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Abstract

Background: With the global spread of multidrug resistance in pathogenic microbes, infectious diseases emerge as
a key public health concern of the recent time. Identification of host genes associated with infectious diseases will
improve our understanding about the mechanisms behind their development and help to identify novel
therapeutic targets.

Results: We developed a machine learning techniques-based classification approach to identify infectious disease-
associated host genes by integrating sequence and protein interaction network features. Among different methods,
Deep Neural Networks (DNN) model with 16 selected features for pseudo-amino acid composition (PAAC) and
network properties achieved the highest accuracy of 86.33% with sensitivity of 85.61% and specificity of 86.57%.
The DNN classifier also attained an accuracy of 83.33% on a blind dataset and a sensitivity of 83.1% on an
independent dataset. Furthermore, to predict unknown infectious disease-associated host genes, we applied the
proposed DNN model to all reviewed proteins from the database. Seventy-six out of 100 highly-predicted infectious
disease-associated genes from our study were also found in experimentally-verified human-pathogen protein-
protein interactions (PPIs). Finally, we validated the highly-predicted infectious disease-associated genes by disease
and gene ontology enrichment analysis and found that many of them are shared by one or more of the other
diseases, such as cancer, metabolic and immune related diseases.

Conclusions: To the best of our knowledge, this is the first computational method to identify infectious disease-
associated host genes. The proposed method will help large-scale prediction of host genes associated with
infectious-diseases. However, our results indicated that for small datasets, advanced DNN-based method does not
offer significant advantage over the simpler supervised machine learning techniques, such as Support Vector
Machine (SVM) or Random Forest (RF) for the prediction of infectious disease-associated host genes. Significant
overlap of infectious disease with cancer and metabolic disease on disease and gene ontology enrichment analysis
suggests that these diseases perturb the functions of the same cellular signaling pathways and may be treated by
drugs that tend to reverse these perturbations. Moreover, identification of novel candidate genes associated with
infectious diseases would help us to explain disease pathogenesis further and develop novel therapeutics.
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Background
Infectious diseases are continue to be a major threat to
public health, regardless of the recent advances in sani-
tation, immunization, and antimicrobial therapy. Ac-
cording to a report from World Health Organization
(WHO), infectious diseases remain a concern to all
countries, resulting in a sizeable number of deaths and
imposing a significant burden on the economy [1]. Espe-
cially, in the low income and low-middle income coun-
tries, infectious diseases are the leading cause of
mortality for children. Infectious diseases are caused by
a wide variety of pathogenic microorganisms, including
viruses, bacteria, protozoa and fungi. The outcome of
the host-pathogen interactions is either the development
of the disease or clearing of the organism by the host
immune system. For disease development, pathogens in-
fluence critical biological processes in the host cells to
escape the immune system [2]. Identification of the
regulation of host genes by pathogens is critical for
better understanding of the mechanisms underlying the
development of infectious diseases.
Majority of the disease-related studies conducted so

far focused primarily on the single nucleotide polymor-
phisms (SNPs) [3–6]. Attempts have been made of late
to integrate the information on disease-associated genes
available at different public repositories [7, 8]. The re-
cent spurt of knowledge on genomics has boosted bio-
informatics research to computationally predict as well
as prioritize disease-associated genes. Although several
methods have been proposed for gene prioritization [9–
16], majority are related to Mendelian diseases and few
others to complex diseases like asthma, diabetes and
cancer. These methods have utilized various biological
information, such as gene co-expression, gene ontology
(GO) annotation, protein-protein interaction (PPI) net-
works, domain, motif and sequence information etc. In
addition, machine learning approaches using protein-
protein interaction network properties, sequence and
functional features were applied to identify cancer and
Alzheimer disease-associated genes [17, 18]. However,
no methods have been developed so far to predict the
host genes associated with infectious diseases.
We have used machine learning techniques (MLT)

and employed sequence and protein-protein interaction
network properties to predict infectious disease-
associated host genes. Deep Neural Networks (DNN)
methods were shown to perform well with a number of
diverse problems. Since, DNN is becoming a popular al-
gorithm in the field of modern computer science, we
primarily focused on DNN. However, the performance
of DNN model was also compared with other well-
known classifiers, such as Support Vector Machine
(SVM), Naïve Bayes (NB) and Random Forest (RF). We
validated the performance of our model on both blind

(not used in training or testing) and independent datasets.
In addition, to identify novel genes, we applied the model
to all reviewed proteins, which were not used as the blind
dataset or for the training or testing purposes. Finally,
highly predicted proteins were studied for host-pathogen
PPIs and validated by functional annotation, including dis-
ease and gene ontology enrichment analysis.

