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Abstract

Background: Integrating genome-wide gene expression patient profiles with regulatory knowledge is a challenging
task because of the inherent heterogeneity, noise and incompleteness of biological data. From the computational
side, several solvers for logic programs are able to perform extremely well in decision problems for combinatorial
search domains. The challenge then is how to process the biological knowledge in order to feed these solvers to gain
insights in a biological study. It requires formalizing the biological knowledge to give a precise interpretation of this
information; currently, very few pathway databases offer this possibility.

Results: The presented work proposes an automatic pipeline to extract automatically regulatory knowledge from
pathway databases and generate novel computational predictions related to the state of expression or activity of
biological molecules. We applied it in the context of hepatocellular carcinoma (HCC) progression, and evaluate the
precision and the stability of these computational predictions. Our working base is a graph of 3383 nodes and 13,771
edges extracted from the KEGG database, in which we integrate 209 differentially expressed genes between low and
high aggressive HCC across 294 patients. Our computational model predicts the shifts of expression of 146 initially
non-observed biological components. Our predictions were validated at 88% using a larger experimental dataset and
cross-validation techniques. In particular, we focus on the protein complexes predictions and show for the first time
that NFKB1/BCL-3 complexes are activated in aggressive HCC. In spite of the large dimension of the reconstructed
models, our analyses over the computational predictions discover a well constrained region where KEGG regulatory
knowledge constrains gene expression of several biomolecules. These regions can offer interesting windows to
perturb experimentally such complex systems.

Conclusion: This new pipeline allows biologists to develop their own predictive models based on a list of genes. It
facilitates the identification of new regulatory biomolecules using knowledge graphs and predictive computational
methods. Our workflow is implemented in an automatic python pipeline which is publicly available at https://github.
com/LokmaneChebouba/key-pipe and contains as testing data all the data used in this paper.
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Background

Hepatocellular carcinoma (HCC) is the most common
type of primary liver cancer, which counts for more than
800,000 deaths each year. The incidence of HCC is asso-
ciated with the development of chronic hepatitis mainly
linked to viral infection, alcohol consumption and non-
alcoholic fatty liver disease (NAFLD) [1]. Lifestyles [2]
and environmental pollution such as particulate matter air
pollution [3] also contribute to increase burden in HCC
worldwide. HCC is a heterogeneous disease and various
genomic alterations associated with the etiologies and the
stages of the pathology have been widely documented
[4, 5]. A pivotal step in the course of HCC progression
is the epithelial-mesenchymal transition (EMT) which
allows hepatocytes to transdifferenciate into mesenchy-
mal phenotype whereby escaping to host control and
acquiring anti-apoptotic and motility features [6]. Upreg-
ulation of EMT markers has been associated with tumor
aggressiveness and bad prognosis [7, 8] and associated
with inflammatory microenvironment [9]. However, in
vivo monitoring of EMT processes remains difficult,
due to the spatio-temporal dynamics of these molecu-
lar events and the snap-shot nature of biopsies sampling.
Understanding EMT to identify new therapeutic targets
require integrative and modeling approaches.

To build computational models and integrate experi-
mental data on molecular events, pathway databases can
be used. However, despite the fact that numerous publicly
available pathway databases currently exist, compiling
hundreds of signaling pathways for various biomolecules,
very few formal representations linked with automatic
inference processes have been proposed so far [10]. The
main difficulty appears to be the transfer from the biologi-
cal representation of a pathway towards a logic knowledge
base. Currently, pathway repositories, such as Reactome
[11], Pathway Commons [12], KEGG [13], or OmniPath
[14] propose their own tools to build graphs. Some of
these tools are the Cytoscape [15] plugin CyPath2, PCViz
for Pathways Commons; pypath for OmniPath; and Reac-
tomeFIViz [16] for Reactome. However, the resultant
graphs are difficult to be transferred into mechanistic
models because the notion of causality is often misinter-
preted. This misinterpretation is due to the lack of a for-
mal causal representation of biochemical reactions such
as protein complexes assemblies. For instance tools such
as CyPath2, PCViz, ReactomeFIViz, and pypath model
protein complexes using a relation of causality between
the protein complex members (protein complex members
are the cause and consequence of each other); while in
our modeling choice, protein complexes may be trigger-
ing other reactions, and their presence is a consequence
of the presence of their members. Knowing that sig-
naling cascades are represented by multiple complexes
assemblies, this misinterpretation impacts importantly
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the construction of a mechanistic model when using path-
way databases. On the other hand, such tools are very
useful to compute topological scores, perform statistical
analyses, and to integrate gene expression measurements
using enrichment analyses [17]. They remain, however,
limited to extract logical consequences of the representa-
tion of the biological mechanisms.

The sign-consistency framework proposes a way to auto-
matically confront the logic of large-scale interaction
networks and genome-wide experimental measurements,
provided that a signed oriented network is given and
that the experimental measurements are discretized in 3
expression levels (up-regulated, down-regulated and no-
change). This framework, introduced in [18], has being
applied to model middle- and large-scale regulatory and
signaling networks. The two most recent implementations
of it are by the means of integer linear programming [19]
and logic programming. The latter, implemented in a tool
named Iggy [20], presents some key aspects: (i) it pro-
vides a global analysis applying a local rule which relates a
node with its direct predecessors, (ii) it handles a network
composed of thousands of components, (iii) it allows the
integration of hundreds of measurements, (iv) it performs
minimal corrections to restore the logic consistency, and
(v) once the consistency is restored, it allows to infer the
behaviour (up, down, no-change) of components in the
network that were not experimentally measured. In this
work we apply this sign-consistency framework to model
HCC progression.

