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Abstract

Background: Super-enhancers (SEs) are clusters of transcriptional active enhancers, which dictate the expression of
genes defining cell identity and play an important role in the development and progression of tumors and other
diseases. Many key cancer oncogenes are driven by super-enhancers, and the mutations associated with common
diseases such as Alzheimer’s disease are significantly enriched with super-enhancers. Super-enhancers have shown
great potential for the identification of key oncogenes and the discovery of disease-associated mutational sites.

Results: In this paper, we propose a new computational method called DEEPSEN for predicting super-enhancers
based on convolutional neural network. The proposed method integrates 36 kinds of features. Compared with
existing approaches, our method performs better and can be used for genome-wide prediction of super-enhancers.
Besides, we screen important features for predicting super-enhancers.

Conclusion: Convolutional neural network is effective in boosting the performance of super-enhancer prediction.
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Background
Numerous transcriptional factors combine with
enhancers to regulate gene expression through recruit-
ing transcriptional coactivator and RNA polymerase to
target gene [1]. The term ‘enhancer’ was first introduced
to describe the effects of SV40 DNA on the ectopic
expression of a cloned rabbit β globin gene. The SV40
DNA elements activated transcription at a distance and
independently of their orientation concerning the target
gene [2]. Enhancer activation often coincides with DNase
I hypersensitivity of these regions and with specific post-
translational modifications of adjacent nucleosomes [3].
Direct interaction or looping between enhancers and the
promoters of target genes has been observed and might
be critical to enhancer function [4, 5]. Recently, advances
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in DNA sequencing technology, such as Chromatin
Immunoprecipitation sequencing(ChIP-seq) and DNase
I hypersensitivity sites sequencing(DNase-seq) have
enabled the discovery of putative mammalian enhancers
on a genome-wide scale [6–10].

The concept of super-enhancers was proposed by
Richard A.Young based on the research on enhancers,
which is described as a class of regulatory regions with
unusually strong enrichment for the binding of tran-
scriptional coactivators, specifically Mediator (Med1)
[11, 12]. In mouse embryonic stem cells (mESCs), super-
enhancers were defined in the following way [12]: 1)
Sites bound by all three master regulators, Oct4, Sox2
and Nanog, according to ChIP-seq, were considered
enhancers; 2) Enhancers within 12.5 kb of each other
were stitched to define a single entity spanning a genomic
region; 3) The stitched enhancer entities and the remain-
ing individual enhancers (those without a neighboring
enhancer within 12.5 kb) were then ranked by the total
background-normalized level of the Med1 signal within
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the genomic region. A small proportion (less than 3%)
of these enhancer regions contained Med1 levels above
a cutoff was designated as super-enhancers. The remain-
ing enhancer regions were considered ‘normal’ enhancers.
Super-enhancers tend to span large genomic regions,
whose median size generally an order of magnitude
larger than that of normal enhancers (in mESCs, 8667
bp versus 703 bp) [11–13]. Relative to Med1, a num-
ber of factors generally associated with enhancer activity
show enrichment at super-enhancers relative to normal
enhancers. These factors include RNA polymerase II (Pol
II), RNA from transcribed enhancer loci (eRNA), the
histone acetyltransferases p300 and CBP, chromatin fac-
tors such as cohesin, the histone modifications H3K27ac,
H3K4me2 and H3K4me1, and increased chromatin acces-
sibility as measured by DNase-seq. Because of these cross-
correlations, super-enhancers might be identified by many
of these features [11].

Since super-enhancers influence various biological pro-
cesses, the identification of super-enhancers becomes
an urgent research issue. BRD4, a member of the BET
protein family, was used to distinguish super-enhancers
from typical enhancers as it is highly correlated with
MED1 [13]. H3K27ac was extensively used to create a
catalog of super-enhancers across 86 different human
cell-types and tissues due to its availability [11]. Other
studies used the coactivator protein P300 to define super-
enhancers [14, 15] However, the knowledge about these
factors’ ability to define a set of super-enhancers in a
particular cell-type and their relative and combinatorial
importance remains limited. Master transcriptional fac-
tors that might form super-enhancers domains are largely
unknown for most cell-types, while performing ChIP-
seq for the Mediator complex is difficult and costly.
However, there are no predictive models that integrate
various types of data to predict super-enhancers and
their constituents (enhancers within super-enhancer).
Besides, to what degree these features influence on super-
enhancers remains unknown.

