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Abstract

Background: A large body of evidence shows that miRNA regulates the expression of its target genes at post-
transcriptional level and the dysregulation of miRNA is related to many complex human diseases. Accurately
discovering disease-related miRNAs is conductive to the exploring of the pathogenesis and treatment of diseases.
However, because of the limitation of time-consuming and expensive experimental methods, predicting miRNA-
disease associations by computational models has become a more economical and effective mean.

Results: Inspired by the work of predecessors, we proposed an improved computational model based on random
forest (RF) for identifying miRNA-disease associations (IRFMDA). First, the integrated similarity of diseases and the
integrated similarity of miRNAs were calculated by combining the semantic similarity and Gaussian interaction
profile kernel (GIPK) similarity of diseases, the functional similarity and GIPK similarity of miRNAs, respectively. Then,
the integrated similarity of diseases and the integrated similarity of miRNAs were combined to represent each
miRNA-disease relationship pair. Next, the miRNA-disease relationship pairs contained in the HMDD (v2.0) database
were considered positive samples, and the randomly constructed miRNA-disease relationship pairs not included in
HMDD (v2.0) were considered negative samples. Next, the feature selection based on the variable importance score
of RF was performed to choose more useful features to represent samples to optimize the model’s ability of
inferring miRNA-disease associations. Finally, a RF regression model was trained on reduced sample space to score
the unknown miRNA-disease associations. The AUCs of IRFMDA under local leave-one-out cross-validation (LOOCV),
global LOOCV and 5-fold cross-validation achieved 0.8728, 0.9398 and 0.9363, which were better than several
excellent models for predicting miRNA-disease associations. Moreover, case studies on oesophageal cancer,
lymphoma and lung cancer showed that 94 (oesophageal cancer), 98 (lymphoma) and 100 (lung cancer) of the top
100 disease-associated miRNAs predicted by IRFMDA were supported by the experimental data in the dbDEMC
(v2.0) database.

Conclusions: Cross-validation and case studies demonstrated that IRFMDA is an excellent miRNA-disease
association prediction model, and can provide guidance and help for experimental studies on the regulatory
mechanism of miRNAs in complex human diseases in the future.
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Background
As a category of short non-coding RNA molecules (ap-
proximately 22 nt in size), microRNAs (miRNAs) per-
form regulatory functions by inhibiting target genes
translation or directly degrading target genes [1–3].
Since the first miRNA named lin-4 [4] was identified in
the 1990s, accumulated evidence has indicated that miR-
NAs play important molecular functions as gene regula-
tors in various key life activities, including cell
differentiation, proliferation and apoptosis, and immune
response [5–8]. Furthermore, increasing evidence dem-
onstrated that the abnormal regulation of miRNAs
caused the occurrence and progress of many complex
human diseases, including various cancers [9–12], car-
diovascular diseases [13–15], and metabolic diseases
[16–18], just to name a few. To date, tens of thousands
of associations between diseases and miRNAs have been
discovered and validated by various biological experi-
ments. For example, the human microRNA disease data-
base (HMDD) (v3.2) collected 35,547 experiment-
supported associations between 893 diseases and 1206
miRNAs from 19,280 papers [19]. However, the mechan-
ism of miRNA regulation in many complex diseases is
still unclear. Therefore, it is very important to discovery
and validate more miRNA-disease associations for ex-
ploring the pathogenesis and treatment options of these
diseases.
To overcome the limitation of high-cost and time-

consuming biological experimental methods, researchers
have developed many excellent miRNA-disease associ-
ation computational models in the past decade [20]. The
typical miRNA-disease association prediction methods
are score function-based models, which prioritize poten-
tial miRNA-disease associations using score function by
calculating the statistical or distribution characteristics
of disease- and miRNA-related information [20]. Based
on the supposition that miRNAs with analogous func-
tion are inclined to be related to diseases with analogous
phenotype, Jiang et al. developed the first computational
model for predicting miRNA-disease associations, which
combined the functional similarity network of miRNAs
and the experiment-validated associations between miR-
NAs and diseases [21]. However, because of the high
false positive rate and false negative rate of the software
for predicting miRNA’s target genes [22, 23], the predic-
tion performance of this model is limited. By combining
the associations between miRNAs and proteins and the
associations between proteins and diseases, Mørk et al.
developed a computational model (miRPD), which used
the predicted miRNA-target relationships to identify the
miRNA-disease associations with medium-confidence,
and used the experiment-supported miRNA-target rela-
tionships to identify the miRNA-disease associations
with high-confidence, respectively [24]. Under the

assumption that phenotype-related diseases have similar
molecular mechanisms, Xu et al. proposed a computa-
tional model for predicting associations between miR-
NAs and diseases by integrating the experiment-
supported associations between diseases and genes and
the inferred interactions between miRNAs and target
genes [25]. By combining the functional similarity and
GIPK similarity of miRNAs, and the semantic similarity
and GIPK similarity of diseases, Chen et al. implemented
a model named WBSMDA for predicting miRNA-
disease associations by computing within scores of the
experiment-validated miRNA-disease associations and
between scores of the unverified miRNA-disease associa-
tions, which could predict not only diseases associated
with new miRNAs but also miRNAs associated with new
diseases [26].
Another type of popular methods for predicting

miRNA-disease associations are complex network
algorithm-based models [20]. Chen et al. predicted
disease-associated miRNAs by implementing a random
walk with restart (RWRMDA) on the functional similar-
ity network of miRNAs, which used the known disease-
associated miRNAs as seed miRNAs, and used a random
walk with restart to search potential disease-associated
miRNAs [27]. RWRMDA cannot be used to novel dis-
eases which have not experiment-supported associated
miRNAs [20]. Xuan et al. also developed a random walk-
based mode for miRNA-disease association prediction
(MIDP). For diseases with some known associated miR-
NAs, MIDP predicted potential disease-associated miR-
NAs by integrating various ranges of topologies around
labelled nodes and unlabelled nodes with different tran-
sitions; for disease without any known associated miR-
NAs, MIDP predicted potential miRNAs associated with
diseases by integrating the semantic similarity of dis-
eases, the functional similarity of miRNAs, the topo-
logical characteristics of miRNA-disease network and
the experiment-supported miRNA-disease associations
[28]. In addition, Chen et al. constructed a model based
on heterogeneous graph inference for predicting
miRNA-disease associations (HGIMDA) by combining
the functional similarity of miRNAs, the semantic simi-
larity of diseases, the GIPK similarity of miRNAs and
diseases, and the experiment-supported miRNA-disease
associations [29]. Both MIDP and HGIMDA apply to
new diseases which have not experiment-supported as-
sociated miRNAs. Recently, Zeng et al. implemented a
structural perturbation-based model (SPM) for predict-
ing miRNA-disease associations, which integrated the
disease similarity, the miRNA similarity and the associa-
tions between miRNAs and diseases into a bilayer net-
work, and measured the link predictability of the
network by structural consistency [30]. In addition, Chen
et al. constructed a model based on bipartite network
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projection for predicting miRNA-disease associations
(BNPMDA) by combining the integrated similarity of
diseases, the integrated similarity of miRNAs and the
experiment-supported associations between miRNAs
and diseases [31]. Moreover, Chen et al. implemented a
model based on matrix decomposition and heteroge-
neous graph for predicting miRNA-disease associations
(MDHGI) by combining the semantic similarity and
GIPK similarity of diseases, the functional similarity and
GIPK similarity of miRNAs, and the association prob-
ability predicted by the sparse learning-based matrix de-
composition [32]. MDHGI improved the prediction
performance by make the best use of matrix decompos-
ition before heterogeneous network building.
The machine learning-based models are the third most