Our case study is composed of two input data which
were publicly available. First, gene expression data from
patients with HCC was extracted from the International
Cancer Genome Consortium (ICGC) database [21]. Based
on the EMT signature from MSigDB [22], HCC sam-
ples were clustered into either agressive HCCs (high EMT
gene expression) or non-agressive HCCs (low EMT gene
expression). Second, the up-stream events of the regu-
latory events of these genes were obtained by querying
automatically KEGG to build a causal model from this
database. We used Iggy to study what are the regulatory
events that explain the differential expression between
low and high aggressiveness from the KEGG interaction
knowledge (network of 3383 nodes and 13,771 edges). We
discovered that 146 nodes were predicted, of them 33
refer to gene expression, 110 were protein activities, and
3 were protein complexes activities. 88% of the predic-
tions were in agreement with the ICGC gene expression
measurements. Importantly, we predicted the activation
of NFKB1/BCL3 and NFKB2/RELB complexes, two crit-
ical regulators of NFKB signalling pathway implicated in
tumorigenesis. Finally, we proposed a method to discover
sensitive network regions that explains HCC progression.
This means network components which were highly con-
strained by multiple experimental data points that could
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Fig. 1 Schema describing the pipeline for building networks and predicting regulatory nodes. (1) Using a list of differentially expressed genes,
construct the set of gene names and the corresponding set of observations (a sign is attributed for each gene: 4+ when fold change >2 or — when
fold change <0.5 and adjusted p-value < 107°); (2) Extract the upstream/downstream signaling pathways for the set of genes from the signed
interaction graph using Pathrider, a tool developed in our team to this purpose. Given a list of excluded genes (such as invariant genes), Pathrider filters
these genes to reduce the graph size; (3) Check the sign consistency of our datasets to produce signed predictions for unmeasured biomolecules
using iggy tool; (4) Validate the predictions made by iggy by computing sub-predictions (prediction 1, 2..n) using a sub-set of observations (by
default, it starts sampling from 10% to 95% of observations with a step of 5% and a number of execution equal to 100), then compare it firstly with
the differentially expressed genes, and in a second time with the predictions obtained with all the set of observations; and (5) Plot the precision scores
for each sub-sets of the observations, and the stability of the prediction compared to the predictions of the entire set of observations

robustness

be interesting to target in order to obtain significant
changes in the system behavior. We provide a list of 27
nodes discovered by this approach, including TP53.

These results were obtained with a new pipeline devel-
oped for this work and freely available online. This
pipeline, based on an initial network and a list of genes of
interest, allows to extract a functional network based on
this list, apply the prediction method described above, and
run stability analyses on the result.

Results

Overview of the pipeline

We introduce key-pipeline: a Python package implement-
ing the workflow for identifying key protein complexes
associated to tumor progression. The general pipeline
implemented is depicted in Fig. 1. It receives as input data:
a list of differentially expressed genes, a graph describ-
ing signed and directed signaling interactions, and a set
of excluded genes to be filtered out from the graph.
Our software allows researchers to: 1) construct the set
of observations, and the set of gene names from a file
of differentially expressed genes (in CSV format with 3
columns: genes names, log, (fold-change) and adjusted p-
value), see “Identification of gene differentially expressed
between low and high aggressive HCC” section; 2) extract
a specific regulatory and signaling network associated
with the input genes list from a signed interaction graph
(based on KEGG regulatory knowledge, see “Building
a signed interaction graph from the KEGG Pathway
database” section); 3) apply the Iggy tool to compute the
predictions based on the sign-consistency modeling (see

“Sign consistency - Iggy” section); 4) perform robustness
and stability analyses (see “Computational Validation of
the results” section); and finally 5) generate plots of these
analyses. The pipeline provides a command line inter-
face (CLI), it can be customized by entering file names
as arguments. By default, all the steps of the methods
will be executed, but the user can run specific steps
by using the argument --steps. This general pipeline
implements all the steps in the workflow described from
“Extracting up-stream signaling pathways” section to
“Stability of the sub-predictions” section and depicted in
Fig. 1. Each step will output one or more files. In gen-
eral, the output of one step corresponds to the input of
another one. This enables a straightforward application of
the workflow for users without programming expertise.
We refer the reader to the online documentation for an
in-depth description of installation and usage’.

Integration of Gene Expression in Signaling and
Regulatory Network

A first interaction graph was built from the KEGG Path-
way database (see “Building a signed interaction graph
from the KEGG Pathway database” section). This graph
was composed of 41,546 interactions (gene transcrip-
tions, protein signaling, protein formation and complex
formations) and 8861 components (genes, proteins and
protein complexes). It is available as input-data with the
pipeline?. Using our pipeline (Fig. 1, step 2: Pathrider), the

IFile README . md at https://github.com/LokmaneChebouba/key- pipe/
2Input data are available at https://github.com/LokmaneChebouba/key-pipe/
tree/master/example
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1913 differentially expressed genes between low and high
aggressive tumors were used as input to extract a subgraph
from the KEGG pathways graph. Only 209 genes from the
1913 were identified and used to extract upstream regu-
latory events (Additional file 1: Table S1). In this step the
biomolecules associated to the 4220 genes whose expres-
sion is undetectable were filtered out. The resultant graph
was composed of 13,771 interactions and 3383 compo-
nents (Additional file 1: Figure S1). The content of the
graph is available in Additional file 2: graph.sif in
SIF format and in Additional file 2: graph.cys as a
Cytoscape session.

The final graph contains mostly activations (11,661
versus 2110 inhibitions); this follows the same activa-
tion/inhibition distribution than for the KEGG graph.
Only 209 nodes have observations attached to them, pro-
vided by the differential analysis of “Identification of gene
differentially expressed between low and high aggressive
HCC” section, leaving most nodes unobserved and sub-
ject to computational predictions. Finally, the presence of
nodes gathering a lot of incoming or outgoing interactions
is noteworthy:

e The largest in-degree is 92 (concerning nodes
PIK3R6_prot, PIK3CG_ prot and
PIK3R5 prot);

e The largest out-degree is 79 (concerning nodes
PRKACB prot, PRKACA prot);

e Two nodes (MAPK3 prot and MAPK1 prot) both
have the maximal total degree of 107, with 56
incoming and 51 outgoing interactions.

Such “hub” nodes, having an influence to and from a lot of
other components, have a high impact on the rest of the
network and produce less consensual labelings.

