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Abstract

Background: Computational methods provide approaches to identify epitopes in protein Ags to help characterizing
potential biomarkers identified by high-throughput genomic or proteomic experiments. PEPOP version 1.0 was developed
as an antigenic or immunogenic peptide prediction tool. We have now improved this tool by implementing 32 new
methods (PEPOP version 2.0) to guide the choice of peptides that mimic discontinuous epitopes and thus potentially able
to replace the cognate protein Ag in its interaction with an Ab. In the present work, we describe these new methods and
the benchmarking of their performances.

Results: Benchmarking was carried out by comparing the peptides predicted by the different methods and
the corresponding epitopes determined by X-ray crystallography in a dataset of 75 Ag-Ab complexes. The
Sensitivity (Se) and Positive Predictive Value (PPV) parameters were used to assess the performance of these
methods. The results were compared to that of peptides obtained either by chance or by using the
SUPERFICIAL tool, the only available comparable method.

Conclusion: The PEPOP methods were more efficient than, or as much as chance, and 33 of the 34 PEPOP
methods performed better than SUPERFICIAL. Overall, “optimized” methods (tools that use the traveling
salesman problem approach to design peptides) can predict peptides that best match true epitopes in most
cases.

Keywords: Discontinuous B-cell epitope, Peptide design, Molecular mimicry, Antigen-antibody interaction,
Protein-protein interactions (PPI), Protein surface, Structural bioinformatics, Immunogenicity, Antigenicity,
Benchmarking

Background
Ag-Ab interactions are at the heart of the humoral immune
response. B-cell epitopes correspond to the regions of the
protein Ag that are recognized by the Ab paratope. Epitopes
can be continuous (a linear fragment of the protein se-
quence) or discontinuous (constituted of several fragments
scattered in the protein sequence, but nearby on the surface
of the folded protein) [1–3]. Most protein epitopes are dis-
continuous [4, 5] and therefore very difficult to map. Epitope
identification and characterization are, however, pivotal steps
in the development of immunodiagnostic tests [6], epitope-
driven vaccines [7] and drug design as well as in protein

function discovery, biochemical assays or proteomic studies
for biomarker discovery. Epitopes can be mapped using vari-
ous experimental methods [8–12] among which crystallo-
graphic analysis of Ag-Ab complexes is considered to give
the most reliable information [13, 14]. These techniques are,
however, time-, resource- and labor-consuming, and, thus,
unsuitable for proteomic applications. Computational
methods could be an attractive alternative. B-cell epitope
prediction methods [9, 15–17] try to bioinformatically pre-
dict the Ab binding site on a protein sequence or on the 3D
structure of a protein Ag. However, epitopes are not struc-
tural entities on their own. Epitopes and paratopes are
relational entities that are defined by their mutual comple-
mentarity [18]. Thus, trying to predict a priori the identity of
a protein epitope is a difficult task. For this reason, epitope
predictors that take into account the sequence or structure
of the Ab have been developed [19–21], but are of limited

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

* Correspondence: violaine.moreau@cbs.cnrs.fr
†Claude Granier and Violaine Moreau contributed equally to this work.
8CNRS, UMR5048, INSERM, U1054, Université Montpellier, Centre de
Biochimie Structurale, 29, route de Navacelles, 34090 Montpellier, France
Full list of author information is available at the end of the article

Demolombe et al. BMC Bioinformatics          (2019) 20:738 
https://doi.org/10.1186/s12859-019-3189-3

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-019-3189-3&domain=pdf
http://orcid.org/0000-0001-8298-9999
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:violaine.moreau@cbs.cnrs.fr


application since available Ab structures are scarce. More-
over, benchmark studies have highlighted that tools for pre-
dicting continuous epitopes have low efficiency [22–24] and
that methods based on the Ag 3D structure show limited
sensitivity (Se) and positive predictive value (PPV) [25].
We approached this issue from a slightly different point of

view. Considering that the surface of a protein is a mosaic of
potential antigenic epitopes, each of which could be bound
by a cognate Ab [26], we developed PEPOP [27, 28] to gen-
erate series of peptide sequences that can replace continuous
or discontinuous epitopes in their interaction with their cog-
nate Ab. Differently from discontinuous epitope predictors
where the output prediction is either a list of amino acids
(aa) or small protein fragments [29–31], PEPOP proposes
peptide sequences that can be used directly in experiments.
This tool promises to facilitate the manipulation of proteins
in a way dealing with the output of proteomic studies.
We have previously validated the capacity of PEPOP

1.0 to generate immunogenic [27] and antigenic peptides
that can be experimentally probed with Abs to disclose
the cognate epitopes [32–35].
As most Abs against protein Ags recognize discontinu-

ous epitopes, peptide design methods should take into
account the structural information and try to guess
(mimic) the epitope discontinuity. We thus improved
the PEPOP tool (version 2.0) by focusing on methods for
better predicting peptides aimed at mimicking discon-
tinuous epitopes. It is now possible using PEPOP to gen-
erate large series of peptides that, collectively, should
represent the accessible surface of the protein with its
mosaic of putative epitopes. Consequently, within these
large series of peptides, at least some should appropri-
ately mimic antigenic epitopes.
In the present work, we describe these new methods

and the benchmarking of their performances. To this
aim, we used a comprehensive methodology and a series
of test proteins for which epitopes have been experimen-
tally determined by X-ray crystallography, which is the
reference method. We show that the performance of
each method is specific and that one method (TSPaa)
performs better in these specific benchmarking condi-
tions. We also compared the peptides designed by the
different PEPOP methods with those predicted by
SUPERFICIAL, in which the 3D structure of the protein
surface is transformed into a peptide library [36], or by
chance. PEPOP is available at https://www.sys2diag.cnrs.
fr/index.php?page=pepop.

