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Abstract

Background: In biomedical text mining, named entity recognition (NER) is an important task used to extract
information from biomedical articles. Previously proposed methods for NER are dictionary- or rule-based methods
and machine learning approaches. However, these traditional approaches are heavily reliant on large-scale
dictionaries, target-specific rules, or well-constructed corpora. These methods to NER have been superseded by the
deep learning-based approach that is independent of hand-crafted features. However, although such methods of NER
employ additional conditional random fields (CRF) to capture important correlations between neighboring labels,
they often do not incorporate all the contextual information from text into the deep learning layers.

Results: We propose herein an NER system for biomedical entities by incorporating n-grams with bi-directional long
short-term memory (BiLSTM) and CRF; this system is referred to as a contextual long short-term memory networks
with CRF (CLSTM). We assess the CLSTM model on three corpora: the disease corpus of the National Center for
Biotechnology Information (NCBI), the BioCreative II Gene Mention corpus (GM), and the BioCreative V Chemical
Disease Relation corpus (CDR). Our framework was compared with several deep learning approaches, such as BiLSTM,
BiLSTM with CRF, GRAM-CNN, and BERT. On the NCBI corpus, our model recorded an F-score of 85.68% for the NER of
diseases, showing an improvement of 1.50% over previous methods. Moreover, although BERT used transfer learning
by incorporating more than 2.5 billion words, our system showed similar performance with BERT with an F-scores of
81.44% for gene NER on the GM corpus and a outperformed F-score of 86.44% for the NER of chemicals and diseases
on the CDR corpus. We conclude that our method significantly improves performance on biomedical NER tasks.

Conclusion: The proposed approach is robust in recognizing biological entities in text.

Keywords: Text mining, Named entity recognition, Neural networks, Long short-term memory, Contextual
information

Background
With the increasing number of biomedical articles and
resources, searching for and extracting valuable informa-
tion has become challenging [1]. Researchers consider
multiple information sources and transform unstructured
text data into refined knowledge to facilitate research pro-
ductivity [2, 3]. However, manual annotation and feature
generation by biomedical experts are inefficient because
they involve a complex process and require expensive and
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time-consuming labor [4]. Therefore, efficient and accu-
rate natural language processing (NLP) techniques are
becoming increasingly important for use in computational
data analysis, and advanced text mining techniques are
necessary to automatically analyze the biomedical litera-
ture and extract useful information from texts [5–8].
For extracting valuable information, such as relation-

ships among objects, the identification of significant terms
from texts is important. Meaningful terms or phrases in a
domain, which can be distinguished from similar objects,
are called named entities, and named entity recognition
(NER) is one of the important tasks for automatically
identifying these named entities in text and classifying
them into pre-defined entity types [9, 10]. NER should
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be performed prior to tasks, such as relation extraction,
because annotated mentions play an important role in
research on text mining. In the biological domain, a fun-
damental task of biomedical NLP is the recognition of
named entities, such as genes, diseases, chemicals, and
drug names, from texts. However, biomedical NER is a
particularly complex task because biological entities (i)
continually increase with new discoveries, (ii) have large
numbers of synonyms, (iii) are often referred to using
abbreviations, (iv) are described by long phrases, and (v)
are mixtures of letters, symbols, and punctuation [11, 12].
Several approaches have been proposed to solve these
problems [1].
Most early methods for biomedical NER relied on

dictionary- or rule-based approaches. NER systems using
a dictionary-based method extract named entities in pre-
defined dictionaries that consist of large collections of
names for each entity type. Another NER system, using
the rule-based approach, recognizes named entities by
means of several rules that are manually defined based on
their textual patterns [7, 9, 13]. The majority of these tra-
ditional approaches have shown significant improvements
in terms of coverage and robustness, but rely heavily on a
set of words in well-defined dictionaries and hand-crafted
rules. Moreover, although relatively well-constructed dic-
tionaries are available for common biological entities,
such as disease and gene names, dictionaries for many
other biological entities are not comprehensive or ade-
quate [11]. In the case of rule-based methods, pre-defined
patterns also depend on the specific textual properties of
an entity class. In other words, entity-specific dictionar-
ies and patterns require time-consuming processes and
expert knowledge [7, 8].
To address the shortcomings of past approaches, tra-

ditional NER methods have been replaced by supervised
machine learning methods, including hidden Markov
models, maximum entropy Markov models, conditional
random fields (CRFs), and the support vector machine
[14–17]. Furthermore, machine learning methods are
often combined with various others to yield hybrid
approaches that are more accurate [18, 19]. Although
most machine learning approaches have led to signifi-
cant improvements in NER, and despite several general-
purpose NER tools based on machine learning methods
being available, they are still limited in terms of reliance
on hand-crafted features and human labor for feature
engineering [20–22].