Predicting super-enhancers based on machine learn-
ing remains nearly blank in the literature. The only
work was done by Khan and Zhang [16]. They used
six different machine learning models, including Ran-
dom Forest, linear SVM, KNN, AdaBoost, Naive Bayes
and Decision Tree. Chromatin, transcription factors and
sequence-specific features were used to train these mod-
els individually, which were evaluated by 10-fold cross-
validation. With the rise of deep learning (DL) techniques,
many researchers applied state-of-art DL methods to
bioinformatics problems. In DEEPBIND [17], Alipanahi
et al. described the use of a deep learning strategy to
calculate protein-nucleic acid interactions from diverse
experimental data sets. Their results showed DL’s appli-
cability in bioinformatics and improved prediction power

over traditional methods. Besides, Zhou et al. developed
a deep-learning based algorithmic framework, named
DeepSEA, which learns a regulatory sequence code from
large-scale chromatin-profiling data in order to predict
the noncoding variants effects [18].

In this work, we proposed a novel approach to solv-
ing the problem of super-enhancer prediction based on
convolutional neural networks (CNNs). This method is
called DEEPSEN. We constructed different structures of
CNN to discover which kind of structure is more appro-
priate for the problem. For each network structure, we
did fine-tuning to find out the best parameter set and to
avoid overfitting. Furthermore, we did feature ranking and
found out the significance of features for super-enhancers
prediction. Our experimental results demonstrate that
DEEPSEN outperforms the existing super-enhancer pre-
diction model.

Methods
Datasets
Similar to Aziz Khan [16], we obtained 32 publicly avail-
able ChIP-seq and DNase-seq datasets of mouse embry-
onic stem cells (mESC) from Gene Expression Ominibus
(GEO). These data cover four histone modifications
(H3K27ac, H3K4me1, H3K4me3 and H3K9me3), DNA
hypersensitive site (DNaseI), RNA polymeraseII (Pol II),
transcriptional co-activating proteins (p300 and CBP),
P-TFEb subunit (Cdk9), sub-units of Mediator complex
(Med1, Med12 and Cdk8), chromatin regulators (Brg1,
Brd4 and Chd7), Cohesin (Smc1 and Nipbl), subunits of
Lsd1-NuRD complex (Lsd1 and Mi2b) and 11 transcrip-
tion factors (Oct4, Sox2, Nanog, Esrrb, Klf4, Tcfcp2l1,
Prdm14, Nr5a2, Smad3, Stat3 and Tcf3). Table 1 shows the
datasets used in this paper.

We used MED1 signal to define super-enhancers as
described in ROSE [12]. We selected transcriptional
enriched regions as the training samples. Thus, we
obtained 11100 samples with 36 kinds of features. Among
them, 1119 are positive samples and 9981 are negative
ones.

Pipeline of the dEEPSEN method
Based on convolutional neural network (CNN), we pro-
posed a novel approach named DEEPSEN to predict super
enhancers on genome scale. Fig. 1 illustrates the pipeline
of the DEEPSEN method. It consists of three major steps:

1 Data preprocessing and feature calculation. 36 kinds
of features were used to represent super-enhancers,
including DNA sequence compositional features,
histone modifications, transcriptional factors, RNA
polymeraseII, hypersensitive site, co-activators,
chromatin regulators, cohesion, mediator complex,
mediator complex, and Lsd1-NuRD complex.
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Table 1 Datasets used in this paper

Data Type Data Name GEO ID

Transcription factors Oct4, Sox2, Nanog, Esrrb, Klf4, Smad3,
Tcfcp2l1, Prdm14, Stat3, Tcf3, Nr5a2