Results
PEPOP principle
PEPOP is an algorithm dedicated to the design of pep-
tides that are predicted to replace a protein epitope in
its interaction with an Ab [27]. To bioinformatically de-
sign a peptide from the 3D structure of a given protein,

a reference is chosen as a starting point. This can be a
surface-accessible aa or a segment (i.e., a fragment of the
protein composed of accessible and contiguous aa, from
one to n aa, in the sequence) determined by PEPOP.
After the identification of the aa or segments neighbor-
ing the reference, a method is used to delineate a path
between them and to link them in order to generate the
designed peptide. The aa or segments neighboring the
reference are selected in an area of extension that can be
either a cluster or a patch. To form a cluster, PEPOP
groups segments according to their spatial distances. A
patch is defined around the reference. A requested
peptide length has to be specified by the user in some
methods. PEPOP proposes 35 methods: one method
(the FPS method already included in PEPOP 1.0) gen-
erates peptides representing continuous epitopes,
whereas the other 34 methods (of which NN and
ONN were already present in PEPOP 1.0) are focused
on peptides mimicking discontinuous epitopes.

PEPOP web site
The web site of PEPOP [28] is composed of three sec-
tions corresponding to different ways to use PEPOP 2.0
in experimental projects. The section “One specific Pep-
tide Design” is dedicated to the prediction of a solely
peptide, for example to use as immunogen to generate
anti-protein Abs. For the prediction, parameters are se-
lected by default but can be modified by the user. The
section “Paired Peptide Design” is dedicated to the pre-
diction of peptides by pair with the idea that they can be
used to prepare Abs which should capture the protein.
To this end, the most distant peptides are proposed to
avoid steric hindrance between the future Abs. Finally,
the third section “Peptide Bank Prediction” is dedicated
to the prediction of antigenic peptides to, for example,
experimentally localize an epitope or select an inhibitory
peptide. In this case, a great diversity of peptide se-
quences is wanted in order to increase the chance the
Ab recognize at least one peptide since it is known that
only one mutation can change an Ab-Ag interaction
(Duarte C et al., A mimic of a discontinuous epitope
from AaH II identified by combining wet and dry experi-
ments: a new experimental methodology to localize dis-
continuous epitopes, in preparation).
Each predicted peptide can represent a potential epi-

tope and can be visualized on the 3D structure of the
protein.

Prediction capacity controls
To assess the capacity of the different PEPOP methods
to predict peptides that mimic epitopes, we used a data-
set of experimentally (X-ray crystallography) determined
epitopes that was filtered to eliminate any epitope re-
dundancy (Additional file 1: Table S1) [25].
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Assessment of the PEPOP method sensibility to detect true
epitopes
The correspondence between areas of extension deter-
mined by PEPOP and true epitopes was analyzed to verify
whether a peptide predicted by PEPOP can theoretically
mimic an epitope (Additional file 1: Table S1).
As accurate selection of surface-accessible residues is a

crucial PEPOP parameter, we verified that PEPOP cor-
rectly identifies as surface-accessible the aa of true epi-
topes. This is the case for 87.75% (median 88.24%) of
the epitopic aa. Most of the aa of an epitope are surface-
accessible, thus guaranteeing that the final peptide could
contain such aa. In comparison, Chen and co. [23] found
that 20 to 32% of epitopic aa are buried, whereas we
found only 12.2% of buried epitopic aa.
The definition of areas of extension is another import-

ant parameter. The number of segments and patches in-
creases with the antigen size (Additional file 2: Figure
S3A), contrary to the number of clusters. Clusters, 10 Å-
radius patches, 15 Å-radius patches and varying radius
patches contain, on average, 39.53, 10.87, 25.86 and
31.67 aa, respectively. Compared to the size of an epi-
tope, clusters, 15 Å-radius patches and varying radius
patches are bigger: by defining a minimum peptide
length, the peptide can be of an appropriate size.
To measure the adequacy of PEPOP areas with the

existing epitopes, aa of clusters and patches were com-
pared to known epitopic aa (Additional file 1: Table S1,
Additional file 2: Figure S3B and C). Additional file 1:
Table S1 reports the number and percentage of aa in
common with the epitope and the types of area which
best fit the epitope by or without taking into account the
aa positions. These data are reported in a histogram in
Additional file 2: Figure S3B. Additional file 2: Figure
S3C shows the distribution of the percentage of aa in
common between epitope and PEPOP areas. As ex-
pected, with bigger antigens it is more difficult to well fit
the epitope. By taking into account the aa positions, the
best fitting areas contain between 50 and 100% (mean:
84.19%) of epitopic aa. The best fitting areas are the
varying patches in 45 cases, the clusters in 26 cases and
the 15 Å-radius patches in 4 cases. Without taking into
account the aa positions, the best fitting areas contain
between 85 and 100% (mean: 97.94%) of epitopic aa.
The best fitting area is the varying patch in 39 cases and
the cluster in 36 cases. PEPOP areas fit well existing epi-
topes, indicating that the predicted peptides should well
mimic epitopes.

Methods’ redundancy
The redundancy in the output sequences generated by the
different PEPOP methods was verified by comparing the
set of peptides predicted by each method (see “Peptide
prediction” below). The low output redundancy by the

different methods (Additional file 2: Figure S2) indicated
that the sequences of the generated peptides were highly
diverse, except among methods of the same category. Pep-
tides obtained using the SHP- and TSP-based methods
showed less similarity with peptides obtained with the
other methods (from 0 to 53% and 61%, respectively). The
OPP, SHPaa and TSPaa methods were the most original
methods because their peptides did not show any or only
few similarities with the peptides generated by the other
methods (37% at most). As the methods were developed
to take into account different parameters, these results in-
dicate that, except for few methods, sampling is large. The
PEPOP methods are thus complementary, bringing diver-
sity in the range of predicted peptides. This is useful when
trying to represent the huge diversity of possible epitopes
on a protein Ag.

Peptide prediction
Each of the 34 methods was used to generate a series of
peptide sequences from the 3D coordinates of the 75 Ags.
As a protein is composed of a mosaic of epitopes [26, 32],
any region (cluster or patch) is potentially an epitope.
Hence, all the possible peptides from a protein were pre-
dicted: each reference, segments or aa was used in turn to
design a peptide. In this way, the whole protein surface
was represented by the set of peptides generated by a
given method.