commonly used miRNA-disease association prediction
methods [20]. Under the supposition that miRNAs with
analogous function is inclined to be associated with dis-
eases with analogous phenotype and vice versa [33],
Xuan et al. developed a model based on weighted k most
similar neighbour for predicting miRNA-disease associa-
tions (HDMP), which measured the functional similarity
of miRNAs by integrating the phenotype similarity of
diseases and the disease terms contents [34]. HDMP im-
proved the prediction performance by integrating the
cluster or family information of miRNAs, but it is invalid
for diseases which have not experiment-supported asso-
ciated miRNAs [20]. To overcome the dependence of su-
pervised learning methods on negative sample, Chen
et al. constructed a model based on regularized least
squares for predicting miRNA-disease associations
(RLSMDA), which could be used for predicting new dis-
eases associated miRNAs without negative samples [35].
Later, Chen et al. implemented a model based on
restricted Boltzmann machine for predicting both
miRNA-disease associations and types of association
(RBMMMDA) [36]. Thereafter, Pasquier et al. con-
structed a computational model named MiRAI based on
singular value decomposition-based vector space for pre-
dicting miRNA-diseases associations, which used a high-
dimensional vector space to represent the distributional
characteristics of diseases and miRNAs, and used vector
similarity to measure associations between miRNAs and
diseases [37]. Furthermore, Chen et al. constructed a
computational model named RKNNMDA by combining
k-nearest-neighbours (KNN) and support vector ma-
chine (SVM) ranking model [38]. Moreover, Chen et al.
implemented a predicting model for miRNA-disease as-
sociations (LRSSLMDA) based on Laplacian regularized
sparse subspace learning. First, the graph theoretical fea-
tures and statistical features of the diseases and miRNAs
were projected to a communal subspace; then, a Lapla-
cian regularization was used to maintain the topical
structures of the training samples; finally, an L1-norm

constraint was utilized to choose useful features of the
diseases and miRNAs for prediction [39]. In addition,
Lan et al. implemented a prediction model named
KBMF-MDI based on kernelized Bayesian matrix
factorization with multiple-kernel learning, which mea-
sured similarity of miRNAs by the sequence and func-
tion characteristics of miRNAs and measured similarity
of diseases by the semantic and functional characteristics
of disease [40]. Li et al. constructed a predicting model
named LPLNS based on label propagation algorithm
with linear neighbourhood similarity [41]. Chen et al.
constructed a prediction model named IMCMDA based
on inductive matrix completion, which completed the
missing associations between diseases and miRNAs by
the integrated similarity of diseases, the integrated simi-
larity of miRNAs and the experiment-supported associa-
tions between diseases and miRNAs [42].
Recently, several excellent machine learning-based

prediction models for miRNA-disease associations have
been implemented. Zhao et al. developed an adaptive
boosting-based model (ABMDA), which utilized k-
means clustering-based random sampling on negative
samples to balance the positive and negative samples,
and used the weight-based weak classifier integration to
improve the accuracy of a certain machine learning
algorithm [43]. Niu et al. constructed a prediction model
based on random walk and binary regression
(RWBRMDA), which extracted the features of miRNAs
by a random walk with restart, and applied a binary
logistic regression to score novel miRNA-disease associ-
ations [44]. Peng et al. implemented a convolutional
neural network-based framework named MDA-CNN for
predicting associations between miRNAs and diseases by
combining the similarity between miRNAs, the similarity
between diseases and the interactions between proteins
[45]. By combining the topological characteristics, the
statistical information, and the matrix factorization re-
sults for miRNAs and diseases, Chen et al. constructed a
decision tree ensemble-based model (EDTMDA), which
used randomly selected features and negative samples to
trained multiple decision trees, and scored miRNA-
disease associations using an average strategy of these
decision trees [46]. Moreover, Chen et al. constructed a
RF-based model for predicting miRNA-disease associa-
tions (RFMDA). First, RFMDA integrated the semantic
similarity of diseases, the functional similarity of miR-
NAs and the GIPK similarity of diseases and miRNAs to
represent training samples; then, it implemented feature
selection based on the frequency of features in positive
and negative samples to lower the dimensionality of the
sample space; finally, it trained a RF model to score as-
sociations between diseases and miRNAs [47].
Inspired by Chen et al.’s work [47], we proposed an im-

proved RF-based model named IRFMDA for predicting
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associations between miRNAs and miRNAs. In contrast to
the RFMDA of Chen et al., IRFMDA implemented feature
selection using the RF variable importance score. Because
the variable importance score of RF considers not only the
effect of an individual feature on the sample prediction
but also the joint effect of multiple features on sample
prediction, IRFMDA can more effectively reduce the influ-
ence of redundant and noise information to select more
meaningful features to represent samples, and this can im-
prove the prediction ability of the model. The experimen-
tal results showed that the AUCs of IRFMDA achieved
0.8728, 0.9398 and 0.9363 under local LOOCV, global
LOOCV and 5-fold cross-validation, respectively, which
over-performed RFMDA and several other excellent predic-
tion models. Case studies on oesophageal cancer, lymph-
oma and lung cancer showed that 94 (oesophageal cancer),
98 (lymphoma) and 98 (lung cancer) of the top 100
disease-associated miRNAs predicted by IRFMDA were
supported by the records in the dbDEMC (v2.0) database.
The evaluation results indicated that IRFMDA was an ex-
cellent miRNA-disease association prediction model.

