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Abstract

Background: Alignment-free methods of genomic comparison offer the possibility of scaling to large data sets of
nucleotide sequences comprised of several thousand or more base pairs. Such methods can be used for purposes of
deducing “nearby” species in a reference data set, or for constructing phylogenetic trees.

Results: We describe one such method that gives quite strong results. We use the Frequency Chaos Game
Representation (FCGR) to create images from such sequences, We then reduce dimension, first using a Fourier trig
transform, followed by a Singular Values Decomposition (SVD). This gives vectors of modest length. These in turn are
used for fast sequence lookup, construction of phylogenetic trees, and classification of virus genomic data. We
illustrate the accuracy and scalability of this approach on several benchmark test sets.

Conclusions: The tandem of FCGR and dimension reductions using Fourier-type transforms and SVD provides a
powerful approach for alignment-free genomic comparison. Results compare favorably and often surpass best results
reported in prior literature. Good scalability is also observed.

Keywords: Alignment-free methods, Genome comparison, Genome identification, Chaos game representation;
Phylogenetic tree, Dimension reduction

Background
For fairly short nucleotide sequences, of up to perhaps 100
bp, methods that are based on aligning strings can be quite
powerful. These do not scale well to longer sequences. In
recent decades there has thus been considerable work in
developing alignment-free methods for comparing longer
gene fragments. A far from exhaustive list of references is
[1–31] (and an extensive review of these is found in [32]).
A key idea is to capture some aspects of the sequences,
perhaps as images or numeric vectors, and apply image
and/or signal processing methods in a way that is fast
and allows for distance-based comparisons. One family of
methods (well represented in the above references) uses
the Frequency Chaos Game Representation (FCGR) [2, 7]
(based on earlier work by Jeffrey [14]). This creates images
with certain fractal properties that capture frequencies of
k-mers for modest values of k (as will be explained in the
“Frequency chaos game representation” subsubsection of
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the “Implementation” section). A number of different pro-
cessing methods have then been deployed in order to
classify these images; references [2, 7, 12, 15, 16, 25, 28–
30] show several of these and convey some idea of their
variety.
The approach we will take starts with these FCGR

images. We use a Fourier Discrete Cosine Transform
(DCT) of each image matrix, retaining only low frequency
components in order to reduce dimension. We then flat-
ten the resultingmatrices into vectors and use the Singular
Value Decomposition (SVD) to further reduce dimen-
sion. The vectors that result from this can be used in
several ways. We will put them into a kd tree [33] for pur-
poses of finding nearby sequences. This can be applied to
inferring species or other taxonomy information for new
sequences, given a reference database for known genomes
[27, 28, 30]. We also use them to train neural networks.
Another use we will show is in hierarchical clustering e.g.
to create a phylogenetic tree [12, 21, 24, 27, 30]. A related
application we will cover is to infer bacterial hosts from
viral genomes [1, 8].
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This method of working with images is by no means
new. Fourier and SVD based methods have been in use
for at least two decades, and have been used in tandem as
well [34]. A particularly effective approach, also using kd
trees for lookup, is described in [35]. This previous work
gave an example involving FCGR images, which serves as
a proof-of-concept from which the present work arose.
Here we describe several refinements that are specific to
working with FCGR images from nucleotide sequences,
that improve accuracy while maintaining computational
efficiency. We also describe several variations, indicat-
ing strengths and weaknesses thereof. One strength we
should note at the outset is that there is no requirement
that nucleotide sequences have a common length (as is
sometimes the case for alignment-free methods that use
signal processing). Indeed, some experiments will involve
sequences of quite different lengths.
Other related methods involve use of a Fourier trans-

form, or similar, on signal vectors created from a CGR,
from indicator vectors, or by any of several related means.
A number of these methods were developed by Yau and
coauthors (see [12, 21, 25, 26] and references therein).
These were used with considerable success to deduce phy-
logeny trees from genome sequences; some of their tests
are now benchmarks. A powerful set of related methods
also appears in [[27], with strong result shown for sev-
eral tests both in species recognition and phylogeny tree
construction (which the authors have made available for
benchmark purposes). The tandem of FCGR and SVD is
used in [29] on a set of 400 of Human Papillomavirus
(HPV) genomes from 12 strains, where it attains perfect
classification at the strain level (this data set was also
handled quite well in [12, 26]).
All tests herein were run with version 12 of Mathemat-

ica [36]. Tests were run on a desktop machine with a 3
GHz processor, 16 Gb RAM, running under the Linux
operating system. The full Wolfram Language code for all
experiments is available in the Additional file 1.

Implementation
Transforming genome sequences to short vectors
We start with descriptions of the steps to our approach.
The main steps are as follows. The Frequency Chaos
Game Representation converts nucleotide strings to
images. The Discrete Cosine Transform reduces the
dimension of these images. The Singular Values Decom-
position further reduces dimension so that we can put
vectors it produces into a searchable data structure. We
mention some variants as we proceed. The hyperparam-
eters used in each step have been selected based on
results from running many experiments with the data sets
that will be described later. These seem to be stable val-
ues insofar as small changes do not give large changes
in outcomes. We note that there are usually trade-offs

involved in stronger dimension reduction vs. accuracy of
results.