Requested length
To design a peptide using PEPOP, a sequence length for
the predicted peptide has to be chosen (requested length).
Nonetheless, as segments of variable lengths are used to
build the peptide sequence, the final peptide length might
differ from the requested length. The appropriate re-
quested length to use for benchmarking was determined
by requesting discrete lengths (ranging from 8 to 16 aa)
for the predicted peptides. The final mean peptide sizes
are reported in Table 1. As expected, the average final
lengths were higher than the requested lengths by 2 or 3
aa and increased with the requested length. According to
the chosen method, the average final peptide lengths
could be very different. For benchmarking, the prime and
linker methods should use the same requested length,
unless this lead to different peptide sizes, to allow their
comparison and the evaluation of the linker contribution.
For the evaluation, two requested lengths were chosen: 12
aa for the prime and linker methods and 16 for the graph-
based methods because they lead to an average final pep-
tide length close to the mean length of the epitopes in the
dataset (16.7 aa).

Benchmarking
The 34 methods predicted a total of 119,277 peptides
(i.e., about 3508 per method and 1590 per Ag), using
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the 75 protein Ags of the dataset (Additional file 1:
Table S1).
The Se and the PPV parameters were used to evaluate

the methods’ performance (Fig. 1). The Se evaluates the
correctly predicted aas compared to the epitope: this is
the proportion of peptide residues present also in the
epitope. The PPV evaluates the correctly predicted aas
compared to the predicted aas: this is the proportion of
epitope residues in the predicted peptide. A perfectly

accurate prediction would give Se and PPV values of 1.
The mean Se ranged from 0.34 to 0.49, according to the
method, and the mean PPV was a little higher (between
0.39 and 0.57) (Additional file 2: Figure S4). In the evalu-
ation of discontinuous epitope prediction tools carried
out by Ponomarenko & Bourne using the same dataset,
the mean Se and PPV with the best method (ClusPro
(DOT)) were 0.46 and 0.41, respectively [25], indicating
that many of the PEPOP approaches are more efficient
(17 methods have a better Se, 29 a better PPV and 17
both). This difference is explained by a larger epitope
prediction size by ClusPro (DOT) while the peptides
predicted by PEPOP are closer to a standard epitope
size. The mean absolute deviation between the epitope
and the prediction sizes of ClusPro (DOT) is 3,7 and of
PEPOP is 2,5. Actually, in a next paragraph, we will see
that peptides (so predictions) closer in size to the epi-
tope performed better (Fig. 2). So, for a same number of
correctly predicted aas, a greater prediction size can give
more chance to the Se to be higher but it will decrease
the PPV.
The Se and PPV mean values give a measure of the

adequacy between the predicted peptide and the refer-
ence epitope, but they do not discriminate between
methods. However, a researcher would wish to have a
method that provides the highest possible number of
peptides for the highest possible number of epitopes. To

Table 1 Mean peptide size according to the requested peptide
length

mean L = 8 L = 10 L = 12 L = 14 L = 16

of the means 11.66 13.35 14.95 16.45 17.70

standard deviation 2.16 2.34 2.66 3.02 3.29

Prime methods 10.44 11.97 13.53 15.14 16.65

ALA methods 14.98 17.24 19.06 20.36 21.05

SA methods 11.45 13.13 14.77 16.44 17.88

SAS methods 12.96 14.87 16.72 18.47 19.80

Prime and Linker methods 12.48 14.33 16.05 17.62 18.84

Graph-based methods 10.16 11.55 12.96 14.31 15.59

SHP based methods 13.27 13.27 13.27 13.27 13.27

TSP based methods 9.13 10.98 12.85 14.66 16.37

TSPaa method 8.00 9.99 11.99 13.98 15.97

TSPnat and TSPrev methods 9.27 11.10 12.96 14.75 16

Fig. 1 Definitions of the evaluation parameters and examples. In the alignments, in green correctly predicted aa (TP), in red badly predicted aa
(FP), in yellow aa of the epitope not predicted (FN)
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know whether a method is more performing than an-
other, (i.e. whether a given method can predict the best
possible matching peptides for the widest possible range
of epitopes), the Se and PPV minimal value (threshold)
to consider a method as theoretically efficient must be
determined.
To select an appropriate threshold, we studied the dis-

tribution of peptides relative to their Se and PPV (Fig. 3
and Additional file 2: Figure S5). On average, a method
predicted 7.6% of peptides with a Se and PPV above 0.6,
1.73% of peptides with a Se and PPV above 0.7 and
0.13% of peptides with a Se and PPV above 0.8 (Table 2),
i.e., about 267, 60 and 4 peptides, respectively, based on
the mean number of peptides predicted per method. We
finally selected the 0.7 value as the threshold because it
offers a good compromise between “quality” and quan-
tity of predicted peptides.
We then calculated the proportion of peptides with a Se

and a PPV higher than 0.7 for each method (Fig. 4, empty
bars). Group of methods were roughly clustered around
similar values. Indeed, 1.4 to 1.9% of peptides generated
by using the prime methods had Se and PPV values above
0.7, whereas this percentage decreased to 0.7% for pep-
tides designed with the ALA methods. Compared to the
prime methods, the performance of the ALA methods de-
creased due to the beneficial effect of the addition of
Alanine residues between segments on Se and its unfavor-
able effect on PPV. The SA methods were slightly more
efficient than the prime methods, but not the SAS
methods. This also was the result of a beneficial effect of
the addition of aa linkers on Se and their negative effect

on PPV. TSP-based methods, particularly TSPaa, were the
most efficient as they generated the highest percentage of
peptides with Se and PPV above 0.7.
We then calculated for how many Ags, a given method

would generate peptides with a Se and a PPV higher
than 0.7 (Fig. 5, empty circles) in order to know whether
a method was efficient with different proteins. As before
(see Fig. 4), methods from the same group showed simi-
lar performances and the most efficient were the TSP
methods. Indeed, TSPaa, TSPnat3 and TSPrev4 targeted
the highest number of Ags.

