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Abstract

Background: Systematic technical effects—also called batch effects—are a
considerable challenge when analyzing DNA methylation (DNAm) microarray data,
because they can lead to false results when confounded with the variable of interest.
Methods to correct these batch effects are error-prone, as previous findings have
shown.

Results: Here, we demonstrate how using the R function ComBat to correct
simulated Infinium HumanMethylation450 BeadChip (450 K) and Infinium
MethylationEPIC BeadChip Kit (EPIC) DNAm data can lead to a large number of false
positive results under certain conditions. We further provide a detailed assessment of
the consequences for the highly relevant problem of p-value inflation with
subsequent false positive findings after application of the frequently used ComBat
method. Using ComBat to correct for batch effects in randomly generated samples
produced alarming numbers of false discovery rate (FDR) and Bonferroni-corrected
(BF) false positive results in unbalanced as well as in balanced sample distributions in
terms of the relation between the outcome of interest variable and the technical
position of the sample during the probe measurement. Both sample size and
number of batch factors (e.g. number of chips) were systematically simulated to
assess the probability of false positive findings. The effect of sample size was
simulated using n = 48 up to n = 768 randomly generated samples. Increasing the
number of corrected factors led to an exponential increase in the number of false
positive signals. Increasing the number of samples reduced, but did not completely
prevent, this effect.
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Conclusions: Using the approach described, we demonstrate, that using ComBat for
batch correction in DNAm data can lead to false positive results under certain
conditions and sample distributions. Our results are thus contrary to previous
publications, considering a balanced sample distribution as unproblematic when
using ComBat. We do not claim completeness in terms of reporting all technical
conditions and possible solutions of the occurring problems as we approach the
problem from a clinician’s perspective and not from that of a computer scientist.
With our approach of simulating data, we provide readers with a simple method to
assess the probability of false positive findings in DNAm microarray data analysis
pipelines.

Keywords: DNA methylation, Simulation, EPIC array, 450 K array, Illumina, Batch
effects, ComBat
Background
In the last two decades, the field of epigenetics has opened up new perspectives on

complex medical questions [1–3]. DNA methylation (DNAm) is assumed to be modu-

lated both by heritable factors [4] and by environmental conditions [5, 6]. DNAm has

received considerable attention in the field of epigenetics research as a source of poten-

tial disease-related biomarkers and as one of the missing translational links between na-

ture and nurture [7, 8]. Despite numerous successful findings of disease related

biomarkers [2, 8, 9] and the enthusiasm within this novel and promising field of study,

it is important to obtain a more nuanced picture of the biological processes related to

the biomarkers being assessed, and to develop a more comprehensive and commonly

accepted framework for their analysis. At present, researchers in this field have to cope

with new technological possibilities and an insufficient understanding of the methylome

at the same time [4, 10, 11].

Microarray platforms such as the Infinium BeadChips have played a big role in

making cost-effective genome-wide measurements of DNAm possible. However,

while these platforms can be used to investigate methylation sites across the gen-

ome, they assay less than 4% of the CpG methylation sites in the human genome

[12] and subsequently confront researchers with numerous study design pitfalls:

While the large number of measurement points (up to 850,000 on the Infinium

MethylationEPIC BeadChip Kit) results in “big data”, the number of measured

samples often remains relatively small. This disproportionate number of samples

relative to the number of measurement points represents a massive challenge for

subsequent statistical analyses [13]. Another challenge is caused by so-called

“batch effects”, which include a series of effects caused by technical variability

due to the time, place, and materials used (batches). Batch effects are almost im-

possible to avoid: This is because the individual samples are measured on chips -

in case of an Infinium MethylationEPIC BeadChip Kit array - with 8 individual

samples on each chip. These samples are arranged in rows at distinct positions

(sample wells) on the chips. The chips in turn are mounted on a plate (samples

plate) that has space for 12 chips (96 samples). The term “batch effect” is refer-

ring to the systematic measurement errors between the sample wells in rows, the

chips and the samples plates. Additional batch effects can be caused for instance
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by different times of measurement, different sample handling, different sites in

multicenter studies and possible undiscovered effects due to the novelty of the

technologies [14]. Because they are linked to the materials used to measure the

samples, the batch factor number increases linearly with each additional sample

(e.g. for each chip). Batch effects can dramatically reduce the accuracy of mea-

surements [14] and can produce false positive effects if the sample distribution

during the measurements is not uniformly distributed with regards to the out-

come of interest (unbalanced sample – Fig. 1a). This can lead to significant group

differences caused by measurement errors being wrongly attributed to the out-

come of interest [15, 16].