Results
Feature selection results
Feature selection can reduce the computational cost
while improve the prediction ability of the machine
learning algorithm. In this work, we have explored how
many and which features should be used for training

prediction models through experiments. We ranked all
features in descending order according to their variable
importance scores of RF (see Additional file 1: Table S1);
and selected the top 20, top 40, …, top 860 and all 878
features to train RF models. To ensure the reliability of
the results, we used 10-fold cross-validation to train and
test the model, and the average prediction accuracy of
the prediction models was computed. The average pre-
diction accuracy of RF models that were trained on sam-
ple sets consisting of the top 20, top 40, …, top 860 and
all 878 features are shown in Fig. 1 and Additional file 2:
Table S2. In addition, to further explore the rationality
of the feature selection based on the variable importance
score of RF, we counted the distribution of features
coming from miRNA and disease in the top 20, top 40,
…, top 860 and all 878 features, as shown in Fig. 2.
As shown in Fig. 1 and Additional file 2: Table S2, the

prediction accuracy of the RF model gradually stabilized
after the top 100 features were included, and achieved a
maximum of 0.876 on the training sample set consisting
of the top 160 features. Considering the prediction accur-
acy and training time of the model, we chose the sample
set consisting of the top 100 features (see Additional file 3:
Table S3) to train the IRFMDA model in this work. More-
over, from Fig. 2 and Additional file 1: Table S1, we can
see that the distribution of the features coming from miR-
NAs and from diseases in the top K features is uniform,
considering the number of miRNA and disease. This

Fig. 1 The prediction accuracy of RF models trained on sample sets consisting of different numbers of features. As one can see, the prediction
accuracy of the RF model gradually stabilized after the top 100 features were included, and achieved a maximum of 0.876 on the training sample
set consisting of the top 160 features
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indicates that it is reasonable to select suitable features to
represent samples based on variable importance scores.

Performance evaluation
Referring to the literature 47, we appraise the prediction
ability of IRFMDA by local LOOCV, global LOOCV and
5-fold cross-validation. All cross-validations were imple-
mented by utilizing the 5430 experiment-supported asso-
ciations between 383 diseases and 495 miRNAs in the
HMDD (v2.0) database. In global LOOCV and local
LOOCV, the positive samples are the 5430 experiment-
supported miRNA-disease associations, while all uncon-
firmed miRNA-disease relationship pairs were taken as
unlabelled samples. In each cross-validation, each positive
sample was alternately used as a test sample, and the
remaining positive samples were used to construct
IRFMDA model, which was further used to score the test
sample and all unlabelled samples. For global LOOCV, all
unlabelled samples and the test sample were sorted to-
gether in descending order according to their scores, and
then the ranking of the test sample was determined. For
local LOOCV, only the unlabelled samples with the same
disease as the test sample were sorted together with the
test sample according to their scores. For 5-fold cross-
validation, the 5430 positive samples were evenly divided
into 5 parts, and each part was alternately used as test
samples while the remaining four parts were used to train
the prediction model. Each test sample in each cross-

validation was sorted with all unlabelled samples by their
scores. No matter what kind of cross-validation, 5430
rankings of the test samples were obtained eventually in
this way. In particular, we repeated 100 runs to ensure the
reliability of the results in 5-fold cross-validation.
Like most studies, we evaluated the prediction ability of

different prediction models by the area under the receiver
operating characteristics (ROC) curve (AUC). The larger
the AUC, the better the model. In this work, we used all
unlabelled samples as negative samples, and each of them
was given a predicted score by IRFMDA. Then, all nega-
tive samples were sorted by their predicted scores and
combined with positive samples to compute the true posi-
tive rate (TPR) and the false positive rate (FPR) with differ-
ent thresholds. TPR represents the ratio of the actual
positive samples in the predicted positive samples (the test
samples that were ranked ahead of the specific threshold)
to all positive samples, while FPR represents the ratio of
the actual negative samples in the predicted positive sam-
ples (the negative samples that were ranked ahead of the
specific threshold) to all negative samples. TPR and FPR
can be calculated by eqs. 1 and 2, respectively.

TPR ¼ TP
TP þ FN

ð1Þ

FPR ¼ FP
FP þ TN

ð2Þ

Fig. 2 The distribution of features coming from miRNAs and from diseases. As one can see, the distribution of the features coming from miRNAs
and from diseases in the top K features is uniform, considering the number of miRNA and disease
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where TP (true positive) indicates that a sample is positive
and is predicted to be positive; FN (false negative) indi-
cates that a sample is positive and is predicted to be nega-
tive; FP (false positive) indicates that a sample is negative
and is predicted to be positive; TN (true negative) indi-
cates that a sample is negative and is predicted to be nega-
tive. Finally, the AUC can be computed according to the
TPR and the FPR with different thresholds.
The experimental results of different miRNA-disease

association prediction models are shown in Table 1. The
AUCs of IRFMDA under local LOOCV, global LOOCV
and 5-fold cross-validation achieved 0.8728, 0.9398 and
0.9363 respectively, that were obviously higher than all
the models participating in the comparison. Further-
more, to validate the availability of the feature selection
method we proposed, we evaluated the prediction per-
formance of RF on sample set consisting of all 878 fea-
tures. As a result, RF implemented an AUC of 0.7713
under 5-fold cross validation, that is significantly lower
than IRFMDA. The experimental results indicated that
feature selection based on variable importance score of
RF can effectively improve the prediction performance
of RF. The comparison results showed that IRFMDA
had excellent ability of miRNA-disease association pre-
diction. As a note, the AUC values of the top 10 predic-
tion models for miRNA-disease associations in Table 1
were derived from reference [47], the AUC values of
KBMF-MDI and LPLNS were derived from references
[40] and [41], respectively, and “-” represents the AUCs
were not provided in the original literature. Specifically,
our model and reference [47] utilized 5430 experiment-
supported associations between 383 diseases and 495

miRNAs in the HMDD; reference [40] utilized 6084
experiment-supported associations between 329 diseases
and 550 miRNAs in the HMDD; reference [41] utilized
4791 experiment-supported associations between 327
diseases and 353 miRNAs in the HMDD. Moreover, 10-
fold cross-validation was used in reference [41].

Case studies
To further verify the ability of IRFMDA to predict po-
tential miRNAs associated with diseases, we performed
two types of case studies on three cancers. First, we per-
formed case study on oesophageal cancer and lymph-
oma. Here, the 5430 experiment-supported miRNA-
disease associations in the HMDD (v2.0) [48] database
were taken as positive samples to train the IRFMDA
model. The top 100 of disease-related miRNAs predicted
by IRFMDA were validated by the dbDEMC (v2.0) data-
base [49], which stored 2224 abnormal expressed miR-
NAs in 36 kinds of human cancers identified by high-
throughput methods.
Oesophageal cancer and lymphoma are two common

types of human cancers. It is well known that early diag-
nosis and treatment of cancer can extend the survival
time of cancer patients. A large number of evidences
have demonstrated that the dysregulation of some miR-
NAs has a critical role in the development of cancer.
Here, IRFMDA was used to predict potential miRNAs as-
sociated with oesophageal cancer and lymphoma. For
oesophageal cancer, 30, 47, 76 and 94 of the top 30, 50, 80
and 100 miRNAs predicted by IRFMDA, were validated
by records in the dbDEMC (v2.0) (see Table 2), respect-
ively. For lymphoma, 30, 50, 79 and 98 of the top 30, 50,
80 and 100 miRNAs predicted by IRFMDA, were vali-
dated by records in the dbDEMC (v2.0) (see Table 3), re-
spectively. These results indicated that the IRFMDA had a
good ability to predict miRNA-disease associations.
In additiong to oesophageal cancer and lymphoma, we