GSE44286, GSM288355, GSM288354, GSM623989,
GSM53954

Mediator complex MED1 GSM560348,GSM560345

Histone modifications H3K27ac, H3K4me1, H3K4me3, H3K9me3 GSM594579, GSM281695, GSM307149, GSM18371

RNA polymerase RNA Pol GSM318444

Hypersensitive site DNaseI GSM1014154

Co-activators p300, CBP GSM918750,GSM1246866

Chromatin regulators Brg1, Brd4, Chd7 GSM896923, GSM937540, GSM558674

Cohesion Nipbl, Smc1 GSM560350,GSM560342

Mediator complex MED12 GSM560348,GSM560345

Lsd1-NuRD complex Lsd1, Mi2b GSM687282,GSM687284

2 Constructing and training DEEPSEN. First, we built
three models with different numbers of
convolutional layers. Then, we trained each model
using the back propagation (BP) algorithm [19] and
stochastic gradient descent optimization algorithm.
Furthermore, we did parameter tuning and validated
each model using 5-fold cross-validation.

3 Feature ranking. We evaluated each feature’s
contribution to the identification of super-enhancers.

In what follows, we elaborate the process of super-
enhancer prediction step by step.

Data preprocessing and feature selection
Firstly, we aligned the original ChIP-seq reads to mouse
genome-build mm9 with bowtie 0.12.9 [20]. As a result,
we got the start and end positions of each read. Sec-
ondly, with these positions and the help of bamtoGFF,
we calculated the read densities of samples, including
super-enhancers and normal enhancers, and normalized
these densities. Thirdly, we evaluated the binding affin-
ity scores of all the samples with DNA binding motif
information. Finally, we combined the calculated read
densities and the binding affinity scores to get the final
training data.

Fig. 1 The pipeline of DEEPSEN. The data we used were from GEO. Firstly, we do data preprocessing and feature calculation. Secondly, we construct
three models with different numbers of convolutional layers and train them. Thirdly, we evaluate Pearson correlation coefficient to rank the features
for predicting super-enhancers. Finally, we do performance evaluation and analysis
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Constructing and training dEEPSEN
The structure of dEEPSEN
Figure 2 shows the architecture of a DEEPSEN classifier,
which consists of the input layer (the 1st convolutional
layer, including max-pooling), the 2nd convolutional layer
(including max-pooling), ..., the fully connected layers, and
the output layer.

The convolutional layer contains two steps: convolution
step and pooling step. The convolution step uses multi-
ple convolutional kernels to do convolution operation on
the input data. A max-pooling operation often follows a
convolution step to output a local maximal value of the
respective convolutional outputs. The convolution oper-
ation learns to recognize relevant patterns of the input.
The function of max-pooling is to reduce parameters to
abstract the features learned in the proceeding layers. An
activation function is usually used after each layer, which
is nonlinear to guarantee the nonlinearity of the whole
model. Here, we used the rectified linear unit(ReLU)
function:

ReLU(x) = max(0, x) (1)

The subsequent convolutional layers capture the relation-
ships of the features extracted from the proceeding layers
to obtain high-level features. Finally, the fully connected
layer with dropout transforms the input into probability
distribution through the softmax function:

fi(z) = ezi
∑

j ezj
(2)

The parameter details of the architecture are described
in Table 1. We take the model consisting of 2 convolu-
tional layers as the example. The input layer is a N×36×1
matrix, where N is the number of samples that is set to
11100 in our experiments. The first convolutional layer
contains 32 kernels of shape 3×1 with the stride of 1
using the same padding so that the size does not change
during convolution operation with. The output of the

first layer includes 32 feature maps of size 36×1. Next
is the first pooling layer of size 3×1, which means that
we remain only the maximum value among every three
values to reduce the dimensions and make the model
robust. The second convolutional layer has 64 kernels,
each of which is 3×1×32, and its output includes 64 fea-
ture maps of size 12×1. The 2nd pooling layer uses 3×1
max-pooling, and its output contains 64 feature maps
of size 4×1, that is, 64*4=256 nodes. Following is the
fully connected layer with 256 input nodes and 64 out-
put nodes. We used dropout method [21] in the fully
connected layer to delete some nodes randomly for con-
trolling over-fitting. The detailed structure of DEEPSEN
that contains two convolutional layers is presented in
Table 2. Besides the DEEPSEN with two convolutional lay-
ers, we also constructed DEEPSEN predictors with three
convolutional layers and four convolutional layers. The
details are presented in Tables 3 and 4, respectively.