To make matters even more complicated, there is no validated and commonly ac-

cepted framework for the analysis of genome-wide epigenetic data. Based on this lack

of consistency in data analyses, there is little empirical knowledge about what outcomes

to expect, which makes it extremely difficult for researchers to assess and replicate new

findings [11].

With the R package ChAMP [17], an important attempt has been made to integrate

the different steps necessary for the analyses of Infinium HumanMethylation450 Bead-

Chip (450 K) and Infinium MethylationEPIC BeadChip Kit (EPIC) data into a compre-

hensive analysis pipeline. ChAMP addresses the problem of batch effect correction with

the ComBat method [18], which uses an empirical Bayesian approach to avoid over-

correction—a critical feature to use with small sample sizes. ComBat has been heavily

praised as being the most effective method for counteracting batch effects [19] when

they are known [20]. It is implemented in the sva package [21], which itself is inte-

grated into the ChAMP pipeline.

While ChAMP offers only a few settings for ComBat, the direct sva function call of-

fers more options for using ComBat. Among other options there is the possibility to
Fig. 1 a Different case and control sample distributions of n = 48 on six chips (red, case; dark grey, control).
b Systematic increase of the number of factor levels for one corrected factor. The vertical red line shows
the factor level with the first false FDR-significant result. c Mean p-value decrease for different sample sizes
in combination with a systematic increase of the number of factor levels. d Number of FDR-significant CpG
sites with a systematic increase of factor levels for the different Illumina arrays
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specify a model matrix being used (“mod”) with covariates or a outcome of interest vari-

able besides the batch factors. Champ automatically passes the outcome of interest vari-

able to ComBat.

In an earlier study with 69 subjects, we found a high number of CpG-sites with signifi-

cantly differing methylation levels between two groups using the ChAMP analysis pipe-

line. When we used the ComBat method for batch correction provided in ChAMP to

correct for row and chip batches, we became aware of previously reported problems with

this approach: Two cautionary case reports were published in 2018 [22] and in 2014 [23]

reporting problems experienced when ComBat was used to correct for batch effects in

450 K data. After applying ComBat to adjust for a non-biological signal, Prince and Robin-

son reported that roughly 10 k to 20 k significant CpG sites (false discovery rate (FDR) <

0.05) emerge. These sites had not been present before ComBat correction and were not

replicable under a revised analysis design and use of ComBat. In an analogous way in an

earlier report, Buhule found 25 k differentially methylated CpG-sites (FDR < 0.05) before

batch correction, but around 100 k significant CpG-sites after correction. Both studies an-

alyzed data from pilot studies with limited sample sizes (n = 30 in [22]; and n = 92 in [23])

and used the Illumina 450 K array. While these case reports should warn researchers from

blindly applying ComBat or similar methods to remove batch effects from an unbalanced

sample, it remains unclear to what extent this effect occurs and how this effect relates to

varying sample sizes and to the different Illumina arrays. Furthermore, as Price and Rob-

inson aptly stated: “[ …] it is alarming that thousands of false discoveries might have been

claimed if the analysis had been limited to standard processing pipelines”.

In this report, we aim to provide a detailed assessment of consequences of applying

the frequently used ComBat method for the highly relevant problem of p-value infla-

tion, which results in subsequent false positive findings [18]. We use this approach as a

hands-on example of how to systematically investigate the methods used in multi-step

microarray platform analysis pipelines.

We further provide researchers with a simulation-based quantification of ComBat-

introduced false signal induction under various configurations, and a simple tool to assess

the probability of false positive findings in DNAm microarray data analysis pipelines.
Methods
As clinicians, we have become increasingly aware of the problems associated with using

multi-step analysis pipelines without being able to realistically verify the source code of

all the methods used. This has led us to the conclusion that a simulation should be per-

formed to investigate these problems, without the interference of possible real bio-

logical signals. Our simulation was created using the packages discussed, namely sva

[14] and ChAMP [17], which are implemented in the R (3.6.1) and Bioconductor (3.9)

environments on Windows 10.0.18362.