Influence of peptide length
As Wang and collaborators [37] showed that their per-
formance classification was dependent on the epitope
length, we studied the influence of the peptide length on
the methods’ performance. First, we determined the
number of peptides with Se and PPV above 0.7, relative
to the peptide-epitope size difference (Fig. 2). We found
that peptides that were closer in size to the epitope per-
formed better. We then analyzed the influence of the
five requested peptide lengths (8, 10, 12, 14 and 16 aa)
on the performance of the methods (Fig. 6). The peptide
length had, as expected, no influence on the perform-
ance of the SHP and OPP methods (because the final
peptides are identical whatever the requested peptide
length) (Fig. 6c). It had a weak influence on the perform-
ance of the ALA methods (the final peptides are longer
than the requested length, but they are only enriched in
Ala residues) and on the SA and SAS methods (peptides
are possibly enriched of several aa, and this may have an

Fig. 2 Relationship between peptide performance and size similarity between epitope and peptide. Aa positions were taken into account

Demolombe et al. BMC Bioinformatics          (2019) 20:738 Page 5 of 17



unfavorable effect depending on the epitope compos-
ition). Conversely, the performance of the NN, NNu,
ONN, FN, OFN and TSP methods progressively in-
creased with the peptide length. Nevertheless, TSPaa
remained the most performing method. These results
also show that when selecting the PEPOP parameters, it
is advisable to request a peptide length close to the epi-
tope size, i.e. a number of aa of the peptide close to the
average number of aa contained in an epitope (17aa).

Amino acid positions
The aa positions were not taken into account for Se and
PPV computations because the nature of the aa and not

their original position in the protein is important for Ab
recognition. However, the closeness and the order of aa
residues in the peptide could be important factors for
protein mimicry by peptides. Thus, we computed again
the Se and PPV values by taking into account the aa pos-
ition in the predicted peptides compared to their pos-
ition in the epitope. As expected, the Se and PPV values
of all methods decreased when taking into account the
aa positions (Fig. 4, black bars, and Fig. 5, black circles,
and Additional file 2: Figure S4). All methods showed
comparable mean PPV values, except for the SA and
SAS methods (Additional file 2: Figure S4A). The mean
Se values, when taking or not into account the aa
positions, have similar profiles (Additional file 2: Figure
S4B). Despite the overall reduction in efficiency (i.e.,
proportion of peptides with both Se and PPV higher
than 0.7) when taking into account the aa positions,
methods followed the same tendency as the analysis that
did not take into account the aa positions. TSPaa again
was the most efficient method (Fig. 4). When calculating
for how many Ags a given method would generate pep-
tides with a Se and a PPV higher than 0.7 by taking into
account the aa positions, the most efficient method was
TSPrev1 instead of TSPnat3, but overall, the TSP
methods still performed best (Fig. 5). On the other hand,

Fig. 3 Example of the distribution of the Se (upper panel) and PPV (lower panel) values of the peptides predicted by the OFN methods (OFN, OFNala,
OFNsa, OFNsas) without taking into account the aa positions

Table 2 Proportion of predicted peptides by PEPOP and by the
random method having a Se and a PPV above the threshold,
without taking into account aa positions (WTK) and by taking
into account aa positions (TK)

Se and
PPV threshold

Proportion of predicted peptides by

PEPOP (WTK) random (WTK) PEPOP (TK) random (TK)

0.5 21,47 15,69 2,1 0

0.6 7,55 3,57 0,77 0

0.7 1,72 0,28 0,18 0

0.8 0,14 0 0 0
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SHPaa did not produce any efficient peptide (Figs. 4 and
5). Thus, the results of the Se and PPV computations
that take into account the aa positions confirmed the
previous analysis.

Comparison with SUPERFICIAL
We then compared our results with those obtained using
SUPERFICIAL (Sfs), the only other available peptide de-
sign tool. This software predicted 143 discontinuous
peptides from 30 Ags of the dataset, including 21 pep-
tides from only one Ag. The proportion of peptides gen-
erated by SUPERFICIAL with Se and PPV values higher
than 0.7 was about 0.7% (Fig. 4), a value similar to the
one obtained with the lowest performing PEPOP
methods. Moreover, SUPERFICIAL did generate pep-
tides with Se and PPV values higher than 0.7 only for
one Ag among the 75 proteins of the dataset (Fig. 5).
Finally, SUPERFICIAL did not predict any peptide with
Se and PPV higher than 0.7 when the aa positions were
taken into account (Fig. 4). In conclusion, all PEPOP
methods performed better than the only other available
peptide design tool.

Comparison with chance
Finally, we compared the PEPOP methods to a method
that predicts peptides by chance (Table 2). The perform-
ance of the random method was comparable to that of
the less efficient PEPOP methods (ALA methods). It
predicted 0.8% of peptides with Se and PPV values
higher than 0.7 for one Ag out of 3 (mean of 0.28% by
considering all the Ags). When the aa positions were
taken into account, the random method did not predict
any efficient peptide (Fig. 4). These results show that
peptides predicted by the PEPOP methods are not effi-
cient only by chance. This was further confirmed by the
probability to predict the most efficient peptide (10E-
24). These results indicate that the PEPOP methods per-
form much better than chance.

Example
We then wanted to assess how well the most efficient
peptides (best Se and PPV) designed by PEPOP repre-
sent the corresponding epitope on the 3D structure of
its Ag (Fig. 7). Among all the PEPOP methods, we se-
lected the peptide having the best Se and PPV without

Fig. 4 Performances of the methods: proportion of peptides with Se and PPV > 0.7. Empty bars, the aa positions were not taken into account;
solid bars, the aa positions were taken into account

Demolombe et al. BMC Bioinformatics          (2019) 20:738 Page 7 of 17



taking into account the aa positions (Fig. 7a) and the
peptide having the best Se and PPV when taking into ac-
count the aa positions (Fig. 7b). The two peptides
matched pretty well their epitope (all the epitopic aa are
predicted in the peptides). Nonetheless, the Se and PPV
values greatly changed depending on how they were cal-
culated. For example, the first peptide has Se and PPV of
respectively 1 and 0.864 but if the aa positions are taken
into account, Se and PPV are of only 0.368 and 0.318 re-
spectively. However, the peptide includes effectively the
same nature of aa than the epitope. This example shows
that what is important for the final peptide is the nature
of the aa, not its position in the protein.
We then selected the two best peptides (highest Se

and PPV) generated by TSPaa method when taking
(Fig. 7d) or not (Fig. 7c) into account the aa positions.
These two predicted peptides also match pretty well
their epitope (only one epitopic aa is not predicted in
the peptides). This example shows that even if TSPaa is
the best performing method, it does not actually predict,
for every Ag, the most efficient peptides since these two

peptides have Se and PPV slightly lower than the two
previous peptides. Hence, all the PEPOP methods should
lead to efficient peptides.
In any case, the peptides contained a majority of epito-

pic aa and thus they should be recognized by the Ab,
particularly because the arrangement between aa was
optimized.