The major difference between the CNN based models
and previous models lies in that CNN can learn to recog-
nize relevant patterns of input by updating the network
during training. Therefore, the advantage of CNN based
models is the ability to learn complicated features from
large-scale datasets in an adaptive manner.

The training of dEEPSEN
We used the cross entropy loss function, which is as
follows:

J(θ) = − 1
m

m∑

i=1
yi log(hθ (xi)) + (1 − yi) log(1 − hθ (xi))

(3)

where θ is the parameter set, m is the amount of sam-
ples, yi is the label of xi, hθ (xi) is the predicted label of
xi. Parameters were randomly initialized. The data was
processed from the input layer to the output layer, and
back propagation [19] and stochastic gradient descent

Fig. 2 The architecture of DEEPSEN-2L. DEEPSEN-2L consists of the input layer, the 1st convolutional layer (including the 1st max-Pooling), the 2nd
convolutional layer (including the 2nd max-Pooling), fully connected layer (including dropout), and output softmax layer
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Table 2 The structure of DEEPSEN-2L

Layer Size Output Shape

Input 36×1

Convo1 32×3×1 32×36×1

Pool1 1×3 32×12×1

Convo2 64×3 × 1×32 64×12×1

Pool2 1×3 64×4×1

Full-connected 256 64

softmax 64 2

algorithms were used to update the network parameters
to minimize the cost function. Each epoch contains for-
ward propagation, loss calculation, back propagation and
parameter refreshing. The detailed training steps are as
follows:

1 Initializing the parameters randomly.
2 Feeding the training data to the input layer.
3 Doing convolution operation and max-pooling

operation in each conventional layer
4 Using the output of the last convolutional layer as the

input of fully connected layer to obtain the result of
the output layer

5 Evaluating the cost function and doing Adam
optimization [22] using the BP algorithm [19] to
refresh the parameters

6 Repeating step 2 to step 5 (one epoch) to recalculate
the cost function until the desirable number of
iterations is reached.

Feature ranking
In our models, we integrated 36 different features to
predict super enhancers, including H3K27ac, H3K4me1,
H3K4me3, H3K9me3, Brd4, Cdk8, Cdk9, Med12, p300,
CBP, Pol2, Lsd1, Brg1, Smc1, Nipbl, Mi2b, CHD7, H-
DAC2, HDAC, DNaseI, 4-Oct, Sox2, Nanog, Smad3,
Stat3, Tcf3, Esrrb, Klf4, Prdm14, Tcfcp2I1, Nr5a2, AT

Table 3 The structure of DEEPSEN-3L

Layer Size Output Shape

Input 36×1

Convo1 32×3×1 32×36×1

Pool1 1×3 32×12×1

Convo2 64×3 × 1×32 64×12×1

Pool2 1×3 64×4×1

Convo3 128×3 × 1×64 128×4×1

Pool3 1×2 128×2×1

Full-connected 256 64

softmax 64 2

Table 4 The structure of DEEPSEN-4L

Layer Size Output Shape

Input 36×1

Convo1 32×3×1 32×36×1

Pool1 1×3 32×12×1

Convo2 64×3 × 1×32 64×12×1

Pool2 1×3 64×4×1

Convo3 128×3 × 1×64 128×4×1

Pool3 1×2 128×2×1

Convo4 256×3 × 1×128 256×2×1

Pool4 1×2 256×1×1

Full-connected 256 64

softmax 64 2

content, GC content, phastCons, phastConsP, re- peat
fraction. To measure the predictive power of each feature,
we computed the Pearson correlation coefficient between
each feature vector and the output label vector of all test
samples. Then, we ranked these features based on the
calculated Pearson correlation coefficient.

