then
partitions the data using spectral clustering. SNF appears to be the state of the art in
this area and has proven to be very powerful. However, the unstable nature of
kernel-based clustering makes the algorithm sensitive to small changes in molecular
measurements or in its parameter settings.

• MCCA [15]: Multi Canonical Correlation Analysis (MCCA), which extends the
application of Canonical Correlation Analysis (CCA) to more than two views, is one
of the most widely used dimension reduction method for finding linear relations
between two or more multidimensional random variables.

1Row data are available at: http://acgt.cs.tau.ac.il/multi_omic_benchmark/download.html
2https://github.com/Shamir-Lab/Multi-Omics-Cancer-Benchmark/.

http://acgt.cs.tau.ac.il/multi_omic_benchmark/download.html
https://github.com/Shamir-Lab/Multi-Omics-Cancer-Benchmark/.
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Evaluation metrics

In order to assess the performance of each method, we adopt three evaluation metrics
that are: the logrank test, the enrichment of clinical labels in the clusters and the meth-
ods runtime [3]. The logrank test assumes that if clusters of patients have significantly
different survival, they are different in a biologically meaningful way. For the enrichment
of clinical labels in clusters, six clinical labels are considered: gender, age at diagnosis,
pathologic tumor, pathologic metastases, pathologic lymph nodes and pathologic stage.
The four latter parameters are discrete pathological parameters, measuring the progres-
sion of the tumor, metastases and cancer in lymph nodes, and the total progression
(pathologic stage). Enrichment for discrete parameters was calculated using the χ2 test
for independence, and for numeric parameters using Kruskal-Wallis test. Not all clinical
parameters were available for all cancer types, so a total of 41 clinical parameters were
available for testing. To derive a p-value for the logrank test, the χ2 test for indepen-
dence, the Kruskal-Wallis test and the statistic for these three tests is assumed to have χ2

distribution [3].

Pre-processing

TCGA datasets were preprocessed as follows: patients and features with more than 20%
missing values were removed, and missing values were imputed using k-nearest neighbor
imputation. The sequence features were log-transformed. The 2000 features with highest
variance from gene-expression and methylation omics were selected. In the miRNA omic,
features with zero variance were filtered. All features were then normalized to have zero
mean and standard deviation 1. For methylation, we selected the 5000 features with max-
imal variance in each dataset and also adopted the standard pipeline proposed in [16],
whose procedure filters out the probes from the X and Y chromosomes or probes that are
known to have common SNPs at the CpG site.

A further unsupervised variable selection step has been performed by using the Mean
Decrease Gini [17] based on Random Forest [18]. The Mean Decrease in Gini is the aver-
age of a variable total decrease in node impurity, weighted by the proportion of samples

Fig. 6 Mean performance of the algorithms on ten multi-omics cancer datasets. The x-axis measures the
differential survival between clusters (mean -log10 of logrank’s test p-value), and the y-axis is the mean
number of clinical parameters enriched in the clusters
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Fig. 7 Performance of the algorithms on ten multi-omics cancer datasets. For each plot, the x-axis measures
the differential survival between clusters(-log10 of logrank’s test P-value), and the y-axis is the number of
clinical parameters enriched in the clusters. Red vertical lines indicate the threshold for significantly different
survival (P-value � 0.05)

reaching that node in each individual decision tree in the forest. This is effectively a mea-
sure of how important a variable is for estimating the value of the target variable across
all of the trees that make up the forest. A higher Mean Decrease in Gini indicates higher
variable importance, therefore the most important variables to the model is the highest
in the plot with the largest Mean Decrease in Gini Values, conversely, the least important
variable is the lowest in the plot with the smallest Mean Decrease in Gini values. By fol-
lowing this strategy, we cut-off all those variables whose importance is zero. The number
of variable cut-off at each step is summarised in Table 1.

Experimental results

In the experiments, for all methods, the number of searched clusters is selected in the
range [ 2 − 15]. To determine the number of clusters for a method we used the “elbow
method”. To automatically pick out the optimal elbow rather than choose it manually, we
used as approximation the second derivative of a vector v

v [i + 1] + v [i − 1] − 2v[ i] . (2)

In particular, we consider the index i that brings this expression to a maximum or min-
imum (depending on whether v increases or decreases). For all methods, we adhered to
the guidelines for usage and parameter selection given by the developers. In some cases,

Table 2 Performance on ten multi-omics: Number of clinical parameters enriched in the clusters