Discussion
PEPOP (https://www.sys2diag.cnrs.fr/index.php?page=pepop)
is a prediction tool of antigenic / immunogenic peptides. It
was developed, not to predict epitopes, but to deliver series
of peptides that should mimic epitopes, particularly discon-
tinuous epitopes, which are the more common ones. It is
more complex to predict peptides mimicking discontinuous
than continuous epitopes because the aa order is not already
defined. As enumerating all possible peptides would amount
to solving a complex NP-complete problem and it would
anyhow be impossible to test all of them computationally or
experimentally, a limited enumeration must be defined. To

Fig. 5 Robustness of the performance of the methods. For each method, the number of Ags is plotted with a circle size proportional to the
number of peptides having Se > 0.7 and PPV > 0.7. Empty circles, the aa positions have not been taken into account; solid circles, the aa positions
have been taken into account
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this aim, PEPOP version 2.0 was improved by implementing
32 new methodologies that exploit different criteria, such as
the distance between segments, their disposition in the pep-
tide and their conformation relative to the protein Ag, to de-
sign discontinuous peptides that match as much as possible
the Ag. The main principle is to find a path, an arrangement,
between elements (segments or aa) of a defined area on the
protein that will compose the final peptide.
The prime methods design a peptide from a reference

segment and add to it its neighboring segments. Com-
pared to the NN method, the FN method was developed
to maintain the reference segment in the central pos-
ition. The ONN, OFN and OPP methods search for the
most natural path between segments by minimizing the
traveled distance. The linker methods add (or not) aa
between segments. The purpose of the ALA method is

to keep in the peptide the same segment spacing of the
Ag protein to allow the interacting aa of the Ab to estab-
lish contacts. The SA and SAS methods use the protein
blocks (PBs) of a structural alphabet [38, 39] to facilitate
the adoption of the protein conformation. To bypass the
NP-complete problem of enumerating all possible
arrangements between the segments composing the pep-
tide (n! permutations) in ONN, ONF and OPP methods,
we used the graph theory. In the graph-based methods,
the objective is to find the optimal path between
segments or aa, as this should lead to peptides close to
the native protein context.
Here, we evaluated the performance of the 34 methods

included in PEPOP 2.0 by measuring the match between
the peptide composition and that of known discontinu-
ous epitopes and classified as efficient the methods that

Fig. 6 Influence of the requested peptide length on the methods’ performance. a Se and b PPV distribution according to the requested peptide
length. c Proportion of peptides with Se and PPV > 0.7 based on the requested peptide length, from 8 (solid bars) to 16 (empty bars) aa with an
increment of 2 at each step
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predicted the largest number of peptides with both Se
and PPV values higher than 0.7 (efficient peptides). We
found that the TSP-based methods, particularly TSPaa,
TSPnat3 and TSPrev2, predicted the best matching pep-
tides in most cases, although they did not lead to the
best peptide (Fig. 7). TSPaa was the most efficient
method in silico as it predicted the largest percentage of
efficient peptides for the highest number of Ags. These
methods performed better because the search of the opti-
mal path using the TSP allows selecting the correct seg-
ment or aa (i.e., the segment or aa present in the epitope).

All PEPOP methods, except OPPala, were more successful
than SUPERFICIAL and more efficient than or as much
as the method predicting peptides by chance.
Benchmarking of different computational methods

must be done with precaution as the tools, datasets and
metrics can be different from one analysis to the other,
thus not allowing objective comparisons. Even the defin-
ition of epitope can be different. Indeed, some consider
the part of the Ag recognized by one Ab as an epitope
on its own, whereas others consider to be an entire epi-
tope all the aa found to interact with any Ab [16].

Fig. 7 3D views of the most efficient peptides generated with the dataset using all PEPOP methods (a and b) or TSPaa (c and d). a and c peptides
having the best Se and PPV computed without taking into account the aa positions (WTK); b and d peptides having the best Se and PPV computed
by taking into account the aa positions (TK). The peptide aa are in red, the epitope aa are in blue and common aa are in purple. The Ab is in grey
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Moreover, some authors think that proteins have only
one or few epitopes on the surface [40], whereas others
see a protein as a mosaic of epitopes [26]. Finally, be-
cause all the possible epitopes could not be discovered,
only a few of the features that characterize epitopes are
used when trying to discriminate between epitopic and
non-epitopic aa. This could at least partially explain why
all epitope prediction tools show a weak performance
[22, 25]. And, we believe that an epitope cannot be faith-
fully predicted without taking into account its Ab part-
ner, because epitopes only exist through the interaction
with their cognate Ab [41]. Thus, studies taking into ac-
count the Ab partner in predicting Ag epitopes are of
particular interest [19–21, 42] although, because of the
poor availability of Ab data, they currently cannot be ap-
plied in high-throughput analyses.
To determine whether some of the 34 methods included