The basis for our simulation were 758,289 mean and standard deviation values from

probes on an EPIC array, based on data from 69 patients collected in our laboratory.1

Based on this data, random numbers were generated from a normal distribution

using the “rnorm” function with the “Mersenne-Twister” algorithm [24] to generate
1More information about laboratory data DNA methylation quantification and quality control is available in
Supplementary Document - Section A
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simulated methylation beta values for every CpG site with a mean and standard devi-

ation corresponding to the natural CpG sites.2 Data from our laboratory were not used

in any further analyses.

The data generated in this way cannot contain any signal, and therefore cannot con-

tain any batch effect either. In our opinion, this is the best way to investigate the effect

of ComBat on the data. The alternative approach of investigating the effects of ComBat

on real data would always carry the risk of producing true positive results, which would

therefore make an accurate analysis of false positive findings much more difficult.

The resulting data from our simulation share many properties with their biological

CpG counterparts, such as the distribution of differences in type-I and type-II CpG-

sites which occur in Illumina arrays for technical reasons [25].3 This enabled us to fol-

low the ChAMP pipeline as planned and in the next step to normalize the data for

type-I and type-II differences, as required by the manual for the sva package [21] using

the beta-mixture quantile normalization (BMIQ) method [26]. BMIQ serves as an

intra-sample normalization procedure, correcting the deviation of type-II probe values,

and is implemented within the “champ.norm” function.

Because it can be argued that a test without batch effects is not very naturalistic and

offers the risk of being a special case, we added in a second step artificial batch effects

to our data. For this purpose, we based the batch effect simulation on the preliminary

work of Wen Bin Goh and Wong [15] by adding randomly generated effects between

1% and − 1% to the previously generated data. This intended to simulate a simple tech-

nical brightness offset during measurement. Each sample was added with the respective

systematic errors for row and each chip.

Following this, the basic effects of balanced, unbalanced, and random sample distri-

butions were tested on 48 randomly generated samples. Testing was applied with and

without batch effects and with 100 simulation repetitions each. This part of our analysis

set the starting point for our simulations. It was performed using the “champ.runCom-

bat” function, as well as with a direct call to the function provided within in the sva

package, while the subsequent analyses used the “champ.runCombat” function. The

function provided by the sva package was additionally executed with and without the

use of a “model matrix for outcome of interest and other covariates besides batch”

(mod) option [14].

After this basic analysis, effects of ComBat were systematically tested for randomly

distributed samples under varying conditions. We consider the balanced and unbal-

anced sample distributions to be the exceptions, with the random sample distribution

the normal case for most studies. Accordingly, the functions provided by the ChAMP

pipeline were encapsulated in simulation loops.

At first, n = 96 simulated samples—corresponding to size of one samples plate—were

used to gradually increase the number of ComBat-processed factor levels. In a second

simulation, the number of batch factors was increased with two equal-sized randomly

distributed factor levels each. In a second simulation, we investigated the effect of in-

creasing the sample size in five steps from n = 96 (one samples plate / 8 chips) up to
2Data and the R code for the simulation are available as a Supplementary Material
(MethylationSimulationScript.ZIP)
3A more thorough description of the simulation and the resulting simulated value distributions can be found
in Supplementary Document – Section B
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n = 768 samples. After these simulations with respect to the Illumina EPIC array contain-

ing 850,000 CpG-sites, the effects of ComBat on older and smaller arrays (Illumina Infi-

nium HumanMethylation27 BeadChip (27 K) and 450 K) with n = 96 samples were

examined. 27 K and 450 K data were created by sampling from the EPIC data accordingly.

As a final analysis a simulated sample of n = 48 normal distributed probes were

enriched with 2000 CpG sites with significant/trend wise (uncorrected) group differ-

ences with respective p-values from 10− 1 to 10− 20. Following this step, the Dataset

again was added with systematic batch effects for row and chip.

In all simulations, the average p-value and the number of significant CpG-sites after

FDR correction were analyzed with the “champ. DMP” function. This function uses the

limma package to calculate the p-value for differential methylation by applying a linear

model. If ComBat batch correction works as expected, neither an increase of significant

CpG-sites nor a deviation from a mean p-value of 0.5 would be expected for the nor-

mally distributed data without simulated batch effects. In the first simulation with and

without simulated batch effects, the p-value distribution was additionally analyzed using

Q-Q plots and using the genomic inflation factor λ for all corresponding sample distri-

butions and ComBat variants. The genomic inflation factor λ is defined as the ratio be-

tween the medians of the ComBat-corrected distribution of the test statistic and the

expected statistic without ComBat correction. This therefore quantifies the magnitude

of the bulk inflation and of the excess false positive rate [27].