Computational Predictions Validation

We applied the sign-consistency modeling on the final
KEGG signed graph obtained in the previous section and
the 209 observations derived from the differential anal-
ysis (see “Identification of gene differentially expressed
between low and high aggressive HCC” section). Iggy
(Fig. 1, step 3) returns 146 predictions, that is, couples
of (x,s), where x is a node of the graph (either a gene,
a protein or a protein complex) and s is its consen-
sual sign across all consistent labelings, as given by the
pred(x) function (see “Sign consistency - Iggy” section).
s € {—,0, 4} refers to a down-regulation (or inactivation),
unchanged behavior, and up-regulation (or activation) of
the behavior of biomolecule x under the low versus high
aggressive tumor comparison. In the case where x is a pro-
tein complex or a protein, the predicted sign will denote a
positive, negative or neutral shift in the effect of the pro-
tein or complex towards their targets. In Table 1 we show
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Table 1 List of all predictions returned by Iggy

List of positive (up-regulated) predictions

ADRA2A_prot, BDKRB2_prot, BMP4_gen, CCL11_prot, CCL13_gen,
CCL13_prot, CCL17_gen, CCL17_prot, CCL19_prot, CCL21_prot,
CCL22_prot, CCL26_prot, COLTA1_prot, COL1A2_prot, COL3A1_prot,
COL4A2_prot, COL4A3_prot, COL6AT_prot, COL6A2_prot, COL6A3_prot,
COMP_prot, CTBP2_prot, CTSK_prot, CXCL12_prot, CXCL14_prot,
CXCL5_prot, CXCL6_prot, DCN_prot, DKK2_prot, DUSP4_prot,
EFNB3_prot, EIF4EBP2_prot, EPHA3_prot, FGF18_prot, FGF1_prot,
FHL2_prot, FPR1_prot, GLI3_prot, HGF_prot, HHIP_prot, HIF1A_prot,
HTR2B_prot, ICAM1_gen, IL34_prot, IL6_prot, JAG1_prot, KRAS_gen,
LAMA1_prot, LAMA2_prot, LAMC2_prot, LAMC3_prot, LIF_prot,
NFATC1_prot, NFKB1:BCL3, NFKB2:RELB, NOTCH1_gen, NOTCH2_gen,
NOTCH4_gen, NROB2_gen, NROB2_prot, NR1H4_gen, NRTH4_prot,
NR3C2_gen, NR3C2_prot, NRG3_prot, NTF3_prot, NTRK3_prot,
PMAIP1_prot, PPP2R2C_prot, PRKG1_prot, PTGER1_prot, PTGIR_prot,
PTH1R_prot, PTHLH_prot, PTPRR_prot, RASAL1_prot, SCTR_prot,
SEMA3C_prot, SFRP1_prot, SFRP2_prot, SFRP4_prot, SFRP5_prot,
SGK1_gen, SLIT2_prot, TGFA_prot, THBS2_prot, THRA_prot, TNC_prot,
TNXB_prot, VDR_gen, VDR_prot, WTIP_prot

List of negative (down-regulated) predictions

APAF1_gen, APAF1_prot, BAKT_gen, BAX_gen, BID_gen, CCL15_prot,
CCL16_prot, CHAD_prot, CREB1_prot, CSNK2B_prot, DKK4_prot,
EIF2B4_prot, EIF2B5_prot, ELMO1_prot, FOXO3_prot, IGFBP3_gen,
IGFBP3_prot, JUND:NACA, LRP5_gen, LRP6_gen, MDM2_gen,
PHLPP1_prot, PIDD1_gen, PIDD1_prot, PPP2R5A_prot, PPP2R5D_prot,
PTEN_gen, RAD9A_prot, RFENG_prot, RXRB_prot, SENP2_prot, SESN1_gen,
SESN1_prot, SESN2_gen, SESN2_prot, SESN3_gen, SESN3_prot, SFN_gen,
SFN_prot, SIVAT_gen, SIVA1_prot, SLC38A9_prot, SPDYC_prot,
SREBF1_gen, SREBF1_prot, THBS1_gen, THBS4_prot, THEM4_prot,
THPO_prot, TNFRSF10A_gen, TNFRSF10B_gen, TP53_prot, TP73_prot,
TSC2_gen

the 146 obtained predictions after minimal correction, in
summary we obtained:

® 92 over-expressions (+): 77 proteins, 13 genes, and 2
protein complexes,

® 54 under-expressions (—): 33 proteins, 20 genes and 1
protein complex.

The list of all predictions is plotted on the KEGG graph
in Additional file 1: Figure S2 and on the volcano plot of
differential gene expression in Additional file 1: Figure S3.
The minimal correction set (MCoS) detected to recover
the consistency between the graph causality and the data,
was composed of a single repair: adding an influence
towards node PMAIP1 gen resolves the conflict. This
repair is shown in Additional file 1: Figure S4. In the end,
3026 nodes remain not observed nor predicted. Iggy takes
one minute to compute these results on a standard laptop
computer3.

Among the 146 predictions, 143 have a name that
matches with a gene name identified in HCC from the
ICGC database, but that were not selected in the 1913
genes differentially expressed (< —0.5 for down-regulated
and > 2 for up-regulated in aggressive HCC). If we
remove all thresholds and thus consider any positive

3Laptop computer containing an Intel Core i7-5600U CPU with 4 threads of
2.60GHz and running Fedora 27 64 bits.



Folschette et al. BMC Bioinformatics (2020) 21:18

fold-change as an over-expression, and any negative fold-
change as an under-expression, then 82 components pre-
dicted + are coherent with the ICGC data and 8 are
not; 44 components predicted — are coherent with the
ICGC data and 9 are not. This ratio of 88% of match-
ing predictions speaks in favor of our choice of applying
Iggy to this specific biological system, with respect to the
currently available data in KEGG and ICGC databases.
This comparison can be visualized on the volcano plot
of gene differential expression in Additional file 1: Figure
S3, and is also depicted on the KEGG graph in Additional
file 1: Figure S5. The list of predictions not matching with
experimental expression data is given in Additional file 1:
Table S2.