Deep learning approaches using a large number of
unstructured data items have lately drawn research inter-
est and have been applied to NLP problems with consid-
erable success. For NER tasks in the biomedical domain, a
domain-independent method based on deep learning and
statistical word embeddings, such as the bi-directional
long short-term memory network (BiLSTM) with CRF
and GRAM-CNN, has been shown to outperform state-
of-the-art entity-specific NER tools such as a disease-
specific NER tool DNorm and a chemical-specific NER
tool ChemSpot [12, 18, 23–26]. Recently, Devlin et al. pro-
posed a new architecture named BERT [27] for NLP. BERT
(Bi-directional Encoder Representations from Transform-
ers) is a deep bi-directional pre-trained self-attention
model by the Transformer [28] and uses more than 2.5
billion words for pre-training the model and obtains new
state-of-the-art results on various NLP tasks, including
NER.
For machine learning, contextual information has

already been demonstrated to lead to significant improve-
ments [29]. Context representations usually define a col-
lection of neighboring word embeddings in a window
around the target word or an average of these window-
based embeddings [30]. We propose herein an NER sys-
tem designed tomore explicitly deal with contextual infor-
mation in text. The architecture of our system focuses on
capturing important local contexts based on n-gram char-
acters and word embeddings via BiLSTM and CRF. The
performance of our model, Contextual LSTM with CRF
(CLSTM), is evaluated using three biomedical corpora
and various assessment methods.

Results
Data sources
Corpora
We used three kinds of corpora to train and test the NER
models, where each containedmanual annotations for one
or more entity types. The corpora were the National Cen-
ter for Biotechnology Information (NCBI) disease corpus
for disease names [31], the BioCreative II Gene Mention
(GM) corpus for gene names [32], and the BioCreative
V Chemicals Disease Relationship (CDR) corpus for both
disease and chemical names [33]. The corpora consist of
a training set, a development set, and a test set, which
were respectively used to construct the models, determine
the optimal parameters for models, and evaluate the mod-
els. Table 1 lists the sizes of the corpora. We represented

Table 1 Statistics of the NCBI, GM, and CDR corpora

Corpus Entity Unit Training Develop Test Total (Unit)

NCBI Disease Abstracts 592 100 100 792 (abstracts)

GM Gene Sentences 15000 - 5000 20000 (sentences)

CDR Disease, Chemicals Abstracts 500 500 500 1500 (abstracts)
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a sequence of labels in the IOB format (inside, outside,
beginning), indicating that each token was at the begin-
ning of an entity as a B-label, inside an entity as I-label,
or outside it as an O-label. In this case, the labels simul-
taneously incorporated the type of named entity, such as
disease or chemical, with the position of the token within
the entity.

NCBI We used the NCBI corpus for the disease NER
task. The NCBI disease corpus is the gold standard of dis-
ease name recognition. It is amanually annotated resource
for biomedical text created and curated by a team of
14 annotators. It consists of 793 PubMed abstracts and
6892 disease mentions, with 790 unique disease concepts
mapped to MeSH and OMIM identifiers.

GM We used the GM corpus for the gene NER task. The
second BioCreative challenge was held in 2006 and con-
sisted of three tasks: gene mention, gene normalization,
and protein–protein interaction. The entire corpus con-
sisted of 20,000 sentences and a set of gene mentions and
their alternative annotations judged by human annotators.
This corpus did not contain a development set; hence, we
randomly divided the training set into two parts to create
the development corpus.

CDR We used the CDR corpus for the disease and chem-
ical NER task. The BioCreative V challenge was organized
for CDR tasks based on disease named entity recognition
(DNER) and chemically induced disease (CID) relation
extraction tasks. It is composed of 1500 articles with 4409
annotated chemical names, 5818 disease names, and 3116
CID relations. This corpus has become a valuable resource
for research on text mining.