Results
Selection of features
We tested different combinations of primary sequence
features and topological (network) features to attain a high
level of accuracy, sensitivity and specificity. As shown in
Table 1 (Complete information available in Additional file
1: Table S16), network properties features (9) were able to
achieve an accuracy of 84.43%, with sensitivity and specifi-
city approaching 78.24% and 90.51%, respectively. Further-
more, we observed that normalized and filtered network
properties features (6 features) achieved the best accuracy
(84.76%), with sensitivity of 77.77% and specificity of
91.71%. Among the primary sequence features, AAC,
PAAC and combination of both were found to perform
marginally better than the other features.
To accomplish nearly equivalent sensitivity and speci-

ficity along with high accuracy, we also tested different
combinations of AAC, PAAC and network properties
features. As shown in Table 2 (Complete information
available in Additional file 1: Table S17), the combin-
ation of PAAC and network properties features (59)
achieved the best accuracy (86.94%) along with high sen-
sitivity (86%) and specificity (87.48%).
Subsequently, we applied ensemble features selection

(EFS) on the set of features, which achieved accuracies
greater than 86% (Shown in Table 2 as a bold row). We
found that selected features from EFS were also able to
achieve similar performance levels. Finally, we identified
10 selected features (Additional file 1: Table S18) for
normalized and filtered PAAC_Network properties and
16 selected features (Additional file 1: Table S19) for
PAAC_Network properties, which were able to obtain
accuracies of 86.44% and 86.33%, respectively (Table 3
and Complete information available in Additional file 1:
Table S20). Together the above results suggested that 10
and 16 features sets achieved the highest levels of accur-
acy with equivalent performance.

Performance comparison of different classifiers
The performance measures of different classifiers, such as
SVM, NB and RF for our dataset were compared with the
DNN classifiers. We calculated the performance based on
different parameters and reported only the best results for
each classifier. As shown in Table 3 and Fig. 1 (Complete
information available in Additional file 1: Table S20),
DNN and RF performed better than SVM and NB.
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Furthermore, we found that the performance of DNN was
more balanced and marginally better than RF.

Performance on imbalanced datasets
In order to closely resemble real-world situations, where size
of the negative dataset is much larger than the positive data-
set, we tested the performance of our model on imbalanced
datasets. We observed that the specificity gradually increased
with an increase in the size of the negative dataset (Table 4).
As a result, overall accuracy also increased. However, sensi-
tivity decreased when the size of the negative dataset

increased. In case of imbalanced datasets, accuracy is not a
perfect performance measure for classification. Instead,
MCC, F1-score and AUC are better performance measures
for the classification of such datasets [19]. As shown in
Table 4, performance was better when the positive and
negative datasets were of equal size (balanced) compared
with the imbalanced datasets.

Performance on blind dataset
We tested the performance of our model on blind data-
set (not used in the training or testing to build the

Table 1 Features wise performance measures on disease and non-disease associated proteins dataset using deep neural network classifier

Primary sequence features

Features set Vector
length

P(+):
N(−)

Sensitivity
(%)

Specificity
(%)

Accuracy
(%)

PPV
(%)

MCC F1 score
(%)

AUC

AAC 20 1: 1 86.32 53.31 70.09 66.04 0.43 74.34 0.755

PAAC 50 1: 1 86.32 53.31 70.09 66.04 0.43 74.34 0.755

CTD 343 1: 1 91.09 37.87 64.52 59.52 0.34 71.86 0.692

DC 400 1: 1 88.59 44.63 66.83 62.96 0.38 72.89 0.715

AAC_PAAC 70 1: 1 85.15 59.93 72.98 69.02 0.47 75.92 0.766

AAC_CTD 363 1: 1 87.45 47.18 67.74 62.83 0.39 72.81 0.709

AAC_DC 420 1: 1 83.55 52.72 68.73 64.66 0.39 72.69 0.708

PAAC_CTD 393 1: 1 88.52 45.23 67.02 62.46 0.39 72.78 0.720

PAAC_DC 450 1: 1 88.08 50.40 69.73 65.24 0.43 74.40 0.732

CTD_DC 743 1: 1 87.15 48.30 67.94 64.59 0.40 73.08 0.733

AAC_PAAC_CTD 413 1: 1 83.72 53.77 68.96 64.93 0.40 72.72 0.730

AAC_PAAC_DC 470 1: 1 86.32 52.49 69.86 65.64 0.43 74.09 0.729

AAC_CTD_DC 763 1: 1 90.22 45.17 67.88 62.69 0.40 73.72 0.729

PAAC_CTD_DC 793 1: 1 90.30 45.27 67.80 63.62 0.40 73.94 0.743

AAC_PAAC_CTD_DC 813 1: 1 87.50 49.44 68.50 64.00 0.41 73.50 0.739

Network Analyzer properties

Network properties 9 1: 1 78.24 90.51 84.43 89.22 0.69 83.24 0.858

Normalized And Filtered Network
properties

6 1: 1 77.77 91.71 84.76 90.45 0.70 83.44 0.856

The notable performances are indicated by bold

Table 2 Mixed features based performance on disease and non-disease associated proteins dataset