Impact of data incompleteness on computational
predictions

This section presents the results of the two valida-
tion analyses applied on the sampling of observations
described in “Computational Validation of the results”
section. The objective is to observe the impact of data
incompleteness in our computational predictions. For
this, we observed and tracked across the samples the level
of precision and the quality of the information contained
in the predictions (See Fig. 1, step 4).

Precision Rate
The first approach (see “Recovery rate of the sub-predictions”
section) aims at observing the evolution of the predictions
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precision when using an increasing amount of data-points
of the original dataset (see Fig. 2). We can observe a
clear convergence of the precision score towards 0.88 cor-
responding to the precision found with the full dataset,
which shows that our complete predictions do not lie in a
local extremum.

Stability Study

The second approach (see “Stability of the sub-predictions”
section) consists in observing “good’;, “bad” and “miss-
ing” predictions for each of the experiments (samplings
< 100%) compared to the 100% sampling. Figure 3 com-
putes the minimum, maximum, median and mean of each
such category. Globally, we can observe that the mean
and median number of “bad” predictions, that is, predic-
tions that are different with a subset of observations than
with the complete set of observations, are really low, below
4% for all samplings. Nevertheless, some samplings show
a high proportion of such “bad” predictions. Moreover,
the number of “missing” predictions is very high for low
samplings, which assesses that there is too little informa-
tion to obtain complete results. Overall, “bad” predictions
tend to decrease after the 65% sampling, along with “miss-
ing” predictions that decrease all the way, making “good”
predictions mathematically increase.

Insights of the Stability Results
The analyses of the experiments shown in the previous sub-
sections show that the “badly” predicted components for
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Fig. 2 Precision scores of predictions obtained on samplings of the observations. Boxplots of the precision scores (ordinate) of the predictions
obtained with 100 randomly picked samplings (abscissa) of observations. Each box plot at abscissa x represents the distribution of the precision
scores of the predictions obtained when using only x% of the observations. The point at 100% represents the prediction score of the predictions
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Evolution of max, min, mean and median of
good, bad and missing predictions compared to 100% sampling

Number of good/bad/missing predictions (%)

20 40 60

Sampling (%)

Fig. 3 Stability of the predictions for subsets of observations. This figure summarizes the stability of the predictions for all samplings of the
observations, compared to the final predictions with all 100% of observations. “Good” predictions (matching the 100% predictions) are depicted in
green, “Bad” predictions (predicted differently than the 100% predictions) in red and “Missing” predictions (not predicted) in blue. For each category,
four curves are plotted representing, from top to bottom, the maximum, median, mean and minimum number of predictions of this type. Curves
are normalized to the number of predictions obtained for each set of sampled data
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subsets of observations are always the same 28 nodes,
listed in Additional file 1: Table S3. These nodes belong
to the same region of the graph, which is depicted in
Additional file 1: Figure S4. Actually, a group of 27 of
these nodes are strongly linked and always change their
coloring together. When searching inside the graph topol-
ogy, one can remark that this group is tightly linked to
the node TP53 prot, which is also part of the group.
This protein acts as a “hub” inside the graph, having
a high degree (25 ingoing and 28 outgoing edges). It
therefore controls closely, if not directly, a lot of other
components that change their sign as soon as it does
so, rendering the whole group of predictions unstable.
The reason of this instability is that TP53 prot directly
influences node PMAIP1 gen which is involved in the
only MCoS repair in our graph: the node PMAIP1 gen
is indeed observed as over-expressed (4) but 3 other
under-expressed (—) observations contradict this one:
CCNG1_gen, SHISA5 gen and TP73_gen. This leads
to an inconsistency, as explained in Fig. 7. The repair
here consists in adding an edge towards PMAIP1 gen
that models missing information, in order to remove this
inconsistency, as shown in Additional file 1: Figure S4.
In practise, this renders PMAIP1 gen “silent” regard-
ing TP53 prot, which then takes the coloring of
the other observations (under-expression). Nevertheless,
when picking random sets of observations, we sometimes
fall in cases where among these 4 observations, only

PMAIP1 gen is selected; in this case, no repair is needed
and TP53_prot is predicted as over-expressed, also lead-
ing to 26 different predictions in downstream nodes.

Finally, the last unstable node is PMAIP1 prot:
in the case where PMAIP1 gen is part of the ran-
domly picked observations, it is straightforwardly pre-
dicted over-expressed while in the converse case, where
PMAIP1 gen is not part of the observations, it is indi-
rectly influenced by TP53 prot and thus predicted
under-expressed.

Such unstable predictions can be regarded as not very
robust because they are changeable depending on the
number of observations taken into account. On the other
hand, all other predicted components are stable and can
be considered as robust since, when they are predicted,
their prediction matches the one obtained using all the
observations. The list of stable and unstable predictions is
given in Additional file 1: Table S3.

Biological Validation of the Computational Results

Among the computational predictions given in Fig. 7,
some of them are of particular interest in regard to the
expression data from ICGC. In this section, we detail and
validate them biologically.

Activation of NFk B signaling in aggressive HCC
Based on the regulatory model (Additional file 1: Figure S1)
and differential expression of mRNA between low and high
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aggressive HCC (see “Identification of gene differen-
tially expressed between low and high aggressive HCC”
section), the algorithm Iggy predicts the activation of
complexes NFKB1:BCL3 and NFKB2:RELB and the
deactivation of complex JUND:NACA. By activation of
the complexes we mean that in order to explain the high-
aggressive versus low-aggressive tumor gene expression
datasets, these complexes have to increase their activity.
For example, if NFKB1::BCL3 is activated, then we deduce
that its effect on gene IL10 (regulated positively by this
complex, Additional file 1: Figures S6) is positive, mean-
ing that the level of gene IL10 may increase if it was only
regulated by NFKB1::BCL3. protein complex prediction is
a novel information since it was not present in the initial
experimental data of gene expression.