Frequency chaos game representation
The idea behind the Chaos Game Representation is quite
simple. It starts by labeling a 1-by-1 square with a dis-
tinct nucleotide in each corner (it is common to put
place purines diagonally across from one another and like-
wise pyrimidines, but other placements have been used).
Beginning in the center, one places a dot halfway from
there to the corner corresponding to the first nucleotide
in the sequence. Continuing from that point, one places
a second dot halfway toward the corner corresponding to
the next nucleotide, and continues in this manner until the
string is exhausted.
Given a positive integer k, if we form pixels at granu-

larity of 2k then Jeffrey showed that each dot corresponds
to a specific character string of length k [14]. This in
turn gave rise to a faster computational stratagem, the
FCGR, as employed in [2, 7, 16]. It can be shown that each
pixel corresponds to a particular k-mer. That is to say, a
pixelation level of 7, for example, means that each pixel
corresponds uniquely to a length 7 oligonucleotide, and
thus occurrences of all oligonucleotides can be enumer-
ated. The FCGR is a visual way of tallying occurrences of
each k-mer by relative lightening of corresponding pix-
els. We do a nonlinear rescaling in order to get an average
value that is not too close to white or black. A rescaling
that has worked well in practice is to take the (real) fifth
root of each pixel value, after first normalizing so that the
maximum value is unity.
We show images in Fig. 1 created from initial nucleotide

sequences of length 150000 bp from the following species:
H. sapiens, E. coli, S. cerevisiae, A. thalania, P. falciparum,
and P. furiosus. These were done at pixelation of 7, so
the images are 128x128. These were made by the author
for [35].
For the purposes at hand we have found that a pixela-

tion level in the range of 7 to 10 tends to work well for
purposes of locating nearby species in a reference set to a
given gene fragment. All experiments used level 7 as that
seemed to be most suitable overall; it gives good results
while not needing so much memory as the higher levels.

Discrete cosine transform
We begin with a motivation for having two levels of
dimension reduction. The second one, using a singular
values decomposition, operates at the matrix level. The
row dimension is the number of data points, while the col-
umn dimension is the length of each data point. The time
complexity and memory requirements of this operation
(which we describe in more detail later) both correlate
with this column count. If we do no prior reduction, the
vectors in the matrix will be comprised of flattened FCGR
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Fig. 1 FCGR images for six distinct species

image values. As we work with a pixelation level of 7, these
matrices are 128 × 128, and the column dimension would
therefore be 1282, or 16384. For large data sets this would
impose a considerable memory requirement on the SVD
step, as well as have a large speed cost. We can avoid this
by reducing image sizes one at a time, so there is no large
matrix constructed, hence no large memory requirement.
The Discrete Fourier Cosine Transform (DCT) provides

a useful tool for exactly this purpose. It is a real-valued
variant of the Discrete Fourier Transform that is known to
have good properties for concentrating most of the spec-
tral energy of images into the low frequency components.
It thus provides good image fidelity while allowing to
reduce memory usage considerably. This is key to obtain-
ing a matrix of manageable column dimension, for pur-
poses of further dimension reduction. Empirically it has
been found that, for this purpose, DCT-IV seems to work
better than other three discrete cosine transforms. Also it
has been observed to clearly outperform three of the dis-
crete sine transforms, and to do slightly better than the
fourth, as measured by results presented below. The ver-
sion of DCT-IV implemented in the Wolfram Language is
scaled so as to be self-inverting. We actually “center” the
image array, by subtracting the mean from each individual
value. This removes the DC component from the result.
For many common image types it suffices to retain only

a few low frequency components. FCGR images are an
exception: due to their fractal nature, it seems that more
are needed. We use 30 in each dimension, thus reducing

the images to 30 × 30. We have found this value to give
good results across a range of tests, although certainly
there is room for further experimentation.
It might be useful to see an example of this dimension

reduction. While a DCT-transformed image is for most
viewers not particularly enlightening, an inverse trans-
form brings it back into some semblance of the original
form. We show this with the six FCGR images above,
using DCTs truncated to 30 × 30, inverted, and resized to
compare to the original images in Fig. 2.
One might ask whether it would be as useful to work

with FCGR images created at resolution level of 5, that is,
32 x 32 images. While that can be done, experiments have
given consistently better results using the DCT reduction
from level 7.
We have also done some experiments using discrete

wavelet transforms (DWTs) instead of Fourier Cosine
Transforms, as noted in the “Results” section. While the
results have not as yet been at the same level as those
obtained using the DCT, some have come close. This is
an area that could benefit from further exploration. Since
we start with images that are 128x128, this step gives a
compression factor slightly larger than 18.

Singular value decomposition
Once we have a set of matrices resulting from the DCT
step, we flatten each and again center by subtracting from
each vector its mean value. The purpose of this flattening
is to turn each matrix into a vector, and it is done by the
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Fig. 2 DCT dimension-reduced FCGR images

common method of appending rows. We stack all these
vectors to obtain a single matrix.
The dimension reduction works as follows. We start

with a matrix M; for our purposes, it is formed from
the flattened dimension-reduced vectors resulting from
the DCT step. The SVD of M gives a trio of matrices
(U ,W ,V ) where U and V are possibly truncations of
orthogonal transformmatrices andW is a diagonal matrix
of singular values. In the full version of SVD, no singu-
lar values are removed, and we have the matrix identity
UWVt = M. Since V is an orthogonal matrix (possibly
truncated), we thus have UW = MV . We can do effi-
cient searching as follows. We store the row vectors of the
left hand side UW in a kd tree [33]. Suppose we want to
locate a vector that is inM.Wemultiply on the right by the
matrix V and the equality of MV with UW implies that
this transformed vector is actually in the kd tree (that is,
we have an exact match, modulo tiny machine arithmetic
numerical differences that can be ignored for present pur-
poses). If the vector we wish to look up has the same
dimension as each row ofM, but is not itself such a row, we
can still find the nearest neighbor efficiently via this same
approach: multiply on the right by V and search for the
nearest neighbor thereof. For modest dimensions (up to
tens but not hundreds) a kd tree tends to offer fast lookup.
We reduce dimension by truncating the matrix W to