AML BIC COAD GBM KIRC LIHC LUSC SKCM OV SARC Means

FH-Clust 1 2 0 2 1 1 2 1 0 1 1.1

Crisp H-Clust 1 1 1 1 0 1 1 1 0 1 0,8

K-means 1 0 0 2 0 2 1 2 1 2 1.1

Spectral 1 2 0 2 0 2 2 1 1 2 1.3

LRAcluster 1 1 0 1 2 1 0 2 0 2 1

PINS 1 1 0 1 0 2 0 1 0 2 0.8

SNF 1 2 0 1 1 2 0 1 0 2 1

MCCA 1 1 1 1 1 1 0 1 0 2 0.9
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Table 3 Performance on ten multi-omics: Differential survival between clusters (-log10 of logrank’s
test P-value)

AML BIC COAD GBM KIRC LIHC LUSC SKCM OV SARC Means

FH-Clust 3.24 0.18 0.61 0.49 2.16 2.08 0.81 2.83 0.89 2.42 1.57

Crisp H-Clust 0,55 0,72 0,51 1,96 0,06 0,06 1,48 0,12 0,74 0,06 0,65

K-means 2.92 0.62 0.01 2.32 0.15 0.23 0.23 0.6 0.06 1.29 0.84

Spectral 1.89 1.55 0.19 2.23 0.29 0.4 0.27 0.89 0.77 1.29 0.98

LRAcluster 0.68 1.38 0.22 0.12 2.04 0.72 0.52 4.08 0.05 1.42 1.12

PINS 1.14 1.23 0 3.2 1.79 1.98 0.29 2.85 0.04 2.78 1.53

SNF 2.87 1 0.16 4.15 2.12 0.17 0.6 0.61 0.24 2.09 1.4

MCCA 3.49 1.02 0.16 2.3 1.82 0.15 0.47 4.07 0.55 1.08 1.51

where no information was provided by the authors, we devised parameter selection meth-
ods. We performed the same process pipeline used in [3] for evaluating the performance
of our method. All methods were run on a 24 multi-core Intel(R) Xeon(R) CPU E5-2620
v3 @ 2.40GHz with 64 GB RAM. In the following, the obtained experimental results are
described.

Figure 6 shows the average performance for multi-omics data and for each single-omic
separately, across all cancer types, and Fig. 7 shows the performance on the different can-
cer datasets. All algorithms show quite similar performance in either differential survival
or enriched clinical parameters. With respect to survival, our FH-Clust method achieved
the overall best prognostic value (sum of −log10 p-values= 15.77), while PINS (15.35)
and MCCA (15.11) ranked, second and third, respectively.

In Table 2 the differential survival between clusters (mean −log10 of logrank’s test
p-value) are reported. Spectral achieved the highest total number of significant clin-
ical parameters, with 13 parameters. FH-Clust, along with LRAcluster and K-means
placed themselves second with 11 parameters. SNF achieved the third position with 10
parameters.

With respect to survival (Table 3), FH-Clust outperformed its competitors achieving
16 parameters. MCCA, PINS and SNF have achieved good results with 15, 15 and 14
enriched parameters, respectively.

We also counted the number of datasets for which a method solution obtains signif-
icantly different survival. These results are reported in Table 4. All methods that were
developed for multi-omics data had at least four cancer types with significantly different
survival. In this case, FH-Clust and PINS had 5 different cancer subtypes for which its
clustering had significantly different prognosis. FH-Clust, Spectral clustering and MCCA
had enrichment in 8 cancer types.

On average, FH-Clust, PINS and MCCA had better prognostic value, but found less
enriched clinical labels as compared to spectral clustering method.

Table 4 For each benchmarked algorithm, the number of cancer subtypes for which its clustering
had significantly different prognosis (first row) and had at least one enriched clinical label (second
row) are shown

FH-Clust K-means Spectral LRAcluster PINS SNF MCCA

Significant different survival 5 2 3 4 5 4 4

Significant clinical enrichment 8 7 8 7 6 7 8
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Table 5 Number of clusters chosen by the benchmarked algorithms on ten multi-omics cancer
datasets

AML BIC COAD GBM KIRC LIHC LUSC SKCM OV SARC Means

FH-Clust 4 2 2 3 2 2 3 2 10 3 3,3

Crisp H-Clust 2 2 2 2 2 2 2 2 2 2 2

K-means 5 2 2 5 2 2 2 2 2 2 2,6

Spectral 9 3 2 5 2 2 2 2 4 2 3,3

LRAcluster 3 2 2 2 9 2 2 2 2 3 2,9

PINS 4 2 4 2 2 5 3 15 2 5 4,4

SNF 4 2 3 2 4 2 2 3 3 3 2,8

MCCA 3 2 7 2 3 2 2 6 2 2 3,1

The number of clusters found for each dataset are presented in Table 5, ranging from 2
to 4. Because of the good methods performance in the previous analysis, partitioning the
data into a relatively high number of clusters could indicate that clustering cancer patients
into more clusters improves prognostic value and clinical significance.