Mixed features

Features set Methods Vector
length

P(+):
N(−)

Sensitivity
(%)

Specificity
(%)

Accuracy
(%)

PPV
(%)

MCC F1 score
(%)

AUC

AAC_Network properties DNN 29 1: 1 82.23 88.30 85.41 88.10 0.71 84.91 0.900

PAAC_Network properties DNN 59 1: 1 86.00 87.48 86.94 87.93 0.74 86.76 0.909

AAC_PAAC_ Network properties DNN 79 1: 1 86.81 85.27 86.12 85.89 0.72 86.25 0.905

Normalized And Filtered AAC_Network
properties

DNN 26 1: 1 83.78 86.90 85.51 86.95 0.71 85.21 0.904

Normalized And Filtered PAAC_Network
properties

DNN 41 1: 1 85.54 86.46 86.08 86.52 0.72 85.96 0.902

Normalized And Filtered AAC_PAAC_
Network properties

DNN 60 1: 1 85.54 87.36 86.56 87.68 0.73 86.45 0.909

The notable performances are indicated by bold
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prediction model). As shown in Table 5, selected fea-
tures for normalized and filtered PAAC_Network prop-
erties (10 features) and selected features for PAAC_
Network properties (16 features) achieved accuracies of
84.65% and 83.33%, respectively with the blind dataset.

Performance on independent dataset
We applied two best DNN models to independent data-
set for the purpose of prediction. We found that DNN
models based on the selected features for normalized
and filtered PAAC_Network properties (10 features) and
selected features for PAAC_Network properties (16 fea-
tures) predicted 88 and 118 proteins, respectively as pos-
itives out of 142 independent infectious disease-
associated proteins. These models were the best and
attained the sensitivity of 61.97% and 83.10%, respect-
ively on independent datasets (Additional file 1: Table
S21). Therefore, we considered the DNN with 16 se-
lected features for PAAC_Network properties as the
proposed model for the prediction of infectious disease-
associated host genes.

Functional annotation
Finally, the set of all reviewed human proteins, not used for
the training or testing purposes or as a blind dataset were
predicted by our proposed model for their association with
infectious diseases. Top 100 highly predicted proteins posi-
tively related to infectious diseases were considered for func-
tional annotation (Additional file 1: Table S22). We found
that 76 out of 100 highly-predicted proteins were present in
the experimentally-verified host-pathogen PPIs databases,
namely PHISTO [20] (Additional file 4: Fig. S3). Disease
ontology enrichment analysis showed that 67, 59, 46 and 27
out of 100 proteins were classified as disease terms, viz., can-
cer, metabolic, immune and infection, respectively (Fig. 2
and Additional file 1: Table S23). It is noteworthy that 12
proteins out of 100 were common for cancer, metabolic, im-
mune and infection disease terms (Additional file 5: Figure.
S4). In addition, we observed that the highly-predicted infec-
tious disease-associated proteins were also found in cancer,
metabolic and immune disease terms. Gene ontology enrich-
ment analysis showed that the genes corresponding to the
above proteins were enriched in biological processes like,

Table 3 Selected features wise performance measures using different classifier

Features set Methods Vector
length

P(+):
N(−)

Sensitivity
(%)

Specificity
(%)

Accuracy
(%)

PPV
(%)

MCC F1
score
(%)

AUC

Selected Features For PAAC_Network properties DNN 16 1: 1 85.61 86.57 86.33 86.91 0.73 86.15 0.899

Selected Features For PAAC_Network properties SVM 16 1: 1 78.03 87.87 82.95 86.40 0.66 81.81 0.862

Selected Features For PAAC_Network properties RF 16 1: 1 83.93 88.03 85.98 87.52 0.72 85.69 0.916

Selected Features For PAAC_Network properties NB 16 1: 1 78.03 88.03 83.03 86.70 0.66 82.14 0.904