Among them, two complexes are related to NF«B
signaling and are predicted as activated: NFKB1:BCL3
and NFKB2:RELB. NFKB1, NFKB2 and RELB are three
subunits of the transcription factor complex nuclear
factor-kappa-B (NFxB) which consist in a homo- or
heterodimeric complex formed by Rel-like domain-
containing proteins p65 (RelA), RelB, c-Rel, p50 (NFKB1),
and p52 (NFKB2). The NF«B signaling system acts
through canonical and non canonical pathways which
are induced by different extracellular signals [23]. The
canonical pathway can be induced by TNF-«, IL-1 or LPS
stimulation and requires NF-kappa-B essential modula-
tor (NEMO) while the non-canonical pathway is induced
by other ligands such as CD40 ligand (CD40L), receptor
activator of nuclear factor kappa-B ligand (RANKL), B-
cell activating factor (BAFF) and lymphotoxin beta (LTb).
Upon ligand binding to its receptor, the signaling cas-
cades control the degradation of IkB proteins (inhibitor of
NF«B) and precursor processing including NFKB1 (p105)
and NFKB2 (p100) which are proteolytically activated
to p50 and p52 respectively. B-cell chronic lymphatic
leukemia protein 3 (Bcl3) is a member of IkB family
that are inhibitors of NFkB members. BCL3 associates
with NF-kappa B in the cytoplasm and prevents nuclear
translocation of the NFKB1 (p50) subunit. When phos-
phorylated, BLC3 is activated and associates with NFKB1
in the nucleus to regulate NF«xB target genes [24]. NF«B
system is involved in the regulation of numerous biolog-
ical processes including inflammation, cell survival and
development. Regarded as protective against aggression
from environment in normal physiology, alteration of
NF«B signaling pathways has been associated with var-
ious diseases such as inflammatory disease and cancer
[25, 26]. In HCC, NF«B pathway was shown to be dereg-
ulated in tumor and underlying fibrotic livers [27, 28].
Notably, increased expression of p50 and BCL3 has been
reported in tumors compared with adjacent tissues [29]
and p50 expression was associated with early recurrence
of HCC [28].
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In order to evaluate our predictions about the activa-
tion of NFKB1::BCL3 and NFKB2::RELB complexes, we
thought to search for expression of genes regulated by
these complexes. For that purpose, we take advantage
of the NFxkB-dependent signature available in MSigDB
[22, 30]. We selected the HALLMARK TNFA SIG-
NALING VIA NFKB? signature which contains 200
genes regulated by NF«B in response to TNE. As shown
in Additional file 1: FigureS7A, we demonstrated that
these genes were more expressed in high aggressive HCC
when compared with low aggressive ones supporting
the activation of NF«B signaling. More specifically, we
searched for expression of genes targeted by NF«B-non-
canonical pathway, including the cytokines CCL19 and
CCL21. These genes are regulated through the activa-
tion of NFKB2:RELB complexes and their expression was
increase in high aggressive HCC thereby confirming the
prediction (Additional file 1: FigureS7B).

Another prediction was the down-regulation of
JUND:NACA complex that was previously demonstrated
to regulate osteocalcin [31]. This prediction is mainly
conditioned by osteocalcin (BGLAP) expression data that
was found down-regulated in the aggressive HCC (—1.3
fold-change between aggressive versus non-aggressive
HCC). Such observations are in accordance with previous
reports showing that osteocalcin was down-regulated in
the serum of HCC patients when compared with healthy
controls [32]. As shown in Additional file 1: Figure S8A,
we showed that both JUND and NACA gene expressions
were down-regulated in aggressive HCC supporting
the prediction of down-regulation of the complexes
JUND::NACA. Importantly, the targets of JUND::NACA
complex including LRP5 and LRP6 genes were predicted
as down-regulated by our model (Additional file 1: Figure
S6). The down-regulation of LRP5 in aggressive HCC
was validated in HCC data but was not significant for
LRP6 probably due to the low level of gene expression
(Additional file 1: Figure S8B). According with this, the
up-regulation of LRP6 through JUND:NACA complexes
was clearly demonstrated in osteoblasts [33].

To conclude, model predictions were validated by data
analyses and are in accordance with the literature. Impor-
tantly, this is the first report describing the activation
of NFKB2:RELB complex and the down-regulation of
JUND::PACA complex in aggressive HCC.

Discussion

The understanding of tumor progression dynamics is
extremely difficult when considering the snap-shot nature
of data from patients. However, compiling information
from a wide spectrum of tissue samples can be used for

41d: M5890, available at http://software.broadinstitute.org/gsea/msigdb/
geneset_page.jsp?geneSetName=
HALLMARK_TNFA_SIGNALING_VIA_NFKB
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modeling evolutive stories. The complexity of molecular
events implicated in hepatocellular carcinoma progres-
sion is directly associated with its various etiologies that
differently contribute to tumor initiation, growth and eva-
sion. During last decades, multiscale omics data analysis
of genome and proteome allowed to explore molecular
networks associated with HCC and mathematical mod-
els have been developed namely to predict cancer cell
behavior [34]. Accordingly, an elegant discrete model was
developed by [35] to explore TGF-g signaling pathway
during epithelio-mesenchymal transition in HCC. How-
ever, HCC results from complex interactions between the
tumor cells and the microenvironment involving stromal
cells and extracellular matrix. Molecular biological data
from tumor tissues recapitulate all this information and
we need to build an unique large-scale model without a
priori to take into account such complexity. For that pur-
pose, we propose here an original approach aiming at inte-
grating experimental data on a regulatory graph extracted
from the KEGG database to predict new markers and
regulators of HCC progression.

Based on EMT gene expression signature from MSigDB
[22] we first separated low from high aggressive HCC
samples stored in the ICGC database [21] and next we
sought to predict the regulatory pathways implicated in
this transition. For that purpose, we built a model by
querying the KEGG database using the KEGG API to
extract an initial network. We have implemented a tool,
Pathrider, to allow us extracting a directed and signed
sub-network, from the previously obtained network, by
using the up-stream events of a list of target genes. Impor-
tantly, our modeling choices allowed us to connect protein
complexes to their members, and to label network nodes
of type gene and protein. This separation of concepts is
particularly valuable when modeling gene expression.