In order to validate the results of our systematic simulations relative to real research

results, we simulated the preliminary results of two studies [22, 23] according to their

factor structure using our ChAMP-based simulation.
Results
While researchers have previously suspected that unwanted effects would only occur in

unbalanced study designs [22, 23, 28], our simulation of n = 48 samples over 100 simu-

lation runs showed4 a considerable undesired effect of ComBat on all sample distribu-

tions (Fig. 1a). The test statistics were examined using the mean p-value and λ, which

both showed considerable deviations from their expected values (expected: mean p =

0.5; λ = 1) for all variants and distributions.5 The smallest deviation from the expected

values was obtained by simulating the random sample distribution in conjunction with

ComBat, which was implemented by the sva package without the “mod” option enabled

(mean p = 0.49; λ = 1.11). In accordance with the previously published reports, the un-

balanced sample distribution (Fig. 1a) showed the highest simulated deviation using the

ComBat implementation of ChAMP (mean p = 0.31; λ = 3.26), resulting in MFDR = 109,

097 FDR–significant and MBF = 1293.38 Bonferroni-corrected (BF) CpG sites. In com-

parison to these results, the sampled random distribution (Fig. 1a) showed much

smaller distortion of the test statistics (mean p = 0.41; λ = 1.81), resulting in MFDR =

5597.48 FDR-significant and MBF = 23.81 BF false significant sites. As expected, the bal-

anced sample design showed the smallest p-value reduction (mean p = 0.41; λ = 1.72).

However, contrary to previous reports, the observed impact of ComBat on the sample

was enough to yield MFDR = 3159.64 FDR (MBF = 16.06) false significant CpG sites.
4Supplementary Table 1 provides a full report of the simulation results
5Supplementary Figure 1 provides Q-Q plots for test statistics



Fig. 2 “mod” refers to a model matrix for the outcome of interest. a Boxplots of p-value distributions
without added batch effects and under various conditions. Dotted line indicates expected mean p-value of
0.5. b Boxplots of p-value distributions with simulated batch effects and under various conditions. c
Boxplots of FDR false significant sites without batch. d Boxplots of FDR false significant sites without batch.
Boxplots for “without ComBat” are indicating the false positive sites due to uncorrected batch effects for the
respective sample distributions
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These effects could be replicated in comparable sizes for the sva package implementa-

tion of the ComBat function with the “mod” option enabled4. While all the simulated

distortions observed were in the direction of an enhanced significance, the opposite ef-

fect was observed in the sva package implementation using the unbalanced sample dis-

tribution without the target variable option (mean p = 0.58; λ = 0.41). While this

substantial deviation did not generate any false significant CpG sites, it could in theory

result in a substantially elevated number of false negative sites. While all the simulated

test statistics showed undesirable deviations, the resulting number of false significant

sites was negligible for the random and unbalanced sample distributions when the sva

package implementation without the “mod” option was used. Any other combination

resulted in a substantially elevated number of false significant CpG sites. It is important

to note that for this variant of ComBat, the balanced sample distribution generated a

considerable number of false significant sites, with up to 55 FDR-significant sites.

The corresponding simulation with added simulated batch effects6 showed the same

trends concerning the relative distortion of the mean p-values (Fig. 2c). In addition to

investigating the effect of ComBat, Fig. 2d (red) shows the potential for false positive

results due to uncorrected batch effects: The uncorrected, unbalanced simulation with

batch effects showed a very high potential of false FDR significant CpG (M = 41,912.5,

SD = 111,629.7) due to batch effects.

A subsequent systematic investigation of ComBat-introduced effects (based on the

ComBat implementation in ChAMP) showed a considerable effect of ComBat on the

results—the mean p-value decreased as the number of batch factor levels increased
6Supplementary Table 2 provides a full report of results from the simulation with added batch effects
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(Fig. 1b) and as the number of batch factors increased. The first FDR- and BF-

significant CpG sites appear at a batch factor number of 7 and these increase exponen-

tially in number with increasing factor levels from this point on. Using this approach,

we are able to demonstrate that even a small number of factor levels or factors can lead

to a considerable number of false positive FDR- or even BF-corrected results. The num-

ber of such FDR-corrected significant sites increases exponentially with the number of

factor levels.