Selected Features For AAC_PAAC_Network
properties

DNN 24 1: 1 84.72 88.08 86.60 87.97 0.73 86.18 0.907

Selected Features For AAC_PAAC_Network
properties

SVM 24 1: 1 80.00 87.87 83.93 86.64 0.68 83.01 0.881

Selected Features For AAC_PAAC_Network
properties

RF 24 1: 1 82.62 87.70 85.16 87.05 0.70 84.78 0.918

Selected Features For AAC_PAAC_Network
properties

NB 24 1: 1 78.52 88.36 83.44 87.09 0.67 82.59 0.911

Selected Features For Normalized And Filtered
PAAC_Network properties

DNN 10 1: 1 84.62 87.63 86.44 88.06 0.73 86.00 0.894

Selected Features For Normalized And Filtered
PAAC_Network properties

SVM 10 1: 1 77.54 87.70 82.62 86.34 0.66 81.48 0.880

Selected Features For Normalized And Filtered
PAAC_Network properties

RF 10 1: 1 81.15 86.39 83.77 85.64 0.68 83.33 0.910

Selected Features For Normalized And Filtered
PAAC_Network properties

NB 10 1: 1 76.23 91.31 83.77 89.77 0.68 82.45 0.896

Selected Features For Normalized And Filtered
AAC_PAAC_Network properties

DNN 25 1: 1 87.03 85.07 86.45 86.77 0.73 86.66 0.908

Selected Features For Normalized And Filtered
AAC_PAAC_Network properties

SVM 25 1: 1 78.85 88.52 83.69 87.07 0.68 82.56 0.889

Selected Features For Normalized And Filtered
AAC_PAAC_Network properties

RF 25 1: 1 81.64 86.72 84.18 86.01 0.68 83.77 0.911

Selected Features For Normalized And Filtered
AAC_PAAC_Network properties

NB 25 1: 1 77.38 89.67 83.52 88.22 0.68 82.45 0.908

The notable performances are indicated by bold
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intracellular signal transduction (GO:0035556), protein phos-
phorylation (GO:0006468), signal transduction (GO:
0007165), transforming growth factor beta receptor signaling
pathway (GO:0007179) and viral processes (GO:0016032)
(Fig. 3 and Additional file 1: Table S24).

Discussion
Mechanisms behind the development of infectious diseases
remain elusive in many cases due to the ever-changing

mode of pathogen adaptation to the host systems. Identifi-
cation of infectious disease-associated host genes is critical
to explore the underlying mechanisms and combat infec-
tious diseases. Although experimental techniques are best
to address these problems, computational approaches
promise better economy, in terms of money, time and
labour. In addition, increasing availability of information in
the public domain has made computational identification
of disease-associated genes easier and more accurate.

Fig. 1 Performance measures of different classifiers based on 16 selected features from pseudo-amino acid composition (PAAC) and
network properties

Table 4 Performance on imbalanced datasets using deep neural network classifier

Features set Vector
length

P(+):
N(−)

Sensitivity
(%)

Specificity
(%)

Accuracy
(%)

PPV
(%)

MCC F1 score
(%)

AUC

Selected Features For PAAC _Network properties 16 1: 1 85.61 86.57 86.33 86.91 0.73 86.15 0.899

Selected Features For PAAC _Network properties 16 1: 2 77.89 92.56 87.81 84.64 0.72 80.72 0.900

Selected Features For PAAC _Network properties 16 1: 3 72.34 94.54 89.03 81.70 0.70 76.53 0.902

Selected Features For PAAC _Network properties 16 1: 4 68.89 95.46 90.20 79.20 0.68 73.52 0.897

Selected Features For PAAC _Network properties 16 1: 5 69.00 95.13 90.85 74.44 0.66 71.25 0.895

Selected Features For Normalized And Filtered PAAC_
Network properties

10 1: 1 84.62 87.63 86.44 88.06 0.73 86.00 0.894

Selected Features For Normalized And Filtered PAAC_
Network properties

10 1: 2 76.76 92.94 87.62 84.41 0.72 80.25 0.895

Selected Features For Normalized And FilteredPAAC_
Network properties

10 1: 3 74.35 93.52 88.91 80.40 0.70 76.88 0.895

Selected Features For Normalized And Filtered PAAC_
Network properties

10 1: 4 67.39 96.27 90.57 82.68 0.69 73.66 0.897

Selected Features For Normalized And Filtered PAAC_
Network properties

10 1: 5 67.52 96.01 91.31 77.95 0.67 71.97 0.895

The notable performances are indicated by bold
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Despite the existence of a large number of infectious
diseases with diverse clinical and biochemical features,
they have several commonalities, such as acute onset in
most cases, transmissibility between the hosts, immune
response patterns of the host and the response to anti-
microbial agents, which prompted their classification as
one broad entity. Similarly, different cancers were con-
sidered as a single entity and MLT was applied for the
prediction of host genes related to cancer despite con-
siderable variability [17]. Host response due to infection
is distinct from non-infectious diseases and initiated by
the engagement of microbe- or pathogen-associated mo-
lecular patterns (MAMPs or PAMPs) by the innate rec-
ognition receptors (for eg, Toll-like or NOD-like
receptors). In this study, we have introduced a MLT-
based computational approach to identify infectious
disease-associated host genes by integrating sequence
and PPI network properties features. It was earlier