in PEPOP version 2.0 for designing discontinuous peptides
are more relevant than others, we carried out a benchmark
process. To this aim we followed as much as possible the
recommendations by Greenbaum and collaborators [43] for
assessing the performances of epitope prediction methods,
although PEPOP goal is slightly different from that of “clas-
sical” epitope prediction tools. We decided to use Se and
PPV together to select the most efficient peptides, although
they are threshold-dependent. Indeed, when used on their
own, they do not provide a complete picture of the method
performance. For instance, a peptide with a Se (number of
epitopic aa included in the peptide) close to 1 could also con-
tain many additional aa that might disturb its recognition by
the Ab. Similarly, a peptide with a PPV (number of the pep-
tide aa included in the epitope) close to 1 could contain not
enough epitopic aa for Ab recognition. Considering a given
Ag-Ab interaction, not all generated peptides will match the
epitope because peptides come from the entire surface of the
protein. However, a method can be considered efficient if it
yields an elevated number of peptides that closely match the
epitope (i.e., with both Se and PPV higher than 0.7 in our
study).
Nevertheless, benchmarking under-evaluated the linker-

based methods. Indeed, even if a peptide generated using
these methods included all the aa of the epitope, its PPV
would be lower than the PPV of the same peptide without
linker (e.g., a peptide designed using the ONNala, ONNsa
or ONNsas method versus the same peptide generated
using ONN). This despite the fact that the linker methods
were developed to increase the performance, based on the
hypothesis that, for the ALA linker methods, spacing the
segments by linker aas would better mimic their real dis-
position on the protein and consequently facilitate the
peptide recognition by the Ab. Similarly, the SA and SAS
methods have been developped to favor the adoption by
the PEPOP segments of the same conformation in the
peptide as in the protein. Although this bias was

compensated by a slightly higher Se, we feel that the
principle on which these methods are based has been not
perfectly appraised.
Molecular mimicry is still today poorly understood. It

is also known that the 3D structure of peptides is im-
portant in the Ab-Ag interaction but it is very arduous
to determine and predictions are still not sufficiently
performant. So, it is difficult to predict which peptide
compared to another will be recognized by a specific Ab
even if they are both composed of the same key aa of
the epitope. For the same reason, it is difficult to claim
that one method is better than another one. Indeed, the
good performances of one method in terms of Se and
PPV do not ensure that the corresponding peptides will
actually be recognized by an Ab. Similarly, we deliber-
ately chosen not to elaborate a scoring function because
it will not ensure to select the “best” peptides. Only their
experimental evaluation can confirm the peptide reactiv-
ity. Moreover, we think bioinformatics predictions can-
not be used as such and have to be always associated to
experiments. Combining bioinformatics predictions and
simple experimental methods can be an interesting alter-
native to expensive and time-consuming approaches.
Indeed, the idea behind the PEPOP tool is that, due to
the inherent difficulty to guess an epitope, it would be
preferable to generate a comprehensive series of peptides
that can be experimentally assessed to determine which
ones are endowed with the properties of a functional
epitope. The mean number of peptides predicted per Ag
by the PEPOP methods was 1590. Experimentally testing
the antigenicity of about 1500 peptides is feasible by
techniques like peptide microarrays [44–46]. Thus, the
specific epitopes of a given Ag could be identified by
running all PEPOP methods, synthesizing the generated
peptides and testing them in microarrays. We showed
that 1.73% of the predicted peptides have a Se and a
PPV above 0.7 which represent about 28 peptides. This
is a low number but only one peptide is suffisiant to
localize an epitope using SPOT method for example
(Duarte C et al., A mimic of a discontinuous epitope
from AaH II identified by combining wet and dry experi-
ments: a new experimental methodology to localize dis-
continuous epitopes, in preparation). Conversely, the
experimental validation of about 120,000 peptides (num-
ber of peptides designed by the PEPOP methods for the
entire dataset) would require too much time and
resources and probably would not be feasible for any fu-
ture peptide design tool.
Testing the immunogenicity of at least 1500 peptides

would be even worse. Due to these difficulties to realize
systematic experimental validations, we believe PEPOP,
and others similar tools, have to be seen as “test tubes”
which will gradually be validated as studies will be devel-
oped, until a consensus satisfactory validation process is
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developed. Although some studies begin to explore this
problem [47] the proposed benchmark is not applicable
for all epitope prediction tools neither for all studies.
Anyway, PEPOP has already been successfully used in
several studies of different goals [27, 32–35, 48, 49].

Conclusion
In the workshop reported by Greenbaum et al., Dr. Van
Regenmortel “emphasized the need to clarify the pur-
pose of making a specific epitope prediction, and how
this clarification could direct selection of the most ap-
propriate prediction tool or development of a new tool,
as needed”. PEPOP has been or can be used for all the
purposes where surrogate epitopes are needed, purposes
such as those cited by Van Regenmortel, i.e. “seeking
vaccine candidates” [49] or “replacing Ags in diagnostic
immunoassays”. It can also efficiently help in mapping
epitopes [33–35] (Duarte C et al., A mimic of a discon-
tinuous epitope from AaH II identified by combining
wet and dry experiments: a new experimental method-
ology to localize discontinuous epitopes, in preparation;
Abraham J-D et al., Combination of bioinformatics and
experimental approaches to map the conformational epi-
tope on GM-CSF, in preparation) and would be a very
informative tool for understanding the rules of molecu-
lar mimicry, a very difficult [23, 41, 50] but promising
research field as testified by the number of available
studies [9, 51–54] and tools [30, 55, 56]. PEPOP could
also help characterizing all new proteins discovered by
high-throughput technologies, such as proteomics [57,
58], by facilitating their manipulation.

Methods
Structural data
The dataset of 165 X-ray-determined epitopes was from
Ponomarenko & Bourne [25]. To avoid bias caused by the
over- or under-representation of an epitope described by
several 3D structures of the same Ag-Ab complex, epitope
redundancy was eliminated by keeping only one crystallog-
raphy of a given Ag-Ab complex. Therefore, 90 Ag-Ab com-
plexes were rejected. The final dataset was of 75 unique Ag-
Ab complexes (Additional file 1: Table S1).
The epitope size varied from 4 to 23 residues with

only one exception (52 aa). The average size of an epi-
tope was 16.7 aa (median: 17 aa). Epitopes were all dis-
continuous and were composed of 3 to 14 segments,
each containing 1 to 12 contiguous aa. An epitope con-
tained on average 7 to 8 segments of 2.38 aa. These data
are in accordance with the literature [54, 59, 60].