Parameters
Pretrained word embeddings are beneficial over random
initializations in several NER tasks. Pyysalo et al. [34]
trained the embedding model using approximately 23
million PubMed abstracts and nearly 700,000 PubMed
Central full-text articles. We initialized our word repre-
sentation using those trained by Pyysalo et al. We used
200 embedding dimensions with the skip-gram model
at a window size of five [35]. These embeddings were
fine-tuned during training. In experiments for BiLSTM,
BiLSTM-CRF, and CLSTM, we used default values from
Lample et al [24], except for three hyperparameters: (i)
the tag scheme, which we set to the IOB scheme instead
of IOBES; (ii) the number of dimensions of token embed-
dings and the size of the token LSTM hidden layer, which
we set to 200 instead of 100; and (iii) pretrained embed-
dings, which we set to our embeddings instead of being
none. For GRAM-CNN and BERT, we trained each model
with its own default parameters.

Evaluation
For comparative evaluation, we used BiLSTM without
the CRF layer, BiLSTM-CRF [24], GRAM-CNN [12],
and BERT [27]. For the comparison, we trained our
CLSTMmodels on each corpus with one of three training
options, called word-level model, character-level model,
and word+char model. In the word- and character-level
CLSTM models, window sizes at the word level or
at the character level are needed, respectively. For the
word+char CLSTMmodel, window sizes both at the char-
acter and word levels are required. To obtain the proper
window size of each model, we used development sets.
Odd numbers of window sizes, such as 3, 5, and 7, were
used as candidate sizes to have equal context informa-
tion for the left and right sides of the target word. Using
the development sets, for the word-level CLSTM model,
we decided on a window size of 5 for all three corpora.
Similarly, for character-level CLSTM models, we decided
on window sizes as 3, 5, and 7 for NCBI, GM, and CDR
corpora, respectively. The word+char CLSTM model for
NCBI used a window size of 5 for both the word and char-
acter levels, and the optional values for GM and CDRwere
set to 3 for both the word and character levels.
Using the test sets, we compared all methods in terms of

precision, recall, and F-score. We performed strict match-
ing at the IOB token level and strict and partial matching
at the level of mention to compute these values. We
counted the true positives (TP), false positives (FP), and
false negatives (FN). The evaluation was based on mea-
sures of precision (p), recall (r), their harmonic average,
and the F-score (f ), as follows:

p = TP
TP + FP

, r = TP
TP + FN

, f = 2 ∗ p ∗ r
p + r

(1)

Table 2 shows the prediction performances over all
corpora in terms of precision, recall, and F-score using
three evaluationmethods (i.e. the strict matching, the par-
tial matching, and the IOB tag matching). The first four
rows in each table show the performance of other meth-
ods, while the last three rows show the results of the
CLSTM models. F-scores of CLSTM that outperformed
the comparative methods are marked in bold.

Strict matching When start and end boundaries and the
type of a predicted mention and those of a gold standard
mention are identical, it is considered correct prediction.
This evaluation criterion evaluates tag units as one result
that recognizes mentions from the B-tag to its end. On the
NCBI corpus, our model with word+char levels attained
an F-score of 85.68%, which is a 1.5% improvement over
the previous methods. Among the previous methods,
GRAM-CNN achieved the best F-score of 84.18%. More-
over, word-level CLSTM and character-level CLSTM also
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Table 2 Comparison of performance for comparative methods on the NCBI, GM, and CDR corpora using strict and partial matching
and IOB tag matching