reported that sequence features alone were not sufficient
for efficient identification of disease-related host genes.
Similarly, for infectious diseases, we have observed that
sequence features-based prediction models performed
poorer than the models based on PPI network properties
features for host gene prediction (Table 1). AAC and
PAAC performed marginally better than other sequence
composition features, while introduction of PPI network
properties features further improved the accuracy in our
study and the same was observe by other groups as well
(Table 1). We found that prediction models based on
the combination of sequence and network properties
features achieved higher performance levels than either
feature considered individually (Table 2). Based on the
latest advances in the processing power and storage cap-
acity of the computers, DNN classifier has gained popu-
larity as it performed well for diverse data. We found
that DNN classifier performed marginally better than

Table 5 Performance on blind dataset using best deep neural network classifier

Best Model Features set Vector
length

P(+):
N(−)

Sensitivity
(%)

Specificity
(%)

Accuracy
(%)

PPV
(%)

MCC F1 score
(%)

AUC

PAAC_Network
properties

59 1: 1 85.09 76.32 80.70 78.23 0.62 81.51 0.872

Selected Features For PAAC _Network properties 16 1: 1 89.47 77.19 83.33 79.69 0.67 84.30 0.904

Selected Features For Normalized And Filtered PAAC_
Network properties

10 1: 1 88.60 80.70 84.65 82.11 0.70 85.23 0.879

The notable performances are indicated by bold

Fig. 2 Histogram representation of different disease terms based on GAD
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RF, SVM and NB (Table 3). To further improve the per-
formance of DNN classifier, we employed TensorFlow
DNN, which is a widely-used deep learning package
nowadays for the classification of infectious disease-
associated and non-disease-associated host proteins. We
have executed the whole process using the TensorFlow
DNN as opposed to H2O DNN that we used earlier and
found that the TensorFlow DNN method achieved a
higher accuracy of ~ 96% along with the sensitivity and
specificity of ~ 96% each with the training set. However,
the model performance dropped significantly with the
test dataset, where it achieved an accuracy of 83% with
comparable sensitivity (81.2%) and specificity (85.1%).
We had also applied TensorFlow DNN to another small
dataset (less than 1000 positive) and found similar per-
formance measure. Since deep learning method is specif-
ically designed to deal with large datasets and large set
of features, it performs better than RF and SVM for
large datasets and large set of features. We concluded
that for small datasets and small number of features set,

deep learning method had marginal advantage over RF
and SVM. However, this small difference may be im-
portant for the development of prediction models. Since
the primary goal of our study was to design a prediction
model for infectious disease-associated host genes, we
searched for simple sequence and network features,
which would efficiently serve this purpose. Given that a
single feature selection method may have bias, we
employed ensemble feature selection techniques, which
achieved a performance level similar to that of the corre-
sponding all features (Tables 2 and 3). We observed that
positive and negative datasets of equal size (balanced)
performed better than the imbalanced datasets and
achieved nearly equal sensitivity and specificity, which is
ideal for any prediction model (Table 4).
To the best of our knowledge, no computational or

MLT-based method has been developed to-date to iden-
tify infectious disease-associated host genes. Therefore,
we compared our method with the existing MLT-based
methods, which were used for the prediction of host

Fig. 3 Scatter plot of significantly enriched GO biological process terms, visualized by REVIGO summarizes and visualizes long lists of gene
ontology terms [21]