also used IRFMDA to score miRNAs associated with
other 381 diseases in the HMDD (v.2.0), and the full
prediction results are presented in Additional file 4:
Table S4. The Additional file 4: Table S4 contains three
types of contents: names of diseases, names of miRNAs
and correlation scores predicted by IRFMDA.
To demonstrate the ability of IRFMDA to predict

novel diseases which have not any validated related miR-
NAs, the second type of case study was performed on
lung cancer. First, we trained IRFMDA on a sample set
that did not contain any validated associations between
miRNA and lung cancer. Then, we scored and sorted all
495 miRNA-lung cancer samples. Finally, we verified the
predicted miRNAs associated with lung cancer by the re-
cords in the HMDD (v3.0) and the dbDEMC (v2.0) data-
base. As a result, 100 of the predicted top 100 miRNAs
associated with lung cancer by IRFMDA were supported

Table 1 Comparison of AUC values of different miRNA-disease
association prediction models

No. Algorithm AUC value

Global LOOCV Local LOOCV 5-fold CV

1 HGIMDA 0.8781 0.8077 –

2 MCMDA 0.8749 0.7718 0.8767

3 MaxFlow 0.8624 0.7774 0.8579

4 RLSMDA 0.8426 0.6953 0.8569

5 HDMP 0.8366 0.7702 0.8432

6 WBSMDA 0.8030 0.8031 0.8185

7 MIDP – 0.8196 –

8 MiRAI – 0.6299 –

9 RWRMDA – 0.7891 –

10 RFMDA 0.8891 0.8323 0.8818

11 KBMF-MDI – – 0.8815

12 LPLNS – – 0.9127

13 IRFMDA-878 – – 0.7713

14 IRFMDA-100 0.9398 0.8728 0.9363
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by the dbDEMC (v2.0) database, and 80 of the predicted
top 100 miRNAs associated with lung cancer by
IRFMDA were supported by the HMDD (v3.0) database
(see Table 4). The case study on lung cancer fully
showed that IRFMDA has an excellent ability to identify
miRNAs related to novel diseases.

Discussion
Since the discovery of the first miRNA, numerous experi-
ments have demonstrated that the abnormal regulation of
miRNAs is closely associated with many complex human
diseases. MiRNA-disease association identification is key
for exploring the pathogenesis and treatment options of
diseases. However, it is not only high cost but also time
consuming to discover miRNAs associated with diseases
by biological experiments. Therefore, researchers devel-
oped a number of computational models to predict
disease-related miRNAs. Inspired by Chen et al.’s work

[47], we developed an IRFMDA model based on RF to
predict potential miRNA-disease associations.
Different from RFMDA proposed by Chen et al. [47],

IRFMDA implemented a feature selection based on the
variable importance score of RF, which can reduce the
influence of redundant and noise information on sample
prediction and improve the prediction ability of the RF.
In terms of AUCs under three types of cross-validation,
IRFMDA is significantly better than several excellent
models, such as RFMDA, KBMF-MDI and LPLNS.
Moreover, case studies on oesophageal cancer, lymph-
oma and lung cancer further demonstrate that IRFMDA
is a better and reliable prediction model.
Through analysis, we identified several factors that en-

able IRFMDA to achieve excellent performance. First,
IRFMDA represents miRNA-disease samples by the fea-
ture vector that integrates experiment-supported miRNA-
disease associations, the semantic similarity of diseases,
the functional similarity of miRNAs and the GIPK

Table 2 Top 100 esophageal cancer-associated miRNAs predicted by IRFMDA using the experiment-supported miRNA-disease
associations in the HMDD (v2.0). The top 1–25, top 26–50, top 51–75, and top 76–100 miRNAs associated with esophageal cancer
are listed in the first, third, fifth and seventh column, respectively. As one can see, 30, 47, 76 and 94 of the top 30, top 50, top 80
and top 100 were validated by dbDEMC2.0 database

miRNA Evidence miRNA Evidence miRNA Evidence miRNA Evidence

hsa-mir-29b dbDEMC2.0 hsa-mir-224 dbDEMC2.0 hsa-mir-128 dbDEMC2.0 hsa-mir-542 dbDEMC2.0

hsa-mir-17 dbDEMC2.0 hsa-mir-107 dbDEMC2.0 hsa-mir-497 dbDEMC2.0 hsa-mir-122 dbDEMC2.0

hsa-mir-195 dbDEMC2.0 hsa-mir-222 dbDEMC2.0 hsa-let-7e dbDEMC2.0 hsa-mir-132 dbDEMC2.0

hsa-mir-200b dbDEMC2.0 hsa-mir-29a dbDEMC2.0 hsa-mir-302b unconfirmed hsa-mir-127 dbDEMC2.0

hsa-mir-125b dbDEMC2.0 hsa-mir-1 dbDEMC2.0 hsa-mir-378a dbDEMC2.0 hsa-mir-211 dbDEMC2.0

hsa-mir-146b dbDEMC2.0 hsa-mir-429 dbDEMC2.0 hsa-mir-204 dbDEMC2.0 hsa-mir-367 dbDEMC2.0

hsa-mir-18a dbDEMC2.0 hsa-mir-24 dbDEMC2.0 hsa-mir-149 dbDEMC2.0 hsa-mir-371a dbDEMC2.0

hsa-mir-19b dbDEMC2.0 hsa-mir-9 dbDEMC2.0 hsa-mir-27b dbDEMC2.0 hsa-mir-96 dbDEMC2.0

hsa-mir-30a dbDEMC2.0 hsa-mir-212 unconfirmed hsa-mir-135a dbDEMC2.0 hsa-mir-424 dbDEMC2.0

hsa-let-7f dbDEMC2.0 hsa-mir-106b dbDEMC2.0 hsa-mir-138 dbDEMC2.0 hsa-mir-191 dbDEMC2.0

hsa-mir-142 dbDEMC2.0 hsa-mir-133b dbDEMC2.0 hsa-mir-372 dbDEMC2.0 hsa-mir-449a dbDEMC2.0

hsa-mir-181a dbDEMC2.0 hsa-mir-10b dbDEMC2.0 hsa-mir-504 dbDEMC2.0 hsa-mir-32 dbDEMC2.0

hsa-mir-218 dbDEMC2.0 hsa-mir-30c dbDEMC2.0 hsa-mir-328 dbDEMC2.0 hsa-mir-185 dbDEMC2.0