Model p r f p r f p r f

Strict matching NCBI GM CDR

BiLSTM 78.91 82.60 80.71 72.22 72.44 72.33 83.56 80.26 81.88

BiLSTM-CRF 82.19 84.58 83.37 80.79 79.81 80.30 87.52 83.58 85.50

GRAM-CNN 84.45 83.92 84.18 80.23 78.83 79.53 86.08 85.49 85.79

BERT 81.07 80.73 80.90 81.72 81.59 81.65 86.21 85.23 85.72

CLSTM word level 85.94 84.69 85.31 81.00 80.77 80.89 87.23 85.51 86.36

character level 85.40 84.06 84.72 81.09 80.38 80.73 87.19 84.69 85.92

word+char levels 84.73 86.67 85.68 81.75 81.14 81.44 87.25 85.66 86.44

Partial matching NCBI GM CDR

BiLSTM 86.67 90.73 88.65 87.98 88.25 88.11 91.14 87.54 89.30

BiLSTM-CRF 91.19 93.85 92.51 93.18 92.04 92.61 94.27 90.00 92.08

GRAM-CNN 94.36 93.78 94.07 93.09 91.47 92.27 92.47 91.83 92.15

BERT 88.39 88.02 88.20 92.65 92.51 92.58 91.82 90.77 91.29

CLSTM word level 93.66 92.29 92.97 92.81 92.54 92.67 93.60 91.74 92.66

character level 93.76 92.29 93.02 93.05 92.25 92.65 93.42 91.59 92.49

word+char levels 93.71 93.13 93.42 93.35 92.65 93.00 93.48 91.77 92.62

IOB tagmatching NCBI GM CDR

BiLSTM 84.56 88.03 86.26 84.23 81.48 82.83 89.81 78.68 83.87

BiLSTM-CRF 84.13 88.32 86.18 88.34 84.47 86.36 90.54 81.34 85.69

GRAM-CNN 88.73 86.59 87.65 87.75 84.09 85.89 89.72 83.03 86.24

BERT 88.42 83.15 85.70 89.50 86.26 87.85 88.69 85.01 86.81

CLSTM word level 89.18 89.01 89.10 88.99 84.89 86.89 89.99 83.19 86.45

character level 88.21 88.47 88.34 87.72 85.21 86.45 89.95 83.19 86.43

word+char levels 89.98 87.74 88.84 87.13 86.88 87.00 90.56 83.41 86.83

obtained results (85.31% and 84.72%, respectively) bet-
ter than those of the comparative approaches. On the
GM corpus for the gene NER, our CLSTM yielded an F-
score of 81.44%. Although BERT improved the F-score by
0.21% compared with CLSTM (81.65% vs. 81.44%, respec-
tively), this difference was slight considering that BERT
incorporates other huge datasets as well as the GM cor-
pus. On the CDR corpus, the word+char levels CLSTM
model had an F-score of 86.44% for chemicals and disease
NER. As for the CDR corpus, when we assessed the results
using the strict matching, all results of the CLSTM with
word and character and word+char levels outperformed
those of the previous method (86.36%, 85.92% and 86.44%,
respectively).

Partial matching When start and end boundaries of a
predicted mention and those of a gold standard men-
tion are overlapping, and types of the prediction and the
gold standard are the same, and it is considered cor-
rect prediction. When this evaluation criterion was used,

all models yielded F-scores higher than those obtained
using other evaluation criteria (i.e., strict and IOB tag
matchings). Although our model recorded a slightly infe-
rior performance to GRAM-CNN on the NCBI corpus,
our NER model achieved the best F-scores for GM and
CDR corpora. Among previous methods, BiLSTM-CRF
and GRAM-CNN achieved the best F-score on the GM
and CDR corpora, respectively.

IOB tag matching We further assessed the performance
of our method on the three corpora at the level of tokens.
For each IOB tag, the agreement between prediction and
the gold standard tag is assessed. This procedure involves
comparing the results of the gold standard tags with
those of the predicted tags at the token level. This eval-
uation depends on the lengths of the mentions. On the
NCBI corpus, our model with word-level layers attained
an F-score of 89.10%, which shows a 1.45% improvement
over the previous methods. Among the previous methods,
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GRAM-CNN achieved the best F-score (87.65%). More-
over, all results of the CLSTM (88.34% and 88.84% for the
character-level CLSTM and word+char levels CLSTM,
respectively) outperformed other approaches. Similar to
the strict matching, the BERT model on the GM cor-
pus improved the F-score compared with the proposed
model. On the CDR corpus, the word+char levels CLSTM
model represents a maximum F-score of 86.83%, which
improves the F-score by 0.02% compared with the previ-
ous method (86.83% vs. 86.81%). From Table 2, all results
of the CLSTM on the GM and CDR corpus outperformed
those of the previous methods, except for BERT.

Model robustness
Character vectors were randomly initialized for every
character, and word vectors that do not have an embed-
ding in the lookup table were mapped to a UNK embed-
ding before being entered into the model [24]. There-
fore, the performance of our models might depend on
the random initialization of weights. Thus, we indepen-
dently trained the CLSTM model five times and analyzed
the results by applying strict matching to estimate the
robustness of our models with respect to initialization.
Table 3 shows the performance comparison between

our CLSTMmodel for all five trials and the other methods
on the NCBI, GM, and CDR corpora. For each method
and corpus, we used optimal hyperparameters obtained
from development sets. In the NCBI corpus, although the
best score of the other methods yielded an F-score of
84.18%, our model achieved the best F-score of 85.68%
and the worst F-score of 85.02%. Thus, the worst per-
formance of the CLSTM model was better than that of
GRAM-CNN with a difference of 0.84%. Despite record-
ing a slightly inferior performance compared with BERT
on the GM corpora, our NER model was better than all
other comparativemodels. In the CDR corpus, ourmodels

also outperformed all other methods, which were similar
with the performance on the NCBI corpus. Therefore, the
results confirm the superiority of our model, regardless of
the randomness of initialization.