Barman et al. BMC Bioinformatics          (2019) 20:736 Page 7 of 12



genes related to other diseases like cancer and Alzhei-
mer Disease. Liu et al. achieved the highest AUC of
0.834 with the use of MLT for cancer disease-associated
host gene prediction, while our method for infectious
diseases achieved an AUC of 0.899. MLT applied to an-
other study identified genes associated with Alzheimer
Disease, with the maximum accuracy of 79.9%, F1-score
of 15.6% and MCC of 0.201 (Jamal et al.). In contrast,
our method achieved an accuracy of 86.33%, F1-score of
86.15% and MCC of 0.733 for infectious diseases. This
underscores the validity of our proposed model for iden-
tifying disease-associated host genes. We found 724 in-
fectious disease-associated host genes from 60 infectious
diseases (IDs). If each of these diseases was considered a
different entity, we would find less than 4 host genes for
most diseases. It might be scientifically incorrect to de-
velop any classifier using such small set of genes and not
in agreement with the primary goal of this study, which
was to computationally predict infectious-disease associ-
ated host genes. It is well established that host-pathogen
PPIs play a major role for the pathogenesis of infectious
diseases. We found that majority (76) of our highly-
predicted proteins (100) were from the virus-human and
bacteria-human PPIs. This indicates that our proposed
model would perform well in the contexts of infectious
diseases. Top 100 proteins predicted by us were further
validated by disease and gene ontology enrichment ana-
lysis. The important biological processes, such as intra-
cellular signal transduction, protein phosphorylation,
signal transduction, cell proliferation, cell cycle arrest,
cell migration, leukocyte migration and wound healing,
which are critical events during the pathogenesis of in-
fectious diseases, were detected by gene ontology enrich-
ment analysis. Disease ontology enrichment analysis
showed that highly predicted genes were associated with
infection disease term as well as terms like cancer, meta-
bolic, immune etc. This suggests that many critical cellu-
lar signalling pathways are common targets of the
infectious and other diseases and thus, drugs used to
treat other ailments may be repurposed for the host-
targeting therapies of infectious diseases.

Conclusions
Identification of genes associated with infectious diseases
may help the scientific community to identify disease risks
and therapeutic targets. Majority of the computational ap-
proaches available to-date are meant for the prediction of
genes associated with cancer and Alzheimer disease. We
propose here a computational approach for the prediction
of infectious disease associated host genes. Our proposed
model is based on the integration of integrating sequence
and PPI network properties features. Overall, the model
achieved an accuracy of 86.33%, F1-score of 86.15% and
MCC of 0.733 and AUC of 0.899. The validity of our

model is underscored by the identification of the genes
known to be involved in important biological processes
during the pathogenesis of infectious disease as the top
predicted genes. Identification of novel candidates in the
pool of infectious disease-associated host genes will ex-
pand our knowledge on disease pathogenesis and might
help to design new therapies.

Methods
Collection of data
Disease-associated human genes were collected from
DisGeNET [8], a database comprehensively integrated
expert-curated and text-mining derived disease-
associated genes from various public repositories and lit-
eratures. This database considered public repositories
like GWAS Catalog [5], Comparative Toxicogenomics
Database (CTD) [22], UniProtKB [23], ClinVar [24],
Orphanet [25], Rat Genome Database (RGD) [26],
Mouse Genome Database (MGD) [27], Genetic Associ-
ation Database (GAD) [28], Literature Human Gene De-
rived Network (LHGDN) [29] and BeFree data [30, 31].
We have downloaded all curated gene-disease associ-

ation dataset from DisGeNET and extracted only the in-
fectious disease-associated genes (Additional file 1:
Table S1). We found 745 unique human genes associ-
ated with different infectious diseases. All these gene
names were mapped to Uniprot Id using mapping table
of DisGeNET. 724 out of 745 gene names were mapped
to Uniprot Id (Additional file 1: Table S2). Furthermore,
we have found these 724 human proteins from 60 types
of infectious diseases. If we considered these 60 infec-
tious diseases as separate entities, we would find less
than 4 human proteins for most of the diseases. There-
fore, we considered all the above host proteins as a sin-
gle group of infectious disease-associated proteins. Next,
we used 610 out of 724 infectious disease-associated
proteins as a positive dataset (Additional file 1: Table
S3) and the remaining 114 proteins as a blind positive
dataset (not used in the training or testing for building
the prediction model) (Additional file 1: Table S4).
We also extracted all the disease-associated (14,623)

and reviewed (20,244) human proteins from the DisGe-
NET and UniProtKB databases, respectively (Additional
file 1: Tables S5, S6). We considered 5621 reviewed hu-
man proteins not associated with any diseases as non-
disease associated proteins (Additional file 2: Figure. S1
and Additional file 1: Table S7), of which 3050 (5 times
bigger than positive dataset) randomly selected proteins
were treated as the negative dataset (Additional file 1:
Table S8). Furthermore, we randomly selected 114 (simi-
lar size of the blind positive dataset) out of the
remaining 2571 (5621–3050) non-disease associated
proteins and treated them as a blind negative dataset
(Additional file 1: Table S9).
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For the purpose of validation, we collected Befree text
mining genes from DisGeNET, which were associated
with infectious diseases. Subsequently, we filtered the
genes using DisGeNET confidence score greater than
0.002738764 (average DisGeNET confidence score of all
Befree text mining genes associated with infectious dis-
eases) and found 272 unique genes. We found that 128
out of 272 genes were present in our positive dataset
(Additional file 3: Figure. S2). Thus, we considered only
the remaining 144 (272–128) genes. Among them, 142
were mapped to Uniprot Id using the mapping table of
DisGeNET. Finally, we considered these 142 proteins as
the independent dataset (Additional file 1: Table S10).