hsa-mir-199b dbDEMC2.0 hsa-mir-181b dbDEMC2.0 hsa-mir-30e dbDEMC2.0 hsa-mir-95 dbDEMC2.0

hsa-mir-16 dbDEMC2.0 hsa-mir-15b dbDEMC2.0 hsa-mir-23b dbDEMC2.0 hsa-mir-302e unconfirmed

hsa-mir-106a dbDEMC2.0 hsa-mir-125a dbDEMC2.0 hsa-mir-152 dbDEMC2.0 hsa-mir-323a dbDEMC2.0

hsa-mir-221 dbDEMC2.0 hsa-mir-206 dbDEMC2.0 hsa-mir-92b dbDEMC2.0 hsa-mir-483 dbDEMC2.0

hsa-mir-93 dbDEMC2.0 hsa-mir-20b dbDEMC2.0 hsa-mir-184 dbDEMC2.0 hsa-mir-519a dbDEMC2.0

hsa-mir-18b dbDEMC2.0 hsa-mir-373 dbDEMC2.0 hsa-mir-302d dbDEMC2.0 hsa-mir-208a unconfirmed

hsa-let-7d dbDEMC2.0 hsa-mir-140 dbDEMC2.0 hsa-mir-885 dbDEMC2.0 hsa-mir-134 dbDEMC2.0

hsa-mir-124 dbDEMC2.0 hsa-mir-137 unconfirmed hsa-mir-338 dbDEMC2.0 hsa-mir-23a dbDEMC2.0

hsa-let-7 g dbDEMC2.0 hsa-mir-10a dbDEMC2.0 hsa-mir-491 dbDEMC2.0 hsa-mir-489 dbDEMC2.0

hsa-mir-182 dbDEMC2.0 hsa-mir-26b dbDEMC2.0 hsa-mir-139 dbDEMC2.0 hsa-mir-197 dbDEMC2.0

hsa-mir-7 dbDEMC2.0 hsa-mir-302c unconfirmed hsa-mir-151a dbDEMC2.0 hsa-mir-326 dbDEMC2.0

hsa-let-7i dbDEMC2.0 hsa-mir-193b dbDEMC2.0 hsa-mir-181c dbDEMC2.0 hsa-mir-495 dbDEMC2.0
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similarity of diseases and miRNAs. Second, IRFMDA imple-
ments feature selection based on the variable importance
score of RF, which considers not only the effect of an individ-
ual feature on the sample prediction but also the joint effect
of multiple features on sample prediction. Finally, RF can im-
plement an unbiased generalization error estimator which
makes IRFMDA achieve good generalization performance.
There are several limitations to IRFMDA. First,

IRFMDA is a supervised machine learning model, which
requires both positive samples and negative samples.
However, negative samples are usually unavailable for
predicting miRNA-disease associations. The negative
samples constructed by randomly selecting unverified
miRNA-disease associations may weaken the prediction
ability of IRFMDA. In addition, the limited knowledge of
miRNA-disease association may constrain the prediction
performance of IRFMDA. Furthermore, except for
miRNA and disease similarity, more miRNA- and
disease-related information may be integrated to train

RF model in next work. Therefore, we will attempt to
improve IRFMDA to obtain better prediction perform-
ance in the future.

Conclusions
To identify disease-associated miRNAs is important for
exploring the mechanism of miRNAs in diseases. Pre-
dicting miRNA-disease associations by computational
methods can provide guidance for biological experi-
ments. Inspired by the work of predecessors, we pro-
posed an improved RF-based prediction model for
miRNA-disease associations (IRFMDA). First, IRFMDA
represented training samples by feature vector integrat-
ing the disease semantic similarity, the disease GIPK
similarity, the miRNA functional similarity and the
miRNA GIPK similarity. Then, IRFMDA implemented
feature selection based on variable importance score of
RF to choose more useful features to train prediction
model. Finally, IRFMDA trained RF regression model to

Table 3 Top 100 lymphoma-associated miRNAs predicted by IRFMDA using the experiment-supported miRNA-disease associations
in the HMDD (v2.0). The top 1–25, top 26–50, top 51–75, and top 76–100 miRNAs associated with lymphoma are listed in the first,
third, fifth and seventh column, respectively. As one can see, 30, 50, 79 and 98 of the top 30, top 50, top 80 and top 100 were
validated by dbDEMC2.0 database

miRNA Evidence miRNA Evidence miRNA Evidence miRNA Evidence

hsa-let-7b dbDEMC2.0 hsa-mir-27a dbDEMC2.0 hsa-mir-26b dbDEMC2.0 hsa-mir-451a dbDEMC2.0

hsa-mir-199a dbDEMC2.0 hsa-let-7a dbDEMC2.0 hsa-mir-107 dbDEMC2.0 hsa-mir-296 dbDEMC2.0

hsa-mir-222 dbDEMC2.0 hsa-mir-133a dbDEMC2.0 hsa-mir-7 dbDEMC2.0 hsa-mir-302d dbDEMC2.0

hsa-let-7c dbDEMC2.0 hsa-mir-106a dbDEMC2.0 hsa-mir-338 dbDEMC2.0 hsa-mir-137 dbDEMC2.0

hsa-mir-9 dbDEMC2.0 hsa-mir-141 dbDEMC2.0 hsa-mir-193a dbDEMC2.0 hsa-mir-130b dbDEMC2.0

hsa-mir-223 dbDEMC2.0 hsa-mir-100 dbDEMC2.0 hsa-mir-29a dbDEMC2.0 hsa-mir-127 dbDEMC2.0

hsa-mir-143 dbDEMC2.0 hsa-mir-206 dbDEMC2.0 hsa-mir-30a dbDEMC2.0 hsa-mir-30d dbDEMC2.0

hsa-mir-183 dbDEMC2.0 hsa-mir-199b dbDEMC2.0 hsa-mir-25 dbDEMC2.0 hsa-mir-215 dbDEMC2.0

hsa-mir-182 dbDEMC2.0 hsa-mir-192 dbDEMC2.0 hsa-mir-22 dbDEMC2.0 hsa-mir-367 dbDEMC2.0

hsa-mir-34c dbDEMC2.0 hsa-mir-34b dbDEMC2.0 hsa-let-7e dbDEMC2.0 hsa-mir-449a dbDEMC2.0

hsa-mir-31 dbDEMC2.0 hsa-mir-93 dbDEMC2.0 hsa-mir-148a dbDEMC2.0 hsa-mir-152 dbDEMC2.0

hsa-mir-375 dbDEMC2.0 hsa-mir-23a dbDEMC2.0 hsa-mir-194 dbDEMC2.0 hsa-mir-130a dbDEMC2.0

hsa-let-7i dbDEMC2.0 hsa-mir-302b dbDEMC2.0 hsa-mir-302c dbDEMC2.0 hsa-mir-128 dbDEMC2.0