retain only r singular values, for some modest value r
(typically in the range of 5-50 for our purposes). This
offers several advantages. For one, when M is large we

reduce considerably on memory consumption. Another is
that iterative linear algebra methods can be deployed for
modest values of r, and these offer advantages over direct
methods both in speed and memory consumption. When
we reduce dimension in this way the identity UWVt = M
no longer holds. The left hand side becomes instead the
best approximation, in a Euclidean norm measure, of M
by any matrix of rank r. So we now have the approxi-
mation UW ≈ MV . Our lookup set is comprised of the
vectors from the left side of this approximate equality. We
store them in a kd tree [4] for purposes of efficient near-
est neighbor lookup. These vectors can be used for other
purposes as well. We can also compute distances between
them for purposes of creating a phylogenetic tree. We
can moreover use these vectors to train a neural net, or
as training data for other machine learning methods. We
show these in the “Results” section.
As with the DCT step, we can show a visual form of

this SVD dimension reduction. MultiplyingUWVt gives a
matrix with rank r but dimension the same asM. We show
the resulting images in Fig. 3 corresponding to the initial
strings for the six genomes seen above, with r set to 36.
The loss of fidelity appears to be fairly modest.
When using these dimension-reduced vectors the

lookup step remains unchanged. In order to find nearest
images to a new FCGR image, we again process it with
the DCT. We then reduce to dimension r by multiplying
on the right by the V matrix from the SVD step. At this
point it has the same dimension as the reference vectors
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Fig. 3 DCT-and-SVD dimension-reduced FCGR images

in the kd tree and it is a simple matter to locate the nearest
neighbors.
Different applications appear to benefit from retaining

different numbers of singular values. The nearest neigh-
bor lookups did well with 20–50, whereas neural net
results seemed to do better when we retained around 80
singular values. We used 40 for the SVD step because
results did not seem to improve much when we increased
it. Experiments showed that use of fewer would result in
faster run times and perhaps improved scalability, but at
the cost of a modest decrease in accuracy.
A similar method was proposed in [29], albeit with-

out the Fourier dimension reduction step. The authors
tested their methods on a dataset comprised of 400
HPV genomes split among 12 genotypes. They attained
essentially perfect recognition. The method of this paper
likewise attains perfect recognition on their data, over
repeated randomized trials. The protocol for these was
to take an even split with half of the sequences for train-
ing and half for testing. The training data were used for
constructing the kd tree. Members of the test set were
each ascribed to the class of their corresponding nearest
neighbor from the training set.

Algorithm complexity
We now explain the speed and memory requirements of
the several steps. First we establish notation. Nucleotide
strings are encoded as arrays of ascii bytes (one for each
nucleotide). We will assume we have m such strings,

each of length n. (In some experiments we may have
input genome sequences of different length, and we chop
these into fixed lengths. For purposes of this subsection,
that fixed length will be n and the total number of
chopped subsequences will be m.) Our pixelation level
is k, the number of Fourier frequencies we retain will
be f , and the number of singular values we retain
will be s.
The process of converting a given string into an FCGR

image is linear in the string length. As there are 22k = 4k
pixels it is also linear in this value, hence is O

(
n + 4k

)
.

With m such strings, the total cost for this step is
O

(
m

(
n + 4k

))
.

The DCT is computed using the same underlying
method as for the Fast Fourier Transform (FFT). This is
O(r log r) where r is the total number of elements. As
we have 4k elements for each image, and m images, the
total speed complexity is O

(
mk4k

)
. Each image matrix

has dimensions f × f so the memory use is O
(
mf 2

)
.

When working with a large data set we typically read in
one genome at a time, converting to FCGR image and
computing this DCT before processing the next genome
string. So this gives the memory footprint for the first
two steps.
After flattening these two dimensional DCTs we have a

matrix of dimensions m × f 2. When retaining the largest
s singular values, and under the assumptions that s << f 2
and f 2 < m,the SVD step has time complexity O

(
mf 4

)
.

The memory requirement is comparable to the size of the
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input, so the memory use is O
(
mf 2

)
. At the end of this

subsection we indicate two ways to curtail this and also
improve speed.
Storage of m vectors each with s machine double com-

ponents in a kd tree requires Only O (ms) memory. The
time required to create the tree tends to be O

(
mlog(m)s

)

and in any case is never a bottleneck for purposes of this
methodology.
We now describe algorithmic complexity for lookup.

Suppose a genome string to be looked up in our kd tree has
t base pairs. Conversion to an FCGR image is O

(
t + 4k

)

in algorithmic complexity and also memory use. Taking
the DCT is O

(
k4k

)
, and this step produces a vector of

length f 2.We use the rightmultipliermatrix from the SVD
step to create the lookup vector. Recall that as we retain
s singular values and corresponding vectors, this matrix
has dimensions s× f 2. The matrix multiplication step that
gives the lookup vector is therefore O(s × f 2). The actual
lookup in the kd tree takes O(slogm).
There are ways to improve both the time complexity

and memory consumption of the SVD step. One is to take
a random subset of the rows to form a smaller matrix,
extract the SVD of that new matrix, and use the result-
ing right multiplier matrix to convert the rows that had
been omitted. In effect, this processes the omitted rows
in the same manner as we process test vectors. In some
experiments this showed only a small loss in overall accu-
racy. Moreover we can avoid creating the full matrix. We
can simply work with a random subset of the genome
sequences, create the submatrix, extract the SVD, and
process all remaining training sequences one by one (as
we can do for the test sequences). The benefit to this
approach is that memory usage can be curtailed in situa-
tions where the training set is large. This allows to scale
to large data sets while using only modest hardware. We
illustrate the potential for this approach in a variant of
one example. A second approach is to premultiply by the
transpose matrix, take the SVD of the resulting square
matrix, and use the square roots of the singular values.
The right side multiplier matrix is the same, up to row
signs, as for the usual SVD, and we do not require the
left side multiplier matrix. This approach can be useful for
large data sets.