10-fold cross-validation
We used 10-fold cross-validation techniques to elude
the performance biased of all prediction methods. The
entire dataset was distributed into 10 segments or folds
of equal or nearly equal sizes. Training and testing were
repeated 10 times with one set (fold) going out for test-
ing, while the remaining 9 sets (folds) were used for
training each time. The overall performance of the
model was measured by the average performance over
10 folds.

Features
Protein Sequence features, including amino acid com-
position (AAC), dipeptide composition (DC), pseudo-
amino acid composition (PAAC) and conjoint triad de-
scriptors (CTD) were used extensively in the field of
computational biology [32–37]. We used AAC, DC,
PAAC and CTD for the prediction of infectious disease
associated human proteins. Protein sequence features
were calculated using “protr” R package [38].
We retrieved expert-curated human protein-protein

interactions (PPIs) from the Human Protein Reference
Database (HPRD) (Release 9) to compute topological
features for human proteins [39]. HPRD comprises of
39,240 binary human PPIs between 9617 proteins (Add-
itional file 1: Tables S11, S12). Afterward, we mapped
the gene name to Uniprot Id using Id mapping tool of
Uniprot [23] and found 36,558 human PPIs involving
8991 proteins (Additional file 1: Tables S13, S14). The
topological properties, such as average shortest path
length, betweenness centrality, closeness centrality, clus-
tering coefficient, degree, eccentricity, neighborhood
connectivity, topological coefficient and radiality of the
PPI network of each protein were calculated using net-
work analyzer (a cytoscape plugin) (Additional file 1:
Table S15) [40]. These 9 important topological features
were previously used for the identification of Alzheimer
Disease associated genes [18].

Feature selection
We had normalized the features and computed Pearson
correlation coefficient (PCC) among the feature pairs
using “caret” R package (https://cran.r-project.org/web/
packages/caret/index.html). For the basic level of feature
selection or filtering, we eliminated the features with
high correlation (PCC value > 0.8) with all other features
to avoid multicollinearity. We named the normalized
and basic level feature selection as normalized and fil-
tered, respectively.
We used ensemble feature selection tool (EFS provided

by Neumann et al. [41]) for advanced level feature
selection.

Classification
Identification of disease-associated proteins can be
viewed as a binary classification problem with any pro-
tein either associated or not associated with the disease.
We have employed well-known classifiers like DNN,
SVM, NB and RF to distinguish infectious disease and
non-disease associated proteins.

Deep neural networks (DNN)
Unlike conventional neural networks, modern DNN is
more robust and useful for complex classification prob-
lems [42]. DNN task can be accomplished by the basic
framework of multi-layer neural networks. The simple
DNN architecture is shown in Fig. 4. DNN is a hierarch-
ical feature extraction model, usually comprising of mul-
tiple level of nonlinearity. This model allows multiple
processing layers to learn representation of data with
multiple level of abstraction. Because of its performance
with diverse problems, DNN is becoming a popular al-
gorithm in the field of computational biology. We have
used “h2o” deep learning R package (https://cran.r-pro-
ject.org/web/packages/h2o/index.html) to predict disease
and non-disease associated proteins. We tested hyper-
parameter tuning with grid search to optimize the per-
formance measures of the prediction model.

Support vector machines (SVM)
SVM is a supervised learning technique for solving bin-
ary classification problems [43]. It is a non-probabilistic
classification where both the training and testing data
are assigned to one group or the other. In addition to
linear data, SVM can also handle non-linear data using
the kernel trick. We used the “e1071” R package for
SVM classification (https://cran.r-project.org/web/pack-
ages/e1071/index.html). To find the best performance of
the SVM classifier, we tested different combinations of
cost and gamma parameters of radial basis function
(RBF).