hsa-mir-146b dbDEMC2.0 hsa-mir-145 dbDEMC2.0 hsa-mir-193b dbDEMC2.0 hsa-mir-491 unconfirmed

hsa-mir-205 dbDEMC2.0 hsa-mir-196a dbDEMC2.0 hsa-mir-302a dbDEMC2.0 hsa-mir-376a dbDEMC2.0

hsa-mir-142 dbDEMC2.0 hsa-mir-140 dbDEMC2.0 hsa-mir-30c dbDEMC2.0 hsa-mir-28 dbDEMC2.0

hsa-let-7 g dbDEMC2.0 hsa-mir-378a dbDEMC2.0 hsa-mir-212 dbDEMC2.0 hsa-mir-197 dbDEMC2.0

hsa-let-7f dbDEMC2.0 hsa-mir-373 dbDEMC2.0 hsa-mir-429 unconfirmed hsa-mir-99a dbDEMC2.0

hsa-let-7d dbDEMC2.0 hsa-mir-34a dbDEMC2.0 hsa-mir-149 dbDEMC2.0 hsa-mir-320a dbDEMC2.0

hsa-mir-181b dbDEMC2.0 hsa-mir-191 dbDEMC2.0 hsa-mir-96 dbDEMC2.0 hsa-mir-23b dbDEMC2.0

hsa-mir-10b dbDEMC2.0 hsa-mir-214 dbDEMC2.0 hsa-mir-181c dbDEMC2.0 hsa-mir-452 dbDEMC2.0

hsa-mir-195 dbDEMC2.0 hsa-mir-196b dbDEMC2.0 hsa-mir-370 dbDEMC2.0 hsa-mir-663a dbDEMC2.0

hsa-mir-125b dbDEMC2.0 hsa-mir-106b dbDEMC2.0 hsa-mir-204 dbDEMC2.0 hsa-mir-1 dbDEMC2.0

hsa-mir-151a dbDEMC2.0 hsa-mir-27b dbDEMC2.0 hsa-mir-29b dbDEMC2.0 hsa-mir-365a dbDEMC2.0

hsa-mir-15b dbDEMC2.0 hsa-mir-30e dbDEMC2.0 hsa-mir-103a dbDEMC2.0 hsa-mir-181d dbDEMC2.0
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score potential miRNA-disease associations. The AUCs
under three kinds of cross-validations, and two kinds of
case studies on three cancers, demonstrated that
IRFMDA has excellent ability to predict associations be-
tween diseases and miRNAs. Therefore, we anticipate
that IRFMDA can help researchers perform experimen-
tal studies on the regulatory role of miRNAs in complex
human diseases.

Methods
Experiment-supported miRNA-disease associations
First, we obtained the 5430 experiment-supported
miRNA-disease associations from the HMDD (v2.0)
database [48], which covered 495 miRNAs and 383 dis-
eases. Then, an nd × nm adjacency matrix DMAM was
constructed, where nd (=383) represents the number of
rows (diseases) and nm (=495) represents the number of
columns (miRNAs). The value of the element
DMAM(d(i),m(j)) was set as 1 when disease d(i) was

validated to be associated with miRNA m(j) by experi-
ments; otherwise, 0.

Functional similarity of miRNAs
Under the supposition that miRNAs with analogous
functions are inclined to be related to diseases with
analogous phenotypes and vice versa, the functional
similarity score between two miRNAs could be com-
puted. First, we obtained the functional similarity of 495
miRNAs from Cui’s lab website [33]. Next, we built a
495 × 495 miRNA similarity matrix MFSM, where the
value of the element MFSM(m(i),m(j)) was set as the
functional similarity score between m (i) and m(j)
miRNAs.

Semantic similarity score 1 of diseases
The semantic similarity of diseases was calculated based
on MeSH [50] descriptors by Chen et al.’s method [47].
According to MeSH descriptors, we first constructed a

Table 4 Top 100 lung cancer-associated miRNAs predicted by IRFMDA after deleting all validated miRNA-lung cancer associations in
the HMDD (v2.0). The top 1–25, top 26–50, top 51–75, and top 76–100 miRNAs associated with lung cancer are listed in the first,
third, fifth and seventh column respectively. As one can see, 100 of the top 100 miRNAs associated with lung cancer predicted by
IRFMDA were validated by HMDD v3.0 or dbDEMC v2.0. “D” represents “dbDEMC v2.0”, “H” represents “HMDD v3.0”

miRNA Evidence miRNA Evidence miRNA Evidence miRNA Evidence

hsa-let-7a D & H hsa-mir-19b D & H hsa-mir-30b D & H hsa-mir-449a D & H

hsa-let-7 g D & H hsa-mir-20a D & H hsa-let-7b D & H hsa-mir-93 D

hsa-mir-124 D & H hsa-mir-375 D & H hsa-let-7c D & H hsa-let-7f D & H

hsa-mir-133b D & H hsa-mir-486 D & H hsa-mir-133a D & H hsa-mir-107 D & H

hsa-mir-143 D & H hsa-mir-497 D & H hsa-mir-142 D & H hsa-mir-128 D & H

hsa-mir-146b D & H hsa-mir-92a D & H hsa-mir-200b D & H hsa-mir-302c D

hsa-mir-148a D & H hsa-mir-183 D & H hsa-mir-200a D & H hsa-mir-135a D & H

hsa-mir-181a D & H hsa-mir-139 D & H hsa-mir-146a D & H hsa-mir-339 D

hsa-mir-182 D & H hsa-mir-372 D & H hsa-mir-221 D & H hsa-mir-423 D & H

hsa-mir-199a D & H hsa-mir-373 D & H hsa-mir-27a D & H hsa-mir-137 D

hsa-mir-223 D & H hsa-mir-106b D hsa-mir-34a D & H hsa-mir-520d D & H

hsa-mir-29c D & H hsa-mir-92b D hsa-mir-141 D & H hsa-mir-205 D & H

hsa-mir-31 D & H hsa-mir-452 D hsa-mir-16 D & H hsa-mir-708 D

hsa-mir-34c D & H hsa-mir-302d D hsa-mir-135b D & H hsa-mir-191 D & H

hsa-mir-7 D & H hsa-let-7d D & H hsa-mir-18b D & H hsa-mir-378a D

hsa-mir-15a D & H hsa-mir-429 D hsa-mir-338 D & H hsa-let-7i D & H

hsa-mir-195 D & H hsa-mir-302a D hsa-mir-152 D & H hsa-mir-200c D & H

hsa-mir-125a D & H hsa-mir-32 D & H hsa-mir-215 D & H hsa-mir-29b D & H

hsa-mir-125b D & H hsa-mir-1 D & H hsa-mir-367 D hsa-mir-224 D & H

hsa-mir-126 D & H hsa-mir-196a D & H hsa-mir-122 D & H hsa-mir-29a D & H

hsa-mir-145 D & H hsa-mir-25 D hsa-mir-134 D & H hsa-mir-30c D & H

hsa-mir-155 D & H hsa-mir-34b D hsa-mir-130a D & H hsa-mir-140 D & H

hsa-mir-17 D & H hsa-mir-342 D hsa-mir-574 D & H hsa-mir-193a D & H

hsa-mir-18a D & H hsa-mir-218 D hsa-mir-206 D & H hsa-mir-193b D

hsa-mir-199b D & H hsa-mir-328 D hsa-mir-204 D hsa-mir-30e D & H
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directed acyclic graph (DAG) for a disease D. In a
DAG(D), the vertexes consist of the disease D and its
ancestral vertex, and each directed edges indicates a
connection from the parent vertex to the child vertex
[47]. Based on the DAG(D), the semantic score of a dis-
ease D is calculated by eq. 3.