Materials
Datasets and experiments
Identification ofmicrobial genomes
One data set comes from Martin Swain. It is a curated set
of microbial genomes and split into training and test sub-
sets This is described in a prior article by Swain [28] and
made available via [37]. The training set has 1053 genome
sequences from 565 distinct species. The test set has 650
genomes from 129 distinct species. It turns out that five of
those are not represented in the training set. We removed

those five species from further consideration; this brought
the number of test genomes to 640. We remark that the
actual work in [37] used a superset of this data set, with
around 50 The taxonomic classifications contained some
noise, thusmotivating release of the cleaned subset in [37].
We split each genome into nonoverlapping sequences

of 20000 bp. We retain from each genome up to 37 such
sequences, with starting points approximately equally
spaced throughout the genome (for shorter genomes we
retain as many subsequences of that length as we can,
subject to them not overlapping). The purpose of the
experiment was to determine how well the training data
could be used to recognize correct genus and species of
the test data sequences. We then varied the sequence
length by a factor of five in each direction, that is, repeat-
ing with sequences of length 4000 and length 100000, in
order to gauge the effect of sequence length on quality of
results. A variation of this strings together noncontiguous
subsequences of 200 bp in order to gauge how well this
method will perform if the data is comprised of multiple
short reads from a given genome (a similar experiment,
albeit withmuch longer subsequences, is reported in [17]).
We also used the majority guess from subsequences of
each test genome in order to derive a best guess for genus
and species for that entire genome.
A related experiment uses the data set that was also used

in [28]. It is available from the web resource reported in
[38]. We use the protocol described in [28] to determine
species classifications for the test genomes. This provides
a means for direct comparison of results between [28] and
this paper.

Identification of cyprinid genera
The second data set comes from [27]. There are 81
mitochondrial genomes from six genera in the family
Cyprinidae. This turns out to be a relatively difficult clas-
sification: the best of the methods in [27, 30] attains an
accuracy of 92.6% (this is of course a good result, but it is
somewhat below the scores from other tests presented in
that work).
A key point in working with this and the microbial data

set is that the method we described occupies a particu-
lar “sweet spot”. It is not as fast as the methods used in
[27] or [28], but it is far faster than algorithms that use
alignment. Moreover it will scale to large sets; the most
computationally intensive step is the SVD, and that is mit-
igated by the fact that the number of columns is limited
by the DCT components retained, and we only compute
at most a few dozen singular values (this also restricts the
memory usage).

Construction of phylogenetic trees
We use hierarchical clustering (as built into the Wol-
fram Language [36]) to construct phylogenetic trees
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from nucleotide sequences as processed by the method
described above. One benchmark data set is comprised of
five types of avian Influenza A genomes from 38 samples.
It was introduced in [12] and also used in [21, 27]. An opti-
mal tree will separate the five strains. A second example,
introduced in [29], uses mitochondrial DNA sequences
from 26 species. A third example contains mitochondrial
gene sequences from 41 mammalian species. It contains
representatives from eight distinct orders, of which all but
two have multiple representatives. This was introduced in
[21] and used also in [27]. The best results will separate the
eight orders, as well as the families for those that families
have multiple representatives (e.g. Ursidae, Canidae, and
Felidae families in the Carnivora order should be mutually
separated).
The accession identifiers for genomes in these three sets

are given in the supplement, along with Wolfram Lan-
guage code for obtaining the nucleotide sequences from
GenBank [39]. Finally we use reference sets from [32]. The
ascension identifiers for that set are found in the on-line
web site corresponding to that work: http://afproject.org/
app/. I thank an anonymous reviewer for suggesting this
resource as ameans for obtaining a quantified comparison
with numerous other methods.

Inferring host genera from viral phages
A question considered in recent years involves determin-
ing likely host bacteria for a given viral genome [1, 8]. One
approach is to look for genome similarities such as k-mer
frequency profiles, partial sequencematches, and so forth.
Several reasons have been put forth for why such similari-
tiesmight exist, among themhorizontal transfer of genetic
material, and evolutionary pressure to avoid recognition
by the host organism; see [1, 8] for details. We work with
a data set comprised of 820 viral sequences and 2699 pos-
sible bacterial hosts. This set was introduced in [8] and
the authors have kindly made it available for reference
benchmarking.