The publicly available knowledge base KEGG, gather-
ing curated signaling and regulatory processes, is well
structured to automatically extract mechanistic models
from it. In particular: (i) the information concerning gene
transcription and signaling modifications is differenti-
ated, (ii) the network nodes identifiers are unique, and
(iii) the biological processes, such as phophorylation or
gene-regulation, are clearly represented.

Using Iggy, it was possible to confront the logic of a
large-scale KEGG network (3383 nodes, 13,771 edges) to
the expression of genes differentially expressed between
high-aggressive and low-aggressive HCC. In this con-
text, we were able to propose an integrated model of
HCC progression and to predict the regulation of new
biomolecules including genes, proteins and complexes. A
major finding is that the model predicted the behavior of
146 network components that were associated with the
progression of tumors. 88% of the computation model
predictions were validated with the ICGC data-set and by
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using cross-validation techniques, thereby demonstrating
the quality of the model. Conversely, 12% of the pre-
dictions did not match the experimental data, however
10 of these components are part of gene/protein cou-
ples leading to linked predictions. In addition, all of these
components but one had a low expression change (less
than 1 in absolute value) along with a high p-value (above
1072) that might explain the inconsistency. The remain-
ing one is THBS1 gen (thrombospondin 1 gene) with
a fold-change of 1.996, and is also part of the cluster of
unstable predictions depicted in “Insights of the Stability
Results” section. Indeed, we discovered a subset of 28 net-
work nodes that were very sensitive to the experimental
data. That is, they were strongly constrained by a subset
of experimental observations. We notice that these nodes
behave as hubs in the network, and can be candidate to
experimental stimulation or inhibition in order to affect
the system behavior.

The most interesting prediction was the activation of
protein complexes related to NF«B signaling since com-
plexes formation is directly responsible for signal trans-
duction [36]. While the role of NF«B signaling pathway
has been widely documented in chronic liver disease [37],
the activation of NFKB1/BCL-3 complexes in aggressive
HCC has never been reported. The IxB protein BCL-
3 acts both as a co-activator that form complexes with
NFKB1(p50) dimers to promote genes [38] and as a co-
repressor of gene transcription by stabilizing P50 homod-
imers on DNA promoters [39]. Predicted activation of
such complexes in aggressive HCC revealed the ambiva-
lent role of NFKB-mediated inflammatory response dur-
ing the course of tumor progression [40].

Conclusion

The present study is general to be applied to other biolog-
ical data from cancers or other disease. In the future, we
would like to use logic programming to target the com-
binatorics of sensitive regions in a regulatory graph with
respect to gene expression profiles, in order to propose
regulatory elements for clinical therapy. Another perspec-
tive is to apply our method to subsets of patients, and
observe if there are clusters of patients that have specific
computational model signatures for HCC progression.

Methods

Identification of gene differentially expressed between low
and high aggressive HCC

Normalized HTseq counts and clinical data were retrieved
from the LIHC-US project® (NCI, TCGA-LIHC). These
files were downloaded on 2016-07-19, corresponding to
release 21. At this date, LIHC-US dataset comprised
294 donors and 345 samples; among them, we selected

5 All ICGC data used in this work are publicly available at https://dcc.icgc.org/
releases/release_21/Projects/LIHC-US
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samples corresponding to solid primary tumors, based
on clinical data, by selecting entries containing the
expression "Primary tumour - solid tissue"in
the specimen table (7% field). This allowed selecting
one sample for each of the 294 donors. Data retrieval
and filtering workflow is detailed in Additional file 3:
dataset filtering.sh.

From this filtered dataset, we extracted a two-dimensional
table of expression values (converted in log,) for 20,502
genes in 294 LIHC samples. Based on the bimodal dis-
tribution of these expression values, we discarded genes
whose expression is undetectable (4220 genes), keeping
16,282 genes. Expression values were normalized by the
median value in each sample. Based on the established
link between epithelial-mesenchymal transition (EMT)
and tumor aggressiveness [41], we used the MSigDB
[42] set of 200 genes termed HALLMARK EPITHELIAL
MESENCHYMAL TRANSITION® from the Broad Insti-
tute as a molecular signature of aggressiveness. From the
LIHC dataset, we extracted a table of expression val-
ues for 195 entries of this EMT signature for each of
the samples (5 genes were undetectable). Based on the
expression values of the EMT signature, LIHC samples
were classified (hierarchical clustering of euclidean dis-
tances) into three groups termed low_EMT (70 samples),
medium_EMT (154 samples), and high EMT (70 sam-
ples). The result of this clustering analysis is available in
Additional file 1: Figure S9. Samples corresponding to the
medium_EMT group were discarded and a differential
expression analysis was performed by computing a non-
parametric Mann-Whitney test for all the 16,282 genes
between the low_EMT and high EMT groups. p-values
were adjusted for multiple analyses by the Benjamini &
Hochberg method. The volcano plot of Additional file 1:
Figure S10 represents fold-changes (log,) against adjusted
p-values (—log;,) and the raw data are available online as
input data of the pipeline’.

We focused on genes with an adjusted p-value below
107°. Genes with a log, (fold-change) greater than 2 were
considered as over-expressed (821 genes), whereas those
with a log,(fold-change) lower than 0.5 were consid-
ered as under-expressed (1092 genes). Together, these
1913 differentially expressed genes, listed in Additional
file 2: diffexp filtered.csv were subsequently
used to extract a regulatory network, as explained in
“Building a signed interaction graph from the KEGG
Pathway database” section, and then used as observa-
tions for the coloring propagation process, as detailed in

61d: M5930, available at http://software.broadinstitute.org/gsea/msigdb/
geneset_page.jsp?geneSetName=HALLMARK_EPITHELIAL_
MESENCHYMAL_TRANSITION

7Files GSEA_EMThigh vs_ EMTlow diffexp.csv (differential
expression) and LIHC_primary weakly expressed_genes.txt
(blacklist of weakly expressed genes) at https://github.com/
LokmaneChebouba/key-pipe/tree/master/example.
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“Sign consistency - Iggy” section. The full list of differ-
entially expressed genes is available in Additional file 2:
diffexp full.csv. The workflow of data clustering
and differential analysis is available in Additional file 3:
diffexp and clustering.R.