Concerning with methods computational burden, their run times are reported in
Table 6. FH-Clust takes, on average, 110 seconds per dataset, while Spectral and SNF got
lower timing. The worst method takes roughly 18 minutes per dataset (see Fig. 8).

Finally, Fig. 9 shows the benchmarked methods performance for single-omic data,
moreover, for each dataset and method, the single omic that gave the best results for
survival and clinical enrichment are also shown. These results suggest that FH-Clust pro-
vides better prognostic value and clinical significance on multi-omics data compared to
the analysis of single-omic data used separately. Nevertheless, the interested reader may
refer to the supplementary material for details on additional results concerning single-
omics. We also stress that the proposed method, differently from other methods, such
as SNF, does not need any hyperparameter tuning. Moreover, clustering is embedded
in the data integration (and vice versa), and the use of fuzzy concepts (i.e., t-norms),
from one hand, permits to obtain a generalisation of the clustering approaches whereas,
on the other hand, gives the possibility to apply an inference system (e.g., Mamdani)
for a quantitative and qualitative measure (e.g., “High”, “Medium”, “Low”) in cancer risk
assessment.

Conclusions
In this work, we proposed a multi-view clustering methodology for identifying patient
subgroups from different omics data. In biological and biomedical fields, combining these
omics data can significantly increase data mining capabilities. One of the main aspects of

Table 6 Runtime in seconds of the algorithms on ten multi-omics cancer datasets

AML BIC COAD GBM KIRC LIHC LUSC SKCM OV SARC Means

FH-Clust 21 460 40 59 32 123 94 167 58 49 110

Crisp H-Clust 17 70 20 22 19 35 30 32 25 27 30

K-means 97 748 160 197 108 342 389 736 322 194 329

Spectral 4 8 7 3 4 5 6 6 5 4 5

LRAcluster 390 3177 532 557 392 1268 1091 1761 780 771 1072

PINS 108 529 226 205 140 212 359 436 380 193 279

SNF 6 15 6 5 6 10 9 11 8 7 8

MCCA 15 53 16 17 16 34 29 31 23 21 26
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Fig. 8 Computational time comparisons

this methodology is the use of a measure of dissimilarity between sets of observations, by
using an appropriate metric and a consensus matrix, that is a representative agglomerate
information of all the dendrograms. As emerged from the analysis of the scientific litera-
ture, to the best of our knowledge our work concerns for the first time a model based on
fuzzy logic used for the agglomeration of multi-omic data. The use of fuzzy logic allows
us to introduce more flexible data mining features also related to approximate reasoning.
Several experiments and comparisons have been made on real data (e.g., Glioblastoma,
Prostate Cancer) to assess the proposed methodology. The results suggest that FH-Clust
provides better prognostic value and clinical significance compared to analysis of single-
omic data alone. Fuzzy Logic concepts, and in particular membership functions, permits

Fig. 9 Summarized performance of the algorithms across ten cancer datasets. For each plot, the x-axis
measures the total differential prognosis between clusters (sum across all datasets of –log10 of logrank’s test
P-value), and the y-axis is the total number of clinical parameters enriched in the clusters across all cancer
types. (a–c) Results for single-omic datasets. d Results when each method uses the single omic that achieves
the highest significance in survival. e Same with respect to enrichment of clinical labels
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to develop a fuzzy inference model (i.e., Mamdani, Fuzzy Cognitive Maps) for easily
obtaining a model for a quantitative and qualitative risk assessment of the cancer. The
model, based on approximate reasoning, can be particularly useful for embedded devices.

In future work, it could be possible to improve results for multi-omics analysis, in
a number of ways. For instance, more accurate feature selection[19] algorithms could
be adopted for improving the overall performance. On one hand, the integration of
labelled data could improve the feature selection step. On the other hand, some spe-
cific feature extraction strategies could be adopted, indeed approaches based on the
signal analysis of gene expression data (e.g., non-linear Principal Component Analy-
sis, Compressive Sensing), could possibly further improve the performance [20, 21].
In future, it is possible to foresee a different weight for each omic data, in order to
obtain a more robust similarity, and parametric similarity measures can be adopted
(e.g., uninorm) for generalizing the concept of AND and OR connections between
clusters.
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