Results
Microbial genomes
The first test of this method was on fragments of length
20000 bp from the training and test sets of microbial
species in [37]. We deduce species of a test specimen from
the species of the nearest (in Euclidean distance) train-
ing specimen vector. We also check for the 20 nearest
training specimens, as this can be useful for determining
a candidate pool in cases where the first guess might be
incorrect.We used FCGR images that are 128x128, retain-
ing a 30 × 30 matrix of low frequency components from
the DCT step, and vectors of length 40 from the SVD
step. The correct genus was determined for 91.5% of all
fragments, with 97.4% having the correct one among the
top 20 neighbors. The correct species was determined in

82.9% of the cases and 95.5% had the correct species in the
top 20%. There are 23384 training sequences and 14339
test sequences. For timings, it took 16 min to read in and
process all training and test genomes through the DCT
step, 7 s to do the SVD step on the training vectors, and 3
s to use the resulting right multiplier matrix to put the test
vectors into the correct dimension and then compute the
nearest neighbors for all the test vectors.
When we take the majority guess from all subsequences

of each of the 640 test genomes, the correct genus is deter-
mined for 619 (96.7%) and the correct species for 576
(90.0%).
In a variation of this experiment we retain 80 rather than

40 singular values in the SVD step, and we use the train-
ing vectors to train a simple neural net (comprised of a
linear layer, a ramp function a hyperbolic tangent, a sec-
ond linear layer to reduce to the number of classes, and a
soft-max layer). The neural net took 18 min to train, and
3 s to run on the 14339 test vectors. The outcome had
85.9% correct species recognition and 93.9% correct genus
recognition.
It is of interest to note that individual genomes exhibit

considerable self-similarity. When we check the eight
nearest neighbors in the training set to each fragment
therein (so obviously the first hit is the fragment itself ),
we find that 92.0% have a nearest neighbor in the same
genome. Recall that these were taken from nonoverlap-
ping subsequences, and moreover for those genomes of
sufficient (ength (the majority) the fragments were sepa-
rated by gaps.
We repeated the fragment recognition test using

nucleotide segments of 4000 bp. The genus was correctly
recognized for 71.0% of the fragments, with the correct
genus among the nearest 20 neighbors for 94.1%. The cor-
rect species was identified for 61.0%, with the correct one
among the nearest 20 neighbors for 90.2%. With the neu-
ral net approach the correct species was identified for
70.2% and the correct genus for 78.5%.
We also did this experiment using nucleotide seg-

ments of 100000 bp. Here the genus was correct for
95.5% of the test examples, with 97.4% having the cor-
rect one in the nearest 20 neighbors. The species was
correct for 88.3%, with the actual species among the 20
closest neighbors for 96.1%. A trained neural net did
slightly worse for species identification, getting 86.9% cor-
rect. The genus level was about the same as for the
nearest neighbor approach, getting 95.8% correct. As
an indication of what might be done with still longer
sequences, we ran the nearest neighbor lookup using
training and test sequences of 500000 bp. The species
recognition rate here is 90.7%, with 97.2% having the
correct species among the 20 closest neighbors. The
corresponding numbers for genus recognition are 96.7%
and 98.0%.

http://afproject.org/app/
http://afproject.org/app/
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Table 1 Timing vs chunk size

chunk size read+FCGR+DCT (min) SVD+kd-tree (sec) lookup (sec)

4000 5.5 7 4.6

20000 16 7 3

100000 71.8 7 1.8

500000 93 1.7 0.2

Table 1 shows timings vs. chunk size. One will note
that increasing chunk size means longer processing time
for the DCT step, with the SVD and lookup steps drop-
ping once we hit a chunk size that causes the number of
training and test vectors to decrease.
Table 2 summarizes accuracy vs. chunk size.
Another experiment on this data set was as follows. We

treat the training set as usual, using fragments of 20000
bp. We took discontiguous nucleotide fragments of 200
bp from each genome in the test set. We then “stitched
together” longer fragments by partitioning each genome’s
fragments into groups of 20 (thus forming a matrix) and
then transposing the matrix. We still manage to recognize
the correct genus for 91.7%, and we get the correct species
for 82.8%. The implication is that this method might be of
use even when test genome fragments are relatively short
(a few hundred bp, say), provided there are multiple frag-
ments for each genome so that one can get a total length
of several thousand or more bp.
We remark that the neural net method for recogni-

tion will not scale so well as the basic nearest neighbor
approach. The training requires considerably more time
andmemory. That said, we note that we did not try this on
a large machine, and we did not make any effort to speed
the training via parallelization or use of GPUs.
The data set used above was kindly made available to

me, and is now publicly available as [37]. It is a cleaned
and condensed version of what was originally used in [28].
In order to have a fair comparison to results presented
there, variants of the preceding experiments were per-
formed using the data set from [38] since this was the
data set actually used in [28]. This set has 1551 training
sequences and approximately 1000 test genomes (due to
differences in download dates and possibly also in string
processing used for determining taxonomy, there are 1008
test sequences in this paper whereas only 977 were used
[28]). We use 100 non-overlapping substrings of 10000

Table 2 Accuracy vs chunk size

chunk size % genus % genus nearby % species % specied nearby

4000 71.0 94.1 61.0 90.2

20000 91.5 97.4 82.9 95.5

100000 95.5 97.4 88.3 96.1

500000 96.7 98.0 90.7 97.1

bp from each training sequence (or as many as are avail-
able, if fewer than 100) to create the lookup tree. We use
four subsequences of that length from each test sequence,
since this was the number used in [28]. The sequence
with the nearest match in the lookup tree is then used
to classify the test sequence (again following the protocol
from [28]). The correct species is identified for 64.2% of
the sequences. The best method in [28] achieved a cor-
rect recognition rate of 46%. As in that reference, this
experiment was repeated with subsequences of 100000
bp (where we now use up to 50 subsequences per train-
ing sequence). The species is now correctly identified for
identified 74.1% of the test sequences. the best method
in [28] found the correct identification for just over 67%
([28] also reports that the top subsequence BLAST hit cor-
rectly identified the species for roughly 83% of the test
sequences). Our method performed substantially better at
the genus level in these experiments, identifying the cor-
rect one for 88.3% when using 10000 bp subsequences,
and with 95.1% correct for the 100000 bp subsequences.
The current results compare well with the BLAST results
reported in [28] for subsequences of 100000 bp. That
gets correct species for 83% and correct genus for 91%.
It should be mentioned that there is a tradeoff insofar
as the methods used in [28] (excluding BLAST) involve
somewhat faster processing than the method in this work.
Returning to the smaller data set from [37], we can