Epitope definition
An epitope was defined as a series of aa included in the
protein Ag. These aa contained at least one atom that

establishes a contact (i.e., a distance threshold lower
than or equal to 4 Å) with an atom from the Ab.

PEPOP methods
Peptides that mimic the discontinuous epitopes of the data-
set were designed using the different PEPOPmethods (Fig. 8).
To build a peptide, the PEPOP algorithm concatenates either
segment sequences (a continuous stretch of surface-
accessible aa) or single surface-accessible aa from the Ag 3D
structure. Based on Euclidian distances, the PEPOP methods
first select the neighboring segments or aa and then deter-
mine in which order assemble them to form the final linear
peptide sequence supposed to mimic the discontinuous epi-
tope. In three-dimensional space, the Euclidian distance be-
tween points a and b is:

d a; bð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1−b1ð Þ2 þ a2−b2ð Þ2 þ a3−b3ð Þ2

q

PEPOP 2.0 has been improved by addition of 34 new
methods to the two already present in PEPOP 1.0. These
methods are based on different criteria because precise
rules for peptide design are lacking due to our poor un-
derstanding of the mechanisms underlying the molecular
mimicry of a native protein by a linear peptide. These
methods can be classified in three main groups: (a)
prime methods, (b) linker methods and (c) graph-based
methods.

a) In the prime methods (Fig. 8 and Additional file 2:
Figure S1) neighboring segments are collected
around a reference segment (starting segment).
Therefore, starting from the reference segment and
until a defined peptide length is reached, the
methods concatenate the segments as follows:
� the nearest neighbor (NN) method adds the

sequence of the nearest neighbor segment C-
terminally to the forming peptide;

� the upset nearest neighbor (uNN) method adds
the sequence of the nearest neighbor segment C-
terminally in the natural or the reverse sense ac-
cording to the distance of the C-terminus of the
forming peptide;

� the flanking nearest neighbor (FN) method adds
the sequence of the nearest neighbor segment in
turn C-terminally and N-terminally to build the
peptide.

More sophisticated prime methods are directly derived
from these three firsts methods and are used to deter-
mine the optimized path between segments, i.e. in which
order assemble them, by enumerating all possible
arrangements. The sums of the distances between seg-
ments are then calculated. The optimized path corre-
sponds to the arrangement with the shortest total
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distance. No extra aa is added. Thus, the optimized path
can be calculated by using:

� the optimized nearest neighbor (ONN) method for
segments found using the NN method.

� the optimized flanking nearest neighbor (OFN)
method: for segments found with the FN method.

� the optimized patched segments path (OPP)
method: for the set of segments present in a 10 Å-
radius patch.

b) Linker methods. As in the prime methods no
intermediate aa is added, 16 linker methods were
then derived from these methods to add extra aa
(Fig. 8 and Additional file 2: Figure S1) between
segments generated by one of the prime methods
(NN, ONN, FN, OFN, OPP):
� the ALA linker methods (NNala, uNNala,

ONNala, FNala, OFNala, OPPala) add an alanine
linker, as many times as the distance between
segments allows the insertion of a peptide bond.

Alanine is often considered as the most average
aa in terms of length, volume and polarity.

� the structural alphabet-based linker (SA)
methods (NNsa, ONNsa, FNsa, OFNsa, OPPsa)
add zero, one or two aa as linkers. Protein blocks
(PBs) [38, 39] form a library of 16 small protein
fragments of five residues in length that can ap-
proximate every part of a protein structure. PBs
are overlapping, so each PB is followed by a lim-
ited number of PBs (i.e., some specific transitions
exist between PBs). First, the transitions between
segments are verified in the segments transcribed
into PBs, based on the protein 3D structure. Ac-
cording to the PB transition matrix [61], if the
transition between the last PB of a segment and
the first PB of the following segment is allowed,
no aa is added between these segments. If the
transition is not allowed, a PB is virtually added
by searching the one leading to the best PB tran-
sition. Adding a PB means adding an aa. The
most favorable aa is determined from data calcu-
lated from the PDB file that reports each aa

Fig. 8 Flowchart describing how PEPOP predicts a series of peptide sequences (“Peptide Bank” section of the web site of PEPOP)
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statistical preferences for each positions in each
PB [38]. If a transition cannot be found, the
process is repeated by adding two PBs. If also
this does not work, the peptide is not possible.

� the structural alphabet superposition-based
linker (SAS) methods (NNsas, ONNsas, FNsas,
OFNsas, OPPsas) add one aa as linker accord-
ing to the structural superposition of the seg-
ment using the structural alphabet approach
to facilitate the peptide folding in the same
fold as the corresponding fragments in the
protein.

c) Graph-based methods (Fig. 8) use the graph theory
to model a given protein, its segments and its aa, in
order to find the neighboring segments or aa. They
employ three different graphs where edges are
weighted by Euclidian distances. The first graph
(“natural” graph) is oriented. The nodes are protein
segments and can only be added in their natural
sense, from N-terminus to C-terminus. The second
graph (“reversed” graph) is the non-oriented version
of the previous one. The third graph (“aa” graph) is
non-oriented and the nodes are surface-accessible
aa instead of segments. Two algorithms used these
graph to find the optimal path, i.e. in which order
assemble the segments or aa:
� SHortest Path (SHP)-based methods (three

methods): from a set (i.e., a cluster or a patch, see
definitions below) of elements (segments or aa), a
peptide is the shortest path between two elements
that include most aa residues. The SHPnat
method uses the “natural” graph, SHPrev the
“reversed” graph and SHPaa the “aa” graph.