Discussion
Error analysis
We analyzed error cases on the test corpora and classified
them into several cases as follows:

• The entity boundary is not clear due to adjective
phrases: For example, our model annotated “female
breast cancer” and “idiopathic hemolytic uremic
syndrome” as disease entities. However, disease
mentions in the NCBI test set were “breast cancer”
and “hemolytic uremic syndrome”, respectively. On
the other hand, although disease mentions in the
NCBI test set were “non-inherited breast
carcinomas”, “sporadic T-cell leukaemia”, and
“dominantly inherited neurodegeneration”, our
model predicted “breast carcinomas”, “T-cell
leukaemia”, and “neurodegeneration”, respectively.

• Elliptical coordinated compound noun phrases are
used: This case is a kind of coordinate structures,
where two or more words of the same type are
combined into a larger phrase with the same
semantic relation [36, 37]. For example, names such
as “pineal tumours and retinal tumours” and
“colorectal adenomas and/or colorectal carcinoma”
are often described in biomedical abstracts as “pineal
and retinal tumours” and “colorectal adenomas
and/or carcinoma” to avoid word repetition.
Moreover, they were annotated as a single entity in
the NCBI test set. For these cases, our model
predicted their entity boundaries as “tumours” in the
first example, and “colorectal adenomas” and
“carcinoma”, respectively, in the second example.

Table 3 Comparison between a series of CLSTM (contextual long short-term memory networks [LSTMs] with conditional random
fields [CRF]) experiments and the comparative methods on the NCBI, GM, and CDR corpora using strict matching

Strict matching NCBI GM CDR

Model Trial # p r f p r f p r f

BiLSTM - 78.91 82.60 80.71 72.22 72.44 72.33 83.56 80.26 81.88

BiLSTM-CRF - 82.19 84.58 83.37 80.79 79.81 80.30 87.52 83.58 85.50

GRAM-CNN - 84.45 83.92 84.18 80.23 78.83 79.53 86.08 85.49 85.79

BERT - 81.07 80.73 80.90 81.72 81.59 81.65 86.21 85.23 85.72

CLSTM (word+char levels) 1 84.73 86.67 85.68 81.75 81.14 81.44 87.25 85.66 86.44

2 84.43 85.83 85.12 81.26 80.67 80.96 87.16 85.40 86.27

3 86.18 84.48 85.32 82.07 80.24 81.14 87.93 84.56 86.21

4 85.56 85.21 85.39 82.97 79.66 81.28 87.71 85.17 86.42

5 84.62 85.42 85.02 81.02 80.70 80.86 88.27 84.36 86.27

CLSTM average 85.10 85.52 85.31 81.81 80.48 81.14 87.66 85.03 86.33
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• Entity contains brackets: This case often happens
when an entity name and its acronym appear
together with brackets. For example, “62-kDa protein
(p62)”, which contains a gene name, its acronym
“p62” and brackets, was annotated as a single gene
mention in the GM test set. However, CLSTM
separately predicted gene mentions as “62-kDa
protein” and “p62” without brackets.

• Different entity types are predicted: When an entity
type is nested in another entity type, the different
entity type was predicted. This is more likely to
happen when multiple entity types are predicted at
the same time. For example, “serotonin syndrome” in
the CDR test set was annotated as a disease mention.
However, our model predicted “serotonin” as a
chemical entity. Another example is that although
“hepatitis B surface antigen” was annotated as a
chemical type, our model predicted “hepatitis B” as a
disease type.

• The corpus annotation inconsistency: The same
disease was annotated differently in the same corpus.
For example, “type I autosomal dominant cerebellar
ataxia” was annotated as a disease mention in the
NCBI corpus (PubMed ID: 7573040). However, in
“Eye movement abnormalities correlate with
genotype in autosomal dominant cerebellar ataxia
type I (PubMed ID: 9506545),” only “cerebellar ataxia
type I” was annotated as a disease mention, and did
not include “autosomal dominant.” In the latter case
(PubMed ID: 9506545), our model predicted
“autosomal dominant cerebellar ataxia type I.”

The above analysis shows that some NER errors
occurred due to various forms of entity mentions,
and usually occurred in entity boundaries. For exam-
ple, when we mannally examined false positives on
the NCBI corpus, we found that 35.3% and 9.3%
of NER errors were due to entity boundaries and
elliptical coordination errors, respectively. Thus, it is
important to develop the NER model to resolve these
ambiguities.