offer some modest comparison results. Martin Swain ran
and reported his protocol at several subsequence lengths
(Swain, private communication). We compare at two frag-
ment lengths that are relatively close to those shown
earlier. Recall that the test set is comprised of four subse-
quences of given length from each of the test sequences.
The one that is closest to a training fragment deter-
mines the guess for that test sequence. For subsequences
of 25600 bp the best Swain method obtains 79.5% cor-
rect classification at the species level. Our method has
87.0% correct. When subsequences of 102400 bp are used,
the best Swain result has 85.5% correctly classified. In
comparison, we get 92.6% correct.

Cyprinids
This data set contains genomes from six genera in the
Cyprinidae family. For each genus there are between 10
and 19 individual genomes, with 81 in total. Every genome
has about 17000 bp. We do not work with subsequences
but rather use the entire nucleotide sequence from each.
As in the microbe set, we create FGCR images at a pixela-
tion level of 7, we keep a 30 × 30 matrix at the DCT step,
and we reduce to dimension 40 at the SVD step.
From each genus we take 75% of the individual genomes

for training and the rest for testing (we round down for
the training set for genera with counts not divisible by 4).
We average the results over 1000 such randomized trials.
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Processing time is 1.7 s to convert genome sequences
to DCT vectors (thus this includes the FCGR step). It
takes 3.3 s to run 1000 trials; each involves computing the
SVD matrix for 3/4 of the DCT vectors, making the kd
tree, converting the remaining 1/4 vectors for lookup and
performing the lookups.
The result is that 96.5% of the test samples are cor-

rectly identified. Also 99.0% are accounted for by the first
two guesses. The best result from [27] has 92.6% correctly
identified. We remark that again there is a clear tradeoff,
insofar as ourmethod, while more accurate, requiresmore
processing time.
This data set is reasonably small so it can be used

to show the importance of the first dimension reduc-
tion (the DCT step). Recall that reducing dimension from
128 × 128 to 30 × 30 implies a size reduction factor
of 18.2. When we omit this step, the 1000 random tri-
als (with timing dominated by the repeated SVD step)
goes from 3.3 to 65.4 s, for a commensurate slowdown
factor of 19.8. It is also of interest that the quality of
result declined modestly, with 95.3 appearing in the two
top guesses. A possible explanation is that in retain-
ing only lower frequency components, the DCT effec-
tively blurs image details that might detract from the
recognition task. Stated differently, it might be remov-
ing what amounts to noise for purposes of FCGR image
comparison
A related experiment involves seven phyla from the Ani-

malia family used in [27]. In contrast to the Cyprinidae
data set, this one is quite unbalanced, with phyla con-
taining 4367, 1572, 403, 127, 100, 60, and 40 genomes in
descending order of size. The best method in [27] attained
correct classification of 96.2%. Ourmethod, with the same
parameter settings as above (but using 100 randomized
trials since the data set was so much larger) correctly
classified 98.18%.
This data set contains 6673 sequences. Timing for this

experiment was dominated by the time required to read in
the genome sequences from a github site; this and the pro-
cessing through the DCT step took 986 s. The 100 random
trials took 138 s; each such trial performed the SVD step
on a 5004× 900 matrix and did processing and lookup on
1669 vectors of length 900.

Phylogenetic trees
In the test sets below we again retain the 30 × 30
matrix of lowest frequency DCT components. When
possible we reduce to dimension 40 in the SVD step;
those sets with fewer than 40 members do not get
reduced in this step. Some experiments indicate that
the cosine distance does a slightly better job than the
Manhattan distance for purposes of grouping by tax-
onomy, so we show trees produced with that distance
measure.

Influenza a data set
The influenza A test set grouping is given in Fig. 4,
using the same color scheme as was found in [27]
(and similar is used in [21]. The 38 sequences come
from five strains, each with a separate color. It shows
the same issue that is reported in those references for
the alignment-based CLUSTAL Omega program [40]:
the A/turkey/VA/505477-18/2007(H5N1) is placed in the
H1N1 group (though this misplacement does not happen
for the methods developed in [21, 27]). It can be seen
that, while the remaining H5N1 viruses appear in themid-
dle of the H1N1 group, this is in part due to a vagary of
graph layout: the H5N1 cases are in fact grouped together
and (with the noted exception) separated from the H1N1
group. The distances between the two “separated” parts
of the H1N1 viruses do indicate a modest weakness in
the clustering though (and it is also seen in the CLUSTAL
omega grouping) [21, 27]. It is perhaps notable that, as
with the CLUSTAL Omega result from those references,
groupings show geographical affinities. This is the case,
for example, with the separated subgroups of the H1N1
strain. This type of affinity makes sense if substrains tend
to be geographically clustered. Curiously, the errant H5N1
is the only sample from that strain that came from North
America, as the others are from east Asia and Germany. It
is from Virginia and is placed in proximity to two H1N1
samples fromMaryland.
The full processing time, excluding the time needed to

download sequences from GenBank [39], is 0.1 s. It took
47.5 s to obtain the 38 sequences from the GenBank site.
Figure 5 shows a Multidimensional Scaling (MDS) plot