To further validate the clinical relevance of the groups
of HCC samples identified by the hierarchical clustering
method, we compared this classification obtained with
the EMT signature to a classification obtained with mark-
ers established as predictive of recurrence, which is a
major clinical outcome of tumor aggressiveness. For that
purpose, we used the Seoul National University recur-
rence (SNUR) signature [43] that previously permitted
to classify HCC samples from TCGA database [44] and
we compared clusters identified by hierarchical cluster-
ing method with SNUR groups. Note that LIHC primary
tumors correspond to 294 samples but only 183 are anno-
tated with SNUR score. Clustering methods were applied
to all the 294 samples used in this study and comparisons
of clustering classes were made for the 183 samples. When
hierarchical groups were compared to SNUR groups, we
found a x?2 test p-value of 3.81 x 10714, with 9% of
class 1 (low EMT) belonging to the low-recurrence group,
and 83% of class 3 (high EMT) belonging to the high-
recurrence group. Together, these data demonstrate the
accuracy of clustering method to identified low and high
aggressive HCC samples.

Building a signed interaction graph from the KEGG
Pathway database

For this case study, we used a human signaling net-
work derived from the KEGG Pathway database [13]. 154
human signaling pathways were fetched using the KEGG
API and converted to SIF (Simple Interaction Format) in
order to provide KEGG’s knowledge as a graph represen-
tation. This section summarizes how this network was
built. A more in-depth description is available in Addi-
tional file 1 as a Supplementary Material & Methods. This
step of automatic reconstruction of a causal graph from
KEGG constitutes one of the novel contributions of the
methodological results of this paper.

Signed interaction graph built from KEGG'’s regulatory
knowledge
To model the KEGG regulatory knowledge we imposed a
distinction between nodes representing genes and nodes
representing proteins. In the KEGG Pathway database,
this distinction is implicitly embedded in the relation
types, particularly PPrel edges (protein-protein rela-
tions) and GErel edges (gene expression relations).
PPrel edges indicate that both source and target nodes
are proteins. GErel edges indicate that source nodes
are transcription factors and that target nodes are genes.
Therefore, to explicitly differentiate genes and proteins,
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the source nodes of GErel edges were suffixed with
_prot and the target nodes were suffixed with _gen.
Concerning PPrel edges, both the source and target
nodes were suffixed with _prot. Differently to what pro-
posed by KEGG maps, we modeled protein complexes
explicitly by imposing two relations:

A prot PPrel A prot::B prot

B prot PPrel A prot::B prot
where A prot::B_prot refers to the protein complex
formed by proteins A and B.

Furthermore, in order to link genes and their products, a
relation type (initially absent in the KEGG KGML model)
was added: the GPrel type (gene-protein relations). For
each node C modeling a protein, a GPrel edge starting
from its corresponding gene and ending on C was added:

C_gen GPrel C_prot

These added nodes therefore model the corresponding
gene products and the GPrel edges model the pro-
tein formation given a gene expression, as illustrated in
Additional file 1: Figures S11 and S12. Note that without
GPrel nodes, the graph is much more disconnected and
the predictions are fewer and of worse quality, as showed
in Additional file 1: Tables S4 and S5.

In addition to their relation types, the edges are anno-
tated in KEGG with keywords bringing details about the
modeled interactions. Therefore, edge signs (role of acti-
vator or inhibitor) were inferred using these keywords.

Altogether, the human signaling network extracted from
KEGG was represented as a signed interaction graph
composed of protein signaling interactions, complex for-
mations, gene expression regulations and gene-protein
relations; accordingly, the nodes of this graph refer to
genes, proteins and protein complexes. This decomposed
representation allowed us to map on this network data
which corresponded only to gene expressions, without
assuming that gene expression correlates to protein activ-
ity. This KEGG signed and directed graph is available as
input data of the pipeline implemented in this work®.

Extracting up-stream signaling pathways

For this work, we implemented Pathrider® in order to
extract a subgraph from the KEGG generic human signal-
ing network (obtained in the previous section). Given a list
of genes and a network, Pathrider will keep only the sig-
naling pathways of the network regulating the list of genes,
that is, the upstream paths of the nodes in the network
that represent these genes. Pathrider will also filter out
the biomolecules in the graph (genes, proteins or protein
complexes) that appear in a list of excluded genes, which in
practice refer to genes whose expression is undetectable.

8File hsa-2345-symb-nomulti-split-func-sign.sif athttps://
github.com/LokmaneChebouba/key- pipe/tree/master/example.
% Available at: https://github.com/arnaudporet/pathrider
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This tool is included in the automatic pipeline we propose
in this work (see “Overview of the pipeline” section).

Sign consistency - Iggy

Let G(V,E,o) be an interaction graph, where V repre-
sents the set of nodes, E the set of edges, and o : E —
{4+, —} a labeling (activation or inhibition) of the edges;
and given experimental observations (e.g. gene expression
profile) (S, i), defined by the set of experimentally mea-
sured biomolecules S C V and the mapping  : V —
{—, 0, +}. The sign-consistency principle, implemented in
Iggy [20], defines the rules to integrate interaction and
experimental knowledge. In order to do this, we look
for total labelings u! : V. — {—,0,+} that satisfy the
following sign-consistency constraints (see Fig. 4):

e The observations must keep their initial labelings.

e Each labeling 4+ or — must be justified by at least one
predecessor.

e Each labeling 0 must have only predecessors labeled
as 0 or a couple of 4+ and — labeled predecessors.

Given a particular biological instance for G and (S, ),

it usually happens that many total labelings w?, satisfy-
ing the constraints, are proposed. For a set V of nodes
in our network and a set M of total labelings consistent
with our observations, we define the prediction function
pred : V — {+,—,0, &} as follows:
+ ifVueM: ukx)=+
—ifYueM:ux) =—
0 ifVvueM:ux)=0
O otherwise.