DS1 Dð Þ ¼
X

d∈S Dð Þ
CS1D dð Þ ð3Þ

where S(D) represents a collection of all vertexes of
DAG(D), and CS1D(d) represents the score that a disease
d in DAG(D) contributes to the semantic value of the
disease D and is calculated by eq. 4.

CS1D dð Þ ¼ 1 if d ¼ D

CS1D dð Þ ¼ max Δ�CS1D d
0� �
jd0

∈children of d
n o

if d≠D

(

ð4Þ

Here, Δ is the semantic contribution attenuation coef-
ficient. As seen from eq. 2, the contribution score of dis-
ease D to itself is equal to 1, while the contribution
score of other diseases to disease D decreased as the
length between disease D and the other diseases in-
creased. In this article, Δ was set as 0.5 based on previ-
ous studies [33].
Based on the supposition that the larger the DAGs

area they share, the more similar two diseases, the se-
mantic similarity score 1 between d(i) and d(j) is calcu-
lated by eq. 5.

DSS1 d ið Þ; d jð Þð Þ ¼
P

d∈S d ið Þð Þ∩S d jð Þð Þ CS1d ið Þ dð Þ þ CS1d jð Þ dð Þ� �
DS1 d ið Þð Þ þ DS1 d jð Þð Þ

ð5Þ

According to eq. 5, we constructed a 383 × 383 disease
semantic similarity matrix DSS1 in which the element
DSS1(d(i), d(j) ) represents the semantic similarity score
1 between d(i) and d(j) diseases.

Semantic similarity score 2 of diseases
For the semantic similarity score 1 of diseases, if two or
more diseases are located at the same layer of DAG(D),
their contributions to the semantic similarity score of D
are the same. However, that is not the case. If some dis-
eases exist in different amount of DAGs, then their con-
tributions may be different. In this case, the diseases
existing in more DAGs may have less contributions than
those existing in fewer DAGs [37]. Therefore, we intro-
duced a second disease semantic similarity model.
Adopting Xuan et al.’s method [31], the contribution
score of a disease d in DAG(D) to the semantic value of
disease D is calculated by eq. 6.

CS2D dð Þ ¼ − log
the number of DAGs including d

the number of diseases

� �

ð6Þ

Accordingly, the semantic score of disease D is calcu-
lated by eq. 7.

DS2 Dð Þ ¼
X

d∈S Dð Þ
CS2D dð Þ ð7Þ

where S(D) represents the vertex set of DAG(D). Then,
the semantic similarity score 2 between d(i) and d(j) is
calculated by eq. 8.

DSS2 d ið Þ; d jð Þð Þ ¼
P

d∈S d ið Þð Þ∩S d jð Þð Þ CS2d ið Þ dð Þ þ CS2d jð Þ dð Þ� �
DS2 d ið Þð Þ þ DS2 d jð Þð Þ

ð8Þ

Similarly, according to eq. 8, we constructed a 383 ×
383 matrix DSS2 to represent the semantic similarity of
diseases, and the element DSS2(d(i), d(j) ) represents the
semantic similarity score 2 between d(i) and d(j)
diseases.

Gaussian interaction profile kernel similarity of diseases
Under the supposition that diseases with analogous
phenotype are inclined to be associated with miRNAs
with analogous function and vice versa, the GIPK simi-
larity of diseases can be calculated [51]. First, we con-
structed a binary vector IP(d(i)) to record the
associations between disease d(i) and each of the 495
miRNAs. If there is an experiment-supported association
between them, the corresponding element value of IP(d(i))
is set as 1; otherwise, 0. Then, the GIPK similarity between
two disease, d(i) and d(j), is computed by eq. 9.

DKS d ið Þ; d jð Þð Þ ¼ exp −αd IP d ið Þð Þ−k IP d jð Þð Þk2� �
ð9Þ

where αd is utilized to adjust the bandwidth of kernel,
and can be calculated by normalizing the original band-
width parameter αd

′ by eq. 10.

αd ¼ αd
0
=

1
nd

Xnd

i¼1
IP d ið Þð Þk k2

� �
ð10Þ

where nd represents the number of all diseases studied.
According to the previous study [43], the value of αd

′

here is 1.

Gaussian interaction profile kernel similarity of miRNAs
Similarly, the GIPK similarity between two miRNAs,
m(i) and m(j), is computed by eqs. 11 and 12.
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MKS m ið Þ;m jð Þð Þ ¼ exp −αm IP m ið Þð Þ−k IP m jð Þð Þk2� �
ð11Þ

αm ¼ αm
0
=

1
nm

Xnm

i¼1
IP m ið Þð Þk k2

� �
ð12Þ

where IP(m(i)) is a binary vector that records the associ-
ations between miRNA m(i) and each of the 383 dis-
eases. If there is an experiment-supported association
between them, the corresponding element value of
IP(m(i)) is set as 1; otherwise, 0. Similar to αd

′, αm
′ is set

as 1 here according to previous study [43].

Integrated similarity of diseases
According to Chen et al.’s method [25, 33, 37], we con-
structed an integrated disease similarity matrix IDSM by
integrating the semantic similarity score 1, the semantic
similarity score 2 and the GIPK similarity of diseases.
The element IDSM(d(i), d(j) ) of the IDSM is computed
by equation 13, which indicates the integrated disease
similarity between d(i) and d(j) diseases.

IDSM d ið Þ; d jð Þð Þ ¼
DSS1 d ið Þ; d jð Þð Þ þ DSS2 d ið Þ; d jð Þð Þ

2
if d ið Þ and d jð Þ have semantic similarity

DKS d ið Þ; d jð Þð Þ otherwise

(

ð13Þ
where d(i) and d(j) have semantic similarity if both d(i)
and d(j) have their own DAGs.