A systematic simulation of the influence of sample size (Table 1) on the reported ef-

fects showed that an increase in sample size reduced the decrease in mean p-value, but

that this effect was nevertheless detectable in every sample size (Fig. 1c). Using correc-

tion for the row and chip with a random sample distribution resulted in 118 FDR-

significant sites at a sample size of n = 768. For the balanced sample, this resulted in a

consistent reduction in the number of false positive sites with increasing sample size,

whereby false positives were not observed until the sample size reached n = 786. For

the unbalanced sample distribution, however, the exact opposite process was observed,

with a steady worsening of the deviation of the test statistic, resulting in an extreme in-

flation of the number of significant sites, with up to 500 K FDR-significant sites.

Comparison between 27 K, 450 K, and EPIC results showed a similar picture for

the EPIC and 450 K array sizes, but a considerably smaller effect on 27 K array size

(Fig. 1d).

A close examination of the false significant CpG sites introduced showed that neither

extreme values (close to 0 or 1) nor outliers played a role in the creation of false signifi-

cant CpG sites. It was primarily the CpG sites showing randomly assigned high group

differences before ComBat correction that were affected. A closer look at the individual

values showed that all values were slightly changed and that this change was not evenly

distributed across both groups.7

The analysis of simulated significant/trend wise (uncorrected) group differences

showed that ComBat in all his variants has a positive effect on the detection of sig-

nificant differences (Fig. 3). An exception is the application of Combat (SVA with-

out mod) to an unbalanced sample. Here the detection of significant sites is

strongly deteriorated, which is in strong correspondence with the results of the

previous simulations (Fig. 2a), where an increased mean p-value has been shown

for this use case.

Next, we validated our findings with a simulation based on data from real stud-

ies: Price and Robinson [22] found 9612 differentially methylated CpG sites in their

first comparison, and 19,214 sites in their second comparison. A simulated result

with 50 runs yielded M = 11,270.74 (SD = 221.70) differentially methylated CpG

sites for the first comparison, and M = 23,477.06 (SD = 382.67) for the second

comparison.

For the factor structure of Buhule et al. [23], our simulation with 50 runs predicted

M = 103,188.70 (SD = 481.84) differentially methylated CpG sites, while 94,191 false

significant CpG sites were reported in the study.
7Supplementary Figure 2 provides a scatterplot of a false significant CpG site before and after ComBat
correction.
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Fig. 3 Detection auf added significant effects for different use cases of ComBat. The X axes show the uncorrected p-
value of the simulated effects before adding the batch effects. The Y axes show the percentage of CpG sites detected
as FDR p <0.05 after adding the batch effects for the different forms of batch effect correction
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Assessment of ComBat in previously published empirical studies
Because of the potential implications of our results, we conducted a systematic

search for previously published empirical studies. We used the full text search pro-

vided in Google Scholar to successfully identify studies which employed ComBat in

their statistical analysis. Using this approach, we were able to access 54 papers

published since 2018 that used Illumina 450 K and EPIC arrays in combination

with ComBat for their analyses. Unfortunately, none of the identified authors pro-

vided sufficient detail regarding their batch factor structure, sample distribution,

and the subsequent application of ComBat to enable us to recreate their complete

analyses sufficiently. 72.73% of authors merely indicated that ComBat was used,

but not to what extent, while the remaining studies specified the corrected factors,

but were missing the exact number of factors or did not specify the sample distri-

bution. Some authors tried to mitigate the inflation in the occurrence of significant

sites by reporting only those CpG sites which had a minimum methylation rate dif-

ference between groups.
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Discussion
When technical factors related to DNAm analyses, such as the chips, the position

of the samples on the chips, or even the date of processing, are confounded with

the dependent variable of interest, this can very easily lead to disastrously false re-

sults (Fig. 2d) [29, 30]. However, as indicated above, the use of batch effect reduc-

tion methods can potentially lead to equally large problems. The results of our

simulation study reveal a fundamental problem: in addition to the impossibility of

identifying significant effects after correction for multiple testing with small sample

sizes, it is just as impossible with increasing sample sizes to avoid severe batch ef-

fects due to technical (e.g. samples plate and chip size) or practical (multicentric

studies) reasons.