Barman et al. BMC Bioinformatics          (2019) 20:736 Page 9 of 12

https://cran.r-project.org/web/packages/caret/index.html
https://cran.r-project.org/web/packages/caret/index.html
https://cran.r-project.org/web/packages/h2o/index.html
https://cran.r-project.org/web/packages/h2o/index.html
https://cran.r-project.org/web/packages/e1071/index.html
https://cran.r-project.org/web/packages/e1071/index.html


Naïve Bayes (NB)
NB is a popular probabilistic classification method based
on Bayes theorem [44]. The strong presumption is that
the features are independent of each other. We obtained
NB classifiers from the Waikato Environment for Know-
ledge Analysis (WEKA) machine learning toolbox [45].

Random Forest (RF)
RF is a learning method based on construction of multiple
decision trees [46]. During construction of the trees, ran-
domness was used to create a forest of uncorrelated trees
whose prediction ability is higher when working as a com-
mittee than the ability of the individual trees. We used
WEKA to perform RF classification. Different parameters
were tested to find the best performance.

Performance measures
The performance measures of classification problems
such as sensitivity, specificity, accuracy, positive predict-
ive value (PPV), Mathew’s correlation coefficient (MCC)
and F1 score were calculated using the similar equations
mentioned in our previous study [47]. Here, TP, FP, TN,
and FN are defined as below.

True positive (TP)
Infectious disease-associated proteins are correctly identi-
fied as infectious disease-associated proteins.

False positive (FP)
Non-disease associated proteins are incorrectly identified
as infectious disease-associated proteins.

True negative (TN)
Non-disease associated proteins are correctly identified
as non-disease associated proteins.

False negative (FN)
Infectious disease-associated proteins are incorrectly
identified as non-disease associated proteins.
The area under the receiver operating characteristic

curve (AUC) was also computed for all cases.

Functional annotation
The Database for Annotation, Visualization and In-
tegrated Discovery (DAVID) web server was used to
identify significant disease ontology and gene ontol-
ogy enriched terms for highly predicted proteins by
the proposed method [48, 49]. We considered only
Genetic Association Database (GAD) disease ontol-
ogy terms with P-value < 0.05 [28]. Similarly, we
considered only GO biological process terms with
P-value < 0.05 and false discovery rate (FDR) value
< 0.05.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12859-019-3317-0.

Additional file 1: Table S1. All the curated infectious diseases-
associated human genes from DisGeNET. Table S2. All the mapped gene
name to uniprot id using mapping table of DisGeNET. Table S3. Positive
dataset for 10-fold cross-validation. Table S4. Positive blind dataset (not
used in training or testing of 10-fold cross-validation techniques for de-
veloping the prediction model). Table S5. All the disease-associated hu-
man reviewed proteins in DisGeNET. Table S6. All the reviewed human
proteins collected from UniProtKB dated 12/01/2018. Table S7. All the
reviewed human proteins not associated with any diseases. Table S8.
Negative dataset for 10-fold cross-validation. Table S9. Negative blind
dataset (not used in training or testing of 10-fold cross-validation tech-
niques for developing the prediction model). Table S10. Independent
dataset (Befree text mining genes from DisGeNET associated with infec-
tious diseases). Table S11. All human protein-protein interactions (PPIs)
from Human Protein Reference Database (HPRD) (Release 9). Table S12.
All unique human in HPRD (Release 9). Table S13. All the mapped hu-
man protein-protein interactions (PPIs) in uniprot id format. Table S14.
All the mapped unique human proteins in uniprot. Table S15. 9 topo-
logical properties of protein-protein interaction networks using HPRD PPIs
dataset. Table S16. Features wise performance measures on disease and
non-disease associated proteins dataset using deep neural network classi-
fier. Table S17. Mixed features based performance on disease and non-
disease associated proteins dataset. Table S18. 10 selected features for
normalized and filtered PAAC and Network properties. Table S19. 16 se-
lected features for PAAC and Network properties. Table S20. Selected
features wise performance measures using different classifier. Table
S21. Prediction result on independent dataset. Table S22. Top 100
proteins (genes) are predicted by our proposed DNN based
method. Table S23. Significantly enriched disease-ontology terms
for top 100 proteins (genes) based on Genetic Association Database
(GAD). Table S24. Significantly enriched gene-ontology biological
process terms for top 100 proteins (genes).

Additional file 2: Figure S1. Venn diagram of All reviewed and
DisGeNET human proteins.

Fig. 4 The architecture of simple Deep Neural Networks
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Additional file 3: Figure S2. Venn diagram of positive curated and
Befree text mining disease-associated proteins (DisGeNET confident
score > greater than 0.002738764).

Additional file 4: Figure S3. Venn diagram of highly predicted
infectious disease-associated proteins and virus and bacteria targeted
interaction of human proteins by PHISTO.

Additional file 5: Figure S4. Venn diagram of disease ontology terms.
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