in three dimensions. This MDS scaling is created from
the distance matrix between vectors that emerge from the
FCGR-DCT-SVD processing. One can see the lone H5N1
sequence appearing amidst several H1N1 genomes. It also
indicates a separation of the H1N1 sequences into two
distinct subsets.
One might ask whether the proximity of the one H5N1

sequence is a vagary of reduction to three dimensions, or
an artifact of the lossy steps of DCT and SVD. In fact it
is neither. We illustrate this with Figs. 6 and 7. The first
row of Fig. 6 is comprised of FCGR images, at pixelation
level of 5, of four H1N1 sequences. The two on the left are
from specimens in Asia and the two on the right are from
Maryland, USA. The second row has the first three and
last of the H5N1 sequences; it is that last that is the outlier
in the tree and MDS plot.
While it is by nomeans obvious to the eye that the image

for the misplaced sequence is "closer" to the H1N1 fam-
ily, we can see this by taking differences of each image
with that misplaced one. Recalling that black pixels come
from values of zero, it is now fairly visible in Fig. 7 that
the errant H5N1 on the bottom right is closest to the two
H1N1 FCGR images on the upper right.
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Fig. 4 Influenza A phylogenetic tree
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Fig. 5 Influenza A 3D MDS plot

Mitochondrial data set
The mitochondrial DNA tree in Fig. 8 comes from
longer genomes but still took under a second to cre-
ate, starting with the nucleotide sequences. It bears some
similarity to the Euclidean and image distance trees in
Figure 2 of [30] (one of which also places chickens and
humans as neighbors). The bottleneck, again, was in
obtaining the 26 genome sequences from GenBank; this
required 30 s.
An MDS plot in two dimensions appears to be consis-

tent with the phylogenetic tree in Fig. 9. It also shows
that the plant and protozoa, while far apart, are mutu-
ally closer to one another than they are to other species.

The tree, due to artifact of the drawing choices, obscures
this fact. The MDS plot also has a better placement of the
shrimp.

Mammalianmitochondrial data set
Themammalianmitochondrial DNA tree in Fig. 10 is sim-
ilar to that in [21]. Total processing time was 0.9 s, with 45
s needed to download the 41 sequences from GenBank.
Clustering appears to be slightly better for the Car-

nivora order than that shown in [21], insofar as Ursidae are
all grouped together here. Moreover greater apes (family
Hominidae), lesser ape (family Hylobatidae), and mon-
keys (family Cercopithecidae) are mutually separated. The

Fig. 6 Low resolution FCGRs for four H1N1 and four H5N1
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Fig. 7 Image differences with misplaced H5N1

Fig. 8 Eukaryotic mitochondrial phylogenetic tree
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Fig. 9 Eukaryotic mitochondrial 2D MDS plot

Fig. 10Mammalian mitochondrial phylogenetic tree
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hedgehog and rabbit, however, appear within the Car-
nivora. It is not obvious to what extent this is an artifact
of the drawing layout (they could both have been rotated
downward and would then appear on the bottom) vs. how
much it indicates an error in the actual tree. A two dimen-
sional MDS plot in Fig. 11, created from the same vectors
serves to clarify this, as it shows the rodents, hedgehog,
and even the rabbit to be apart from the Carnivora. A
three dimensional plot, which supports manual rotations,
would show the desired separations even more clearly.
Finally we indicate how this method fares on a bench-

mark computed using several other methodologies. We
use data sets from [32]. There are 61 reference meth-
ods shown at the web site http://afproject.org/app/
benchmark/genome/std/assembled/plants/dataset/. They
all differ from the "gold standard" reference tree. For the
plant data set the Robinson-Foulds (RF) distances range
from 2 to 20. The method of this paper had RF distance of
14. A data set comprised of mitochondrial fish DNA from
that same web resource had RF distances ranging from 2
to 44, with our method having RF distance 20.
The examples indicate that this method is useful insofar

as it is both fast and able to produce results comparable to
prior work. That said, it is not perfect, and perhaps would
benefit from synthesis with other methods.

Predicting viral hosts from viral and bacterial sequences
The data set from [8] contains 820 viral phages sequences
and 2699 bacterial sequences. Among the latter are host
bacteria species for each of the former. In the Additional
file 1 accompanying [8] the authors provide correctness
percentages for species, genus, ..., phylum recognition

using variants of five general approaches. A total of four-
teen tables are shown. The genus recognition percentages
range from 15 to 62.3. Two of the fourteen exceed 50%.
One, based on exact matches between genomes, attains
50.4% correct genus recognition. Another, using blastn
search to compare genetic homology, achieves a correct
recognition rate of 62.3%. The exact matching method
gives 2.4 guesses on average per phage genome, with a
phage being ascribed as correctly matched if any of the
guesses hit the correct host genus. The genetic homology
method used, on average, only 1.4 guesses per genome,
and clearly the fewer guesses required, the more powerful
the method.
We use the proximity measure described in prior

sections to ascribe possible host genera to the phages.
The specific protocol followed used full viral genomes,
and chunks of length 20000 bp for the bacterial genomes
(allowing for smaller in the few cases where the bacterial
genome did not meet this size threshold). As in most prior
examples, we created FCGR images of size 128x128 (pixe-
lation level 7). The DCT step retained the 30 × 30 matrix
of lowest frequency components. The flattened submatri-
ces were processed in the SVD step retaining the 40 largest
singular values, and a kd tree for lookup was produced.
We then find, for each viral genome vector, the 28 near-

est bacterial chunks and their corresponding genera. We
retain all genera that appear at least twice in a given list
in order to insist that there be at least a modest level of
consensus. We chose 28 initial neighbors because, cou-
pled with the two-or-more consensus requirement, this
gave very close to an average of three genus predictions
per viral genome. We regard as correct any phage that