� Traveling Salesman Problem (TSP) based
methods (nine methods): from a set (cluster or
patch) of elements (segments or aa), the TSP
algorithm is used to find the optimal path
(shortest distance) between elements. The
TSPnat methods use the “natural” graph, the
TSPrev methods use the “reversed” graph and
the TSPaa method uses the “aa” graph. From the
optimal path between the elements defined by
the TSP algorithm, all possible peptides of the
requested length are computed. The final
peptide, identified using the:
▪ TSPnat1 and TSPrev1 methods, is the
peptide with the highest score (see “peptide
scoring”)
▪ TSPnat2 and TSPrev2 methods, is the
peptide with the shortest traveled distance
▪ TSPnat3 and TSPrev3 methods, is the
peptide for which the traveled distance

according to the number of segments of the
peptide is the shortest
▪ TSPnat4 and TSPrev4 methods, is the
peptide that includes the two closest segments
▪ TSPaa method, is the peptide for which the
traveled distance is the shortest.

The protein area used in the SHPnat, SHPrev, TSPnat
and TSPrev methods is a cluster or a 15 Å-radius patch
(see definitions below). The area used in the SHPaa and
TSPaa methods is a varying patch.

Definition of cluster and patch
In PEPOP, clusters are segments grouped according to
their spatial distances. They are calculated using Kitsch
from the PHYLIP package v3.67 [62], as previously de-
scribed [27]. PEPOP uses three types of patches. The 10
Å- and 15 Å-radius patches gather segments within a
fixed distance, respectively 10 Å and 15 Å, from the cen-
ter of gravity of a reference segment. The third patch
type gathers the aa at a distance that varies from 15 to
20 Å from a reference aa: the final radius is the one in
which the average number of aa between radius 15, 16,
17, 18, 19 and 20 Å is collected.
As each segment is used in turn to define a patch, the

number of 10 Å- and 15 Å-radius patches is equal to the
number of segments (Additional file 2: Figure S3). The
number of varying patches is equal to the number of ac-
cessible aa because each aa is used in turn to define a
varying patch.

Peptide scoring
In PEPOP, the score of a peptide is the sum of the
scores of the segments composing the peptide [27]:

Sp ¼
X

Ss

Ss ¼ Naaþ Naccessþ Nhyd þ Nwrypþ Nturn

where Sp is the peptide score, Ss the segment score, Naa the
number of aas composing the segment, Naccess the average
accessibility of the segment, Nhyp the number of hydropho-
bic aas, Nwryp the number of specific aas (W, R, Y or P) and
Nturn the number of aas involved in a β–turn.

Peptide predictions
Depending on the PEPOP method, each segment or
surface-accessible aa of a protein Ag is used as a refer-
ence to design a peptide.
In the prime (NN, uNN, ONN, FN, OFN, OPP

methods) and linker methods (ALA, SA and SAS
methods), peptides are predicted from each segment de-
fined by PEPOP. The number of peptides generated by
these methods corresponds to the number of segments.
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In the graph-based methods that model protein seg-
ments (SHPnat, SHPrev, TSPnat1, TSPnat2, TSPnat3,
TSPnat4, TSPrev1, TSPrev2, TSPrev3 and TSPrev4),
peptides are predicted in PEPOP clusters and in 15 Å-ra-
dius patches. As each protein segment is successively
considered as a reference segment, there are as many
patches as segments. The number of peptides predicted
by these methods corresponds to the number of clusters
plus the number of segments.
In the graph-based methods that model the surface-

accessible aa of the protein (SHPaa and TSPaa), peptides are
predicted in PEPOP clusters and in varying patches. The
number of aa is computed for all radii between 15 and 20Å
(1Å increment per step), and the radius leading to the aver-
age number of aa defines the final patch. The number of
peptides predicted by these methods corresponds to the
number of clusters plus the number of segments.
In each method, redundant peptide sequences are

eliminated; however, two different methods can predict
the same peptide sequence.

Performance evaluation metrics
The capacity of each peptide generated by a given PEPOP
method to mimic the epitope described in the reference
dataset for that protein was evaluated using two criteria: the
sensitivity (Se) and the positive predictive value (PPV). Fig-
ure 1 gives the definition of Se and PPV and an example of
their calculations without and by taking into account the aa
positions. Se represents the proportion of epitope aa present
in the peptide, whereas PPV is the proportion of peptide aa
present in the epitope.
The aa nature or the aa position in the peptide and

reference epitope was then compared by not taking and
by taking into account the aa positions of the protein.
The aa used in linker methods (ALA, SA and SAS) were
considered in the evaluation that takes into account the
aa positions only after all the other aa of the peptide
were compared with the epitopic aa. We chose to take
into account the supplementary aa, because otherwise it
would have amounted to evaluate again the results of
the prime methods. Indeed, the only difference between
prime and linker methods is the aa that are added be-
tween segments and that do not correspond to any pos-
ition in the protein.
To measure the correlation between performance and

size between peptides and epitopes, the absolute value
was calculated.

Chance
Random method
Peptides were designed as sequences of randomly se-
lected aa according to the protein aa composition. The
peptide length was randomly computed according to the
distribution of peptide lengths designed by PEPOP using

the dataset of 75 Ags. The number of peptides was ran-
domly chosen according to the number of peptides de-
signed by each PEPOP method.

Probability
If X is a surface-accessible aa (alanine, cysteine, …, tyro-
sine), nX and pX represent the number of occurrences of
X in the protein and the peptide, respectively. The prob-
ability to obtain a specific peptide sequence by chance is
thus given by the following formula:

APA
nA � APc

nc � APD
nD⋯APY

nY

AP
n

with:

AP
n ¼ n!

n−pð Þ!
where n = nA + nC + nP +⋯ + nY is the number of
surface-accessible aa in the protein and P = PA + PC +
PP +⋯PY⋅ the number of aa in the peptide.

Superficial
The aim of SUPERFICIAL [36] is to design peptides that
mimic regions at the surface of a given protein, starting
from its 3D structure. SUPERFICIAL first computes the
surface-accessibility of each aa and then builds segments
as surface-accessible and contiguous aa sequences. Pep-
tides can be made of several segments close in space,
linked together in order to conserve the local conform-
ation of the targeted protein surface. SUPERFICIAL
finds the linkers by calculating the number (not the
type) of aa needed to link two segments, based on the
distances and angles between their C- and N-termini.
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