Cross-corpus evaluation
Weperformed cross-corpus evaluation between the NCBI
and the CDR corpora. We tested the disease entities in
the CDR corpus using the model trained on the NCBI
disease corpus, and also tested mentions in the NCBI
disease corpus using the model trained on the CDR
corpus.
Table 4 shows that our CLSTM model had a higher F-

score than those of other models except BERT. Although
the precision of the CLSTM model was higher than that
of BERT, BERT had higher recall values and F-scores.
The high recall values may be because BERT has already

been pre-trained with huge volumes of data from general
datasets. Thus, although the guidelines for constructing
two corpora of disease mentions (NCBI and CDR cor-
pora) are different in terms of determining disease men-
tions, BERT can have a high recall value. For constructing
each corpus, the authors of NCBI used the 2012 ver-
sion of MEDIC, which integrated both OMIM and MeSH
disease terms. On the other hand, the authors of CDR
used the 2015 version of MeSH terms and annotated dis-
ease mentions with a ‘-1’ identifier (ID), even if the ID
mapping for disease mentions is not possible. For exam-
ple, although “pain” and “necrosis” in the CDR corpus
were treated as disease mentions with “D010146” and
“D009336”, respectively, these words were not annotated
in the NCBI corpus. To examine the difference between
two corpora, we counted disease mentions annotated in
the NCBI test data, but not annotated as disease men-
tions in the CDR training data despite appearing in the
sentences of the CDR corpus, and vice versa. We found
19 such mentions out of 960 mentions in the NCBI
corpus, and 83 out of 10,875 mentions in the CDR cor-
pus. Although our model correctly predicted 4 and 7
mentions in each corpus, BERT correctly predicted 11
and 41 mentions for NCBI and CDR corpus, respec-
tively. It implies that the CLSTM model is more likely
to reflect characteristics of the training data than BERT.
Thus, even though our model may have lower recall val-
ues than BERT, it demonstrated higher precision. Note
that as each corpus had different optimal window sizes
from development sets, we tried several window sizes
in Table 4.

Computational time
We measured computational time for CLSTM and for
the comparative models. We ran all models in a hexa-
core workstation using an i7-5930K CPU and a Titan
Xp GPU with 12G memory and set a default train-
ing epoch of 100 on each dataset. Table 5 shows the
training time of each model on three datasets. Over-
all, the execution time was determined in proportion to
the size of the data. The fastest method was BERT, fol-
lowed by BiLSTM, and GRAM-CNN had the longest
training time. We observed that the character-level
CLSTM model had relatively faster training time than
other CLSTM models because the character embed-
ding dimension of CLSTM was smaller than the word
and word+char embedding dimensions of CLSTM. How-
ever, the CLSTM model required 20% longer training
times than the BiLSTM-based models. The reason for
the superior speed of BERT compared with the other
methods is that BERT is a fine-tuning system and does
not require the training of a deep neural network from
scratch. However, the original pre-training of BERT took
4 days [27].
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Table 4 Comparison of the performance of cross-corpus evaluation for comparative methods using strict matching

Strict matching train CDR → test NCBIa train NCBI → test CDRb

Model p r f p r f

BiLSTM 57.32 37.92 45.64 55.19 30.79 39.52

BiLSTM-CRF 68.34 36.88 47.90 58.30 38.74 46.55

GRAM-CNN 59.74 42.81 49.88 58.48 33.21 42.36

BERT 68.92 53.13 60.00 54.17 61.44 57.57

CLSTM word level 62.42 48.96 54.87 60.92 38.09 46.87

character level (3)c 68.12 44.06 53.51 62.74 32.66 42.96

character level (7)c 65.08 45.63 53.64 60.69 21.75 32.02

word+char levels (3, 3)d 66.77 43.75 52.86 54.00 44.08 48.54

word+char levels (5, 5)d 69.36 42.92 53.02 57.63 39.51 46.88

aTest the disease entities in the NCBI corpus using the model trained on the CDR corpus
bTest the disease entities in the CDR corpus using the model trained on the NCBI corpus
cThe number in parentheses represents the window size at the character level.
dThe numbers in parentheses represent the window sizes at the word and character level, respectively

Conclusions
In this study, we investigated neural architectures with
contextual information for biomedical named entity
recognition based on various corpora and word embed-
dings. The experimental results show that our system
outperforms several other NER approaches and exhibits
similar performance to the transfer learning approach.
The results of this study will help to make biomedical text
mining more accurate and more robust irrespective of the
entity type.