Moreover, our results show that the use of ComBat for batch effect mitigation can

lead to any number and magnitude of false significant results, which occur in a variety

of different use cases. We were able to successfully replicate the results of the earlier

studies by Buhule et al. and by Price and Robinson [22]. The results reported here

strongly support the important warnings made by other authors to double-check every

step of a DNAm analysis and to be skeptical about the results obtained using ComBat

for batch effect mitigation on unbalanced samples [22, 23, 28, 31]. Furthermore, our re-

sults imply that these warnings should be extended to balanced samples too. At this

point it is important to note that in our results the combination of a randomized

sample distribution and ComBat usage without the use of covariates or a outcome of

interest variable was least prone to error. This is also the usage variant shown in the

official tutorial of sva, even if the manual of sva suggests other possible use cases. How-

ever, in reality the use of ComBat often seems to be a different one due to seemingly

better results as the integration in ChAMP suggests.

Furthermore, the positive effect on the actual removal of batch effects with ComBat

and the subsequent better detection of actual real effects can be replicated (Fig. 3) in

accordance with previous studies [22, 23].

Unfortunately, the precise extent of the consequences of our simulation results

remains unclear, since most authors do not report their correction methods in

detail. Because of this, we were unable to confirm the results of other previously

published studies which used ComBat. Therefore, we created Fig. 4, which is

intended to provide a rough guideline for evaluating studies. It is provided with-

out any guarantee of correctness, because a precise evaluation would depend on

the exact factor structure and ComBat configuration used by the study. We

therefore appeal to authors to describe their use of analysis pipelines in greater

detail and to provide all of the information necessary to replicate a finding. In

this case, the R and Jupyter Notebooks might be a good starting point, because

they are capable of combining theoretical considerations with the practical

implementation.

The limitations of this study were that the effects presented were restricted to

the use of ComBat, which is only one (however frequently used) possible method

out of many for correcting for batch effects in whole methylome data. The simula-

tion of effects applied here needs to be further validated using real data and can

only be interpreted as an approximation of the real effects. Additionally, the results

presented here are limited to probe-wise (DMP) analyses, because the naturally



Fig. 4 Heatmap of FDR-significant CpG sites after ComBat application. The dotted line indicates the number
of corrected factors when “correcting” for a technical batch. Grey tiles were not assessed due to the
sample–factor ratio. The redder the cells are, the more false significant CpG sites were found after
applying ComBat
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occurring intercorrelation of CpG sites is not accounted for in our simulation

approach.

Furthermore, it is important to note that our batch effect simulation was very basic.

It is plausible that many different and more complex batch effects exist, which are not

sufficiently covered by this study and could potentially produce different results. There-

fore, it is important that the structure of batch effects itself is analyzed as accurately as

possible in further research.

Conclusions
Even if our work suggests otherwise at first glance, ComBat can be a very good method

for batch effect removal. But it is crucial not to use this method blindly and to be very

skeptical of positive findings that cannot be found without correction. In this context we

want to emphasize the importance of the sample distribution. The distribution of the

samples during the measurement is fundamental for the creation of batch effects and, as

we have shown, their removal. This is why the distribution of samples should be presented

in full detail in future studies. We want to recommend visual illustrations like Fig. 1a fol-

lowing the example of Buhule et.al [23]. for this purpose. Furthermore, contrary to previ-

ous research results, we can only advise against using any kind of non-random sample

distribution. Our simulation suggests that balanced samples with respect to the outcome

of interest pose new problems that have been underestimated in the literature so far.

While in our view, efforts to integrate and standardize DNAm analysis in packages

such as ChAMP are an essential step toward extending the replicability and compar-

ability of results, it must be noted that this integration means that ChAMP alone
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depends on 233 separate packages. Therefore, it is impossible in practice for re-

searchers to check all of these packages with their respective source codes for correct-

ness and correct usage. This is particularly problematic because statistical hypothesis

testing (“p-value statistics”) only works correctly if all requirements for these methods

are met in the pre-processing and the structure of the data. While the results of our

simulations do not allow conclusions to be made about other correction methods, simi-

lar problems are possible with other methods. This means that a simple method of veri-

fying results is required. Therefore, we would encourage researchers to apply our

deliberately simple yet effective method for checking for false positive results to their

own analysis pipelines using the R code provided in the Supplementary Material.

Summarizing the lessons learned from our results, we strongly recommend not blindly

trusting the analysis pipelines discussed above. Testing them with random data without

the possibility of real significant results is a simple way to test the pipelines and sample

distributions in advance. In addition, the scientific community urgently needs to develop

a standardized way to adequately present complex statistical analysis methods.
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