Fig. 11Mammalian mitochondrial 2D MDS plot

http://afproject.org/app/benchmark/genome/std/assembled/plants/dataset/
http://afproject.org/app/benchmark/genome/std/assembled/plants/dataset/
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has the correct genus among its retained predictions.
With these parameters, 56.0% of the viral genomes are
ascribed their correct genera. If we only take the 14 near-
est neighbors then the average number of genera that
appear at least twice drops to two, and correctness drops
to 51.7%. With 44 nearest neighbors and consensus of two
or more, there are on average four predictions per phage,
and 61.0% have the correct genus among their predicted
genera. Based on these values it would be reasonable
to state that the method performs somewhere near the
middle of the two most successful prediction methods
described in [8].
We did similar computations at the Order, Family, and

Species levels, in all cases using as many neighbors as
would have the average guess count closest to three. We
show a table with our results along with the first 13 (of
14) method results from the Additional file 1 accompany-
ing [8] (the last had to be omitted because the next-to-last
was inadvertently repeated in that reference). Full details
of their methods are found in the reference; we use their
nomenclature in Table 3.
We now provide processing time details. It takes 20 min

to retrieve the 820 viral phage genomes from GenBank
and process them through the FCGR and DCT steps. It
takes 5 h to obtain the (substantially longer) 2699 bacte-
rial genomes from GenBank, partition into segments of
20000 bp (discarding the remaining subsequence at the
end), and further process these through the FCGR and
DCT steps. The genomes in this set have, on average, 3.2
million bp, and in total there are 429642 subsequences
of 20000 bp. These comprise our training set. It takes
11 min to further process this set through the SVD and
kd tree steps. The SVD step, however, requires the most

Table 3 Phage classifier results

Method # guesses avg % order % family % genus % species

FCGR-to-vector 3.00 78.90 67.30 56.00 40.00

Coabundance 1.74 27.20 22.20 15.90 12.28

homology by blastn 1.40 81.46 73.90 62.32 45

homology by blastx 1.61 66.95 56.10 48.83 32.68

CRISPR method 1 3.93 36.46 31.10 1.22 15.49

CRISPR method 2 1.34 37.44 26.95 26.95 21.71

Exact matches 2.42 61.22 57.32 50.37 40.49

3-mer frequency 1.49 36.71 29.15 21.59 8.17

4-ramer frequency 1.40 37.20 32.80 24.80 9.76

5-mer frequency 1.39 42.32 36.46 28.78 12.32

5-mer frequency 1.29 45.61 40.12 31.34 12.93

7-mer frequency 1.28 46.10 41.10 32.93 14.51

8-mer frequency 1.33 46.71 42.56 34.63 17.07

Codon similarity 17.00 42.07 19.76 15.24 10.37

memory, using approximately 9 Gb (the input matrix is
itself 3.24 Gb). Preprocessing and lookup of the 820 phage
sequences takes 12 s. So the substantial bottleneck is the
tandem of obtaining the sequences from GenBank, cre-
ating from each an FCGR image array and running a
DCT thereon.
A variant of this experiment was run in order to assess a

speed/memory improvement. Every fourth sequence was
extracted from the DCTs of the bacterial genomes in the
training set and run them through the SVD step. We use
the right multiplier matrix to convert the remaining 3/4 of
the training set to the correct dimension, and then merge
that with the initial 1/4 to create a kd tree from the full
training set. This makes the SVDmore efficient by a factor
of four. The quality of the lookup for the taxonomy level
we tested, genera, dropped from 56.0% to 54.6%.

Conclusions
We have shown a method of translating DNA sequences
into vectors of modest size, in a way that allows for
distance-based comparisons. Sequences are first trans-
formed to images using the Frequency Chaos Game Rep-
resentation. The Discrete Cosine Transform is used to
reduce dimensions, with the low frequency components
retained. These smaller matrices are flattened into vec-
tors, and the Singular Values Decomposition is used to
further reduce dimension. These vectors can now be used
for hierarchical clustering to produce a phylogenetic tree,
or they can be used in a kd tree for efficient nearest
neighbor lookup. The steps are all straightforward and
computationally well behaved; the most strenuous step, in
terms of memory consumption, is in computing the SVD.
Several experiments indicate that this approach scales well
and moreover imposes no requirement that nucleotide
sequences all have a common length.
We used this approach in several nontrivial classifica-

tion tests. Results at the species and genus level compare
quite favorably with prior literature. Also of importance is
that the methodology is relatively cheap from a computa-
tional perspective. Since they are fairly short, the vectors
produced by this dimension reduction could serve as
genetic “fingerprints”, suitable for (at a minimum) coarse-
grained genetic lookup tasks. For example, one might use
them to assess taxonomic order, family, or perhaps even
genus, and then resort to slower but more powerful com-
parisonmethods to drill deeper. Another advantage is that
these can use short sequence reads strung together and
still obtain reasonable results, as was seen in one variation
from the experiments using a microbial genome data set.
We performed substantial experiments to determine

good hyperparameter values (e.g. pixelation level, Fourier
frequency cut-off, singular values, and cut-off ). But this
could benefit from further study and indeed the opti-
mal values may very with the type of classification. One
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important point, however, is that all tests indicate these
need not be terribly large. For example, results do not
seem to improve much with pixelation levels larger than
7, retention of more than 30 Fourier frequencies, or more
than the 40 largest singular values. This is important
insofar as it places approximate upper bounds on both
algorithmic complexity and memory requirements.
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