Methods
CLSTM
This section provides a brief description of the archi-
tecture of our CLSTM model. We provide details of the
model from scratch.

Table 5 Comparison of training time between CLSTM
(contextual long short-term memory networks [LSTMs] with
conditional random fields [CRF])and comparative methods for
the NCBI, GM, and CDR corpora

Training time (Hours) NCBI GM CDR

BiLSTM 4.08 10.77 4.39

BiLSTM-CRF 4.70 12.56 5.23

GRAM-CNN 11.27 34.08 12.64

BERT 1.01 10.04 3.72

CLSTM word level 5.54 14.57 5.98

character level 4.84 13.30 5.64

word+char levels 5.84 14.73 5.91

Average 5.41 14.20 5.84

LSTM
Recurrent neural networks (RNNs) are specially designed
to process sequential data. They represent connec-
tions between previously occurring hidden states and
a given hidden state, and thus reflect the network’s
historical information. While the RNN is a sim-
ple and powerful model in theory, it cannot cap-
ture long-term dependencies because of problems of
vanishing and exploding gradients, where the gradi-
ents may exponentially decline and grow over long
sequences [38–40].
Long short-term memory networks (LSTMs) [41] are

variants of the RNN applied to a memory cell to learn
long-term dependencies. An LSTM unit is composed of
three gates: an input gate, a forget gate, and an out-
put gate. These gates control the amount of information
for the network to remember and forget for the next
time step.
In sequence-labeling tasks like NER, determining the

contexts in sentences, where both past and future con-
texts are useful, is important. However, standard LSTMs
can use only previous contexts without future informa-
tion. Graves et al. [42] introduced a BiLSTM model,
the basic idea of which is to describe each sequence
in the forward and reverse directions to two separate
layers. Two hidden states,

−→
h and

←−
h , are then concate-

nated to represent the final output. For an input sentence
(x1, x2, . . . , xn) containing n words, an LSTM computes
a left representation

−→
ht of the given sentence at every

word t. Similarly, a representation of the right context
←−
ht

can be achieved from the same sequence in reverse. As
a result, BiLSTM yields the representation of a word by
concatenating the outputs of its left and right contexts,
ht =[

−→
ht ,

←−
ht ] [23, 40, 43].
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CRF
NER can be considered a sequence-labeling problem,
which means that words in a given sentence are tokens
to be assigned proper labels. For sequence-labeling
tasks, considering correlations represented by the best
joint probability between adjacent labels and the entire
sequence of labels is beneficial. Therefore, we jointly
decode label sequences using a CRF layer instead of inde-
pendently modeling tagging decisions [8, 20, 21, 44].
Formally, we use x = (x1, x2, . . . , xn) to represent an

input sequence, where xi is the input vector of the i-th
word, and y = (y1, y2, . . . , yn) represents a sequence of
predicted labels for input x. All components yi of y are
assumed to range over a set L(x), which is a possible label-
ing sequence for x. The global feature of CRF, F(y, x), is
the summation of CRF’s local feature vector f(y, x, i) for
input sequence x and label sequence y, where i ranges
over input positions. The probabilistic model for the CRF
defines a conditional probability p (y|x, λ) over all possible
sequences of labels y, given x and weight vector λ in the
following form:

p (y|x, λ) = 1
Z (x)

exp (λ · F (y, x)) , (2)

where Z (x) = ∑
y′∈L(x) exp

(
λ · F (

y′, x
))

is a normaliza-
tion factor.

N-gram
In linguistics, an n-gram is a sub-sequence of n contigu-
ous items extracted from a given text. Although the items
can be of various types, such as characters and words in
text as well as base pairs of DNA sequences and amino
acids of protein sequences, we consider herein only the
text data of natural language processing. Character-level
n-grams represent n-character slices of a word, while
word-level n-grams represent n-word slices of a sentence.
For example, word-level bi-grams (n = 2) in the phrase
“biomedical named entity recognition” are “biomedical
named,” “named entity,” and “entity recognition.” Similarly,
character-level tri-grams (n = 3) in the word “disease” are
“dis,” “ise,” “sea,” “eas,” and “ase.” N-grammodels are robust
at statistically modeling language and at natural text pro-
cessing without relying on language-specific resources
[45, 46].