Integrated similarity of miRNAs
Similarly, we integrated the functional similarity and the
GIPK similarity of miRNAs to construct an integrated
similarity matrix of miRNA, named IMSM. The element
IMSM(m(i),m(j) ) of the IMSM is computed by equation
14, which represents the integrated similarity between
m(i) and m(j) miRNAs.

IMSM m ið Þ;m jð Þð Þ ¼ MFSM m ið Þ;m jð Þð Þ if m ið Þ and m jð Þ have functional similarity
MKS m ið Þ;m jð Þð Þ otherwise

�

ð14Þ

Variable importance score of RF
RF is a popular machine learning algorithm that can be
applied for not only classification but also regression
[52]. RF integrates bootstrap and random sample split-
ting techniques. By bootstrap-based random resampling
with replacement, many decision trees are trained and
integrated into a forest to predict the category or target
variable values of unknown samples. In addition, differ-
ent from the general decision tree model, a given num-
ber of input variables are randomly selected to perform
a split node at each node, and no pruning step is per-
formed in the process of training decision trees in a RF.
Through these techniques, a RF can achieve outstanding
and robust performance. Therefore, RF has been widely

used in many bioinformatics tasks in the past two
decades.
The variable importance score is a characteristic func-

tion of RF, which is defined as the average reduction
value of classification accuracy before and after minor
disturbance of the variable of OOB (out-of-bag) samples.
The variable importance score considers not only the in-
dividual impact of each variable but also the multivariate
interactions with other variables. Given a set of boot-
strap sampling b = 1, 2, …, B, the importance score Sj of
variable Xj can be computed as follows [52]:

1. For b = 1, the training sample set is represented by
TSSb, and the out-of-bag data are represented by
Loobb ;

2. Train decision tree Tb on TSSb;
3. Use Tb for prediction on Loobb , and the prediction

accuracy is represented by Roob
b ;

4. Randomly perturb the value of the variable Xj of
each sample in Loobb until its association with the
target variable is broken, and the perturbed dataset
is represented by Loobbj ;

5. Use Tb for prediction on Loobbj , and the prediction
accuracy is represented by Roob

bj ; if the original

variable is associated with the target variable, the
prediction accuracy will reduce substantially.

6. For b = 2, …, B, repeat steps 1–5;
7. The importance score Sj of variable Xj is computed

by equation 15.

S j ¼ 1
B

XB

1
Roob
b −Roob

bj

� �
ð15Þ

where the variable B represents the times of resampling
for constructing RF, which corresponds to the ntree par-
ameter of the RF algorithm, that is, the number of deci-
sion trees in the forest. B or ntree should not be set to
too small a number, to ensure that every input row is
predicted at least a few times. In this work, we use the
default value of the randomForest model, that is, ntree is
set to 500. For more information on the variable import-
ance of RF, see reference [53].

IRFMDA
Inspired by RFMDA proposed by Chen et al. [47], in this
paper, we implemented an improved RF-based predic-
tion model for miRNA-disease associations (IRFMDA).
IRFMDA can be constructed by four steps (see Fig. 3):
(1) sample selection; (2) sample representation; (3) fea-
ture selection; (4) model training and sample prediction.
The biggest difference between RFMDA and IRFMDA
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lies in the different feature selection method in the third
step. Next, we introduce the above steps in detail.
In step 1, we selected the same number of negative

samples as the positive samples to construct a training
sample set. First, we used 5430 experiment-supported
associations between miRNAs and disease from HMDD
(v2.0) as positive samples. Then, we randomly selected
5430 pairs of unconfirmed miRNA-disease associations
as negative samples. Specifically, 5430 negative samples
were selected according to the following method: we
first randomly chose a disease from 383 diseases; next,

we randomly chose a miRNA from 495 miRNAs; next,
we combined the randomly selected disease and miRNA
as a negative sample if the combined miRNA-disease as-
sociation was not contained in HMDD (v2.0); at last, we
repeated the above steps until 5430 negative samples
were obtained. Finally, we combined the positive sam-
ples and the negative samples into a training sample set
consisting of 10,860 samples.
In step 2, we constructed a feature vector to represent

samples. First, we computed the integrated disease simi-
larity between each pair of diseases and the integrated

Fig. 3 Flowchart of the IRFMDA model for predicting potential associations between miRNAs and diseases
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miRNA similarity between each pair of miRNAs by
equations 13 and 14. As a result, we obtained a 383-
dimensional vector consisting of 383 integrated disease
similarity scores to represent each disease, and a 495-
dimensional vector consisting of 495 integrated miRNA
similarity scores to represent each miRNA. Then, we
represented each sample by an 878-dimensional feature
vector consisting of combining the 383 integrated dis-
ease similarity score and 495 integrated miRNA similar-
ity score as equation 16.

FmiRNA−disease ¼ f 1; f 2;⋯; f 495; f 496;⋯; f 878ð Þ ð16Þ
where (f1, f2,⋯, f495) represents the 495 integrated
miRNA similarity scores, and (f496,⋯, f878) represents
the 383 integrated disease similarity scores. Finally, fi
was normalized to fi

′ by equation 17.

f i
0 ¼ f i− f min

f max− f min
ð17Þ

Where fmin and fmax are the minimum and the max-
imum of fi (i = 1, 2, …, 878), respectively.
In step 3, we performed feature selection to reduce the

interference of the redundant and noise information on
sample prediction and to improve the prediction ability
of the RF model. Here, we implemented feature selection
based on the variable importance score of RF. First, we
computed the variable importance score of each feature
by training a RF model on a sample set consisting of all
838 features. Then, we ranked all features in descending
order according to their variable importance scores.
Next, we selected 20, 40, …, 860, 878 features to train
the RF model; and finally chose the feature set with the
higher prediction accuracy as the final training set. Ac-
cording to the experimental results, we chose the top
100 features with the highest variable importance scores
to represent the training samples. To ensure reliability,
we adopted 10-fold cross-validation when calculating the
variable importance score. The average value of variable
importance scores in 10-fold was used to rank the vari-
ables. Because the variable importance score of RF con-
siders not only the impact of an individual feature on
the response variable but also the interaction of multiple
features on the response variable, the feature selection
method based on the variable importance score of RF
can select more distinguishing features to characterize
the sample and improve the prediction performance of
the model.
In the last step, we trained a RF prediction model on a

training sample set consisting of the top 100 most im-
portant features through running the randomForest
package on the R platform. In the training sample set,
each sample was recorded as a 100-dimensional vector
according to steps 2 and 3, and each positive sample was

labelled as 1 while each negative sample was labelled as
0. As a result, we got a RF regression model that could
give a score for each unknown miRNA-disease pairs.
The larger the score of a miRNA-disease pair, the
greater the likelihood of association between the disease
and the miRNA. Finally, it is worth noting that the mtry
and the ntree, two parameters of randomForest, were set
to 33 (the number of features / 3) and 500, respectively,
according to the recommended values.
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