This prediction function is an output of the sign-
consistency modeling approach, and it can be seen as an
inference mechanism that generates a sign for a node x
only if in all the consistent total labelings it was assigned
the same sign among {—,0,+}. There may be nodes in
V with non prediction value (&) thus meaning that no
certain conclusion was possible to be inferred for them.
Biologically, this prediction function will allow us to label
non experimentally observed nodes, meaning that their shift
of expression or activity can be inferred thanks to their
connectivity to other observed biomolecules in the graph.

Another possible output of the sign-consistency
approach is a list of conflicts, in the case where (S, u) is
not compatible with G. It particularly signals a conflict
between the sign of some biomolecules and the inter-
action network. One way to fix such conflicts is to add
artificial interactions in the network. Iggy allows to auto-
matically add a minimal number of such repairs, called
minimal correction set (MCoS). If several possibilities of
repairs are possible, Iggy will compute them all and the
final set of predictions will correspond to the union of the
predictions obtained after each possible repair.

pred(x) =
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Given the combinatorial nature of this analysis, Iggy is
implemented in Answer Set Programming, in particular
using grounder Gringo 3.0.5 and solver Clasp 3.1.3. For
this work, the reasoning of Iggy, parametrized with the
mentioned constraints and the MCoS repairs, is added to
the automatic pipeline we provide.

Modeling our case-study using sign-consistency: inputs and
outputs of Iggy

Inputs The signed interaction graph G(V,E,0) was
obtained from the KEGG Pathways database as explained
in “Building a signed interaction graph from the KEGG
Pathway database” section. The gene expression pro-
file (see “Identification of gene differentially expressed
between low and high aggressive HCC” section) is com-
posed of experimental knowledge of 821 over- (sign ‘+)
and 1092 under-expressed (sign ‘—’) genes in in high
aggressive tumors compared to low aggressive tumors.
From these differentially expressed genes, only 209 were
found in the KEGG graph matching nodes with a suf-
fix * _gene’. Thus, the set of observations (S, 1) used
for the sign-consistency analysis was composed of 209
elements.

Outputs Following the sign consistency analysis, Iggy
proposed predictions under minimal MCoS repairs. The
complete results are discussed in “Results” section. It is
important to recall that since the graph G, obtained from
KEGG, is composed of nodes which represent genes, pro-
teins, and protein complexes. The prediction function
pred(x) computed by Iggy for x € V will assign signs
mainly to protein and protein complex nodes. In this way
Iggy will allow us to infer the activity or expression shifts
of unmeasured biomolecules of the system.

Computational Validation of the results

Recall that to create the over- and under-expressed genes
between low and high aggressive tumors (see “Identifica-
tion of gene differentially expressed between low and high
aggressive HCC” section) we used thresholds of +2 and
—0.5 on the value of log,(fold-change). In this section,
we aim at checking if these thresholds are justified. To do
this, we computed “sub-predictions’, that is, predictions
on the same extracted graph of “Building a signed inter-
action graph from the KEGG Pathway database” section
but with subsets of observations. To generate these sub-
sets of observations, we considered a range of samplings,
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from 10% to 95% of the complete observation set, with
a step of 5%. For each sampling of x%, 100 experiments
were conducted, where an experiment consisted in ran-
domly picking x% of the over-expressed observations (+)
and x% of the under-expressed observations (—), and com-
puting the predictions on this subset of observations. The
results are 1800 such subsets of observations, and as many
computed sets of predictions on the nodes of the graph,
hereafter called sub-predictions. These sub-predictions
have been exploited in two ways:

1 by comparing said sub-predictions with the available
gene expression data from ICGC that were already
used for the differential analysis (“Recovery rate of
the sub-predictions” section), and

2 by comparing said sub-predictions with the final
predictions obtained with 100% of observations to
witness their variability (“Stability of the
sub-predictions” section).

Both approaches are explained below; they are imple-
mented and added to the automatic pipeline we propose
in this work.

Recovery rate of the sub-predictions

We computed a normalized score by counting the number
of predictions matching the related experimental fold-
change from the ICGC data. For each experiment result,
this score s is given by the formula: s = m/t where
m is the number of matching predictions, that is, posi-
tive predictions with positive fold-changes and negative
predictions with negative fold-changes, and ¢ is the total
number of predictions. This allows us to assess the ability
of our model to recover from missing information (here,
observations).

Stability of the sub-predictions

In order to look at the stability of the predictions
made on subsets of observations, we also compared them
to the final predictions using 100% of the observations.
For each predicted node in the 100% sampling set, and
for each of its corresponding sub-prediction in a lower
sampling set:

e If the node is predicted and the prediction matches
the one at 100% sampling, this is considered a “good”
prediction.

e If the node is predicted but the prediction is not the
same as for 100% sampling, this is considered a “bad”
prediction, thus representing mathematical
non-monotonicity and biological sensitive
components or potential targets.

e If the node is not predicted, this is called a “missing”
prediction.
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Counting the elements and observing the evolution of
these categories allows us to witness if lower samplings
converge to the final sampling or not, independently of
any exterior data such as expression data.
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https://doi.org/10.1186/512859-019-3316-1.

Additional file 1: Additional tables, figures and explanations. This PDF file
contains additional figures and tables related to all parts of this manuscript,
along with a detailed explanation of the KEGG graph extraction that was
summarized in “Building a signed interaction graph from the KEGG
Pathway database” section.

Additional file 2: Input data and results of the application of our pipeline
regarding hepatocellular carcinoma progression. This archive contains
input and output data related to hepatocellular carcinoma agressiveness
that were used in this work to illustrate the benefits of our pipeline. The
input data consists of differentially expressed genes (in CSV format) and
the KEGG graph extraction (in SIF format). The output data consists in a
Cytoscape session to explore the graph and the computational prediction
results along with dynamic plots of the results (volcano plots, precision and
stability studies, in HTML format).

Additional file 3: Additional information to generate differentially
expressed genes from ICGC database. This archive contains a SH script to
filter dataset and a R script for data clustering and differential analysis
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