CLSTM
To utilize contextual information in several NLP tasks,
neural network-based algorithms that incorporate a large
amount of unlabeled data [47–49] and neural network
models such as BiLSTM that capture contextual infor-
mation in an input text have been developed. In this
study, to utilize more contextual information contained
in sentences, we introduce the contextual long short-
term memory networks with the CRF (CLSTM) model,

which maximizes benefits of BiLSTM-CRF [24] and n-
gram models for contextual information. While BiLSTM
represents a certain target word or a character using an
input vector of itself, CLSTM represents it by concatenat-
ing input vectors of its neighbors and itself. Figure 1 shows
the architecture of the CLSTM model, which has the
following major components: (i) a character-embedding
layer, where each character in an input text is mapped
to a character embedding; (ii) a character-level CLSTM
layer, where character embedding vectors are input and
character embedding vectors are output with the output
character vector created by concatenating its left and right
character embeddings within a pre-defined window size;
(iii) a word-embedding layer in which each word in an
input text is mapped to a word vector composed of con-
catenation of pretrained word vectors and the character-
level representation; (iv) a word-level CLSTM layer that
uses word vectors as input and output and, in a similar
manner to the character level, the output is formed by
concatenating its left and right word embeddings within a
pre-defined window size; and (v) a label prediction layer
in which for each word in the input text, the final CRF
layer predicts proper entity labels based on the sequence
of probabilities.
For the word-level layers, we split a sentence into words

by white spaces and punctuation marks such as commas
and hyphens. An input sentence S consisting of split words
w is represented as S =[w1,w2, ...,wn]. By representing
wi:i+j = wi ⊕ wi+1 ⊕ ... ⊕ wi+j, where ⊕ is the concate-
nation symbol, {w1:d,w2:d+1, ...,wn−d+1:n} is then used as
the input of the word-level layer for the window size d.
However, it cannot be well defined for words near the
beginning and the end of the word. Therefore, we augment
these embeddings to deal with the border effect [50]. We
concatenate �d/2	 paddings to the beginning and the end
of the input of the CLSTM layer. For example, when the
window size c is 3, the length of the word with paddings
becomes n+ (�d/2	 ∗ 2) = n+ 2, and a new input is given
as Snew =[w0:2,w1:3,w2:4, ...,wn−2:n,wn−1:n+1], where w0
and wn+1 are paddings. This summarizes the contex-
tual information of words in the input text. Similarly, the
character-level representation of each word is computed
by the CLSTM layers using character embeddings.
The CLSTM memory cell at the time step t is imple-

mented as follows:

xt′ =xt−�d/2	⊕ ...⊕ xt−1⊕ xt ⊕ xt+1 ⊕ ...⊕ xt+�d/2	, (3)

it = σ
(
Wxixt′ + Whiht−1 + Wcict−1 + bi

)
, (4)

ct =(1 − it)
ct−1+it
tanh
(
Wxcxt′ + Whcht−1 + bc

)
,

(5)

ot = σ
(
Wxoxt′ + Whoht−1 + Wcoct−1 + bo

)
, (6)

ht = ot 
 tanh (ct) , (7)
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Fig. 1 Pipeline of the CLSTM (contextual long short-term memory networks [LSTMs] with conditional random fields [CRF])model

where xt′ is the concatenation of character embed-
dings and the concatenation of word embeddings for
the character-level CLSTM layer and word-level CLSTM
layer, respectively; d is the pre-defined window size; ht
is the hidden state at time t; W is the weight matrix; b
is the bias vector; σ is the sigmoid function; tanh is the
hyperbolic tangent function; and the 
 operation denotes
element-wise multiplication. We apply herein a variation
of the LSTM unit to use coupled input and forget gates
[24].
Finally, the output vectors of CLSTM layers are fed to

the CRF layer to jointly decode the best label sequence.
For the CRF layer, we use a state transition matrix to pre-
dict the tag at any given time. We denote by T a transition
matrix and Ti,j a transition score from the i-th tag to the j-
th tag. For a given sentence x = (x1, x2, . . . , xn), we denote
by P the score matrix of the outputs of the CLSTM hid-
den layers. The Pi,j represents the score of the j-th tag at
the result of the i-th word in the given sentence x. For
a sequence of predicted labels y = (y1, y2, . . . , yn), the
sum of scores from the LSTM networks along with the

transition scores gives the final score of the sentence x
and a sequence of predictions y. The final score can be
expressed as follows:

s (x, y) =
n∑

i=0
Tyi,yi+1 +

n∑

i=1
Pi,yi (8)

where y0 and yn+1 are the start and end tags of a sentence,
respectively [24].
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