Results and discussion
Parameter tuning
DEEPSEN was implemented on tensorflow [23] with
python. To investigate the impact of the number of convo-
lutional layers on prediction performance, we constructed
three models with different layers of convolutional neu-
ral networks, concretely, two, three and four convo-
lutional layers. For simplification, these models are
denoted as DEEPSEN-2L, DEEPSEN-3L and DEEPSEN-
4L, respectively.

For each model, although most parameters were tuned
automatically in the training process of the convolutional
neural networks, there are still some hyper-parameters
to be determined. Here, the Adam optimization method
[22] was applied. We used grid search to tune the
hyper-parameters, including learning rate, the number of
epoches and the number of layers. Based on a number of
preliminary experiments, we limit the parameters in the
following ranges: the number of layers L: 2-4 (with stride
1); the number of epoches e: 50-150 (with stride 10); learn-
ing rate α: 10−5, 5×10−5, 10−4, 5×10−4, 10−3, 5×10−3,
10−2, 5×10−2.

We used accuracy as evaluation metric to tune param-
eters. The results are shown in Fig. 3. For DEEPSEN-2L,
when α is set between 0.00005 and 0.0001, it achieves bet-
ter prediction accuracy. Generally, the accuracy increases
with the number of epoches (for the number of epoches
≤ 140). We did not choose too large numbers of epoches
for the reason of training efficiency. When α is set
to between 0.01 to 0.05, the accuracy is fixed at 0.9
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Fig. 3 Accuracy results under different parameter sets. a Accuracy vs. epochs for different α (DEEPSEN-2L); b Accuracy vs. epochs for different α

(DEEPSEN-3L); c Accuracy vs. epochs for different ? (DEEPSEN-4L)

because α is so large that gradient descent algorithm can
not perform well, and DEEPSEN-2L predicts all sam-
ples as negatives (note that the ratio of negatives over
positives is 9). DEEPSEN-3L and DEEPSEN-4L show sim-
ilar patterns on parameters tuning. Overall, the optimized

learning rate is between 5*10−4 and 10−4, the opti-
mized number of epoches is between 140-150. With
such parameter setting, DEEPSEN-4L achieves a bet-
ter overall performance. Thus, we chose DEEPSEN-4L
as the final model to predict super-enhancers. In what

Fig. 4 F1 results under different parameter sets; a F1 vs. epochs for different α (DEEPSEN-2L). b F1 vs. epochs for different α (DEEPSEN-3L). c F1 vs.
epochs for different α (DEEPSEN-4L)
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Table 5 Performance comparison with the state-of-the-art
method

Method Precision Recall F1-score AUC

Improse 0.88 0.81 0.84 0.97

DEEPSEN 0.92 0.88 0.90 0.97

follows, we compare our three models with existing meth-
ods in terms of evaluation metrics precision, recall, F1
and AUC. The definitions of theses evaluation metrics
is as follows. In classification task, TP denotes the true
positives, FP denotes the false positives, TN denotes
the true negatives and FN denotes the false negatives.
ROC(Receiver Operating Characteristic) curve describe
the relation between FP rate and TP rate, AUC is the area
under curve.

Precision = TP
TP + FP

(4)

Recall = TP
TP + FN

(5)

F1 = 2 ∗ Precision ∗ Recall
Precision + Recall

(6)

Performance evaluation
The F1 values of our three models under different hyper-
parameter settings are shown in Fig. 4. For DEEPSEN-2L,

the best performance is achieved with α=0.0001 and the
number of epoches being 140. For DEEPSEN-3L, the best
performance is obtained when α=0.00005 and the num-
ber of epoches is 140. As for DEEPSEN-4L, the best
performance comes from α=0.00005 and the number of
epoches being 130. So we can see that all the three mod-
els of DEEPSEN achieve the best F1 when α is between
0.00005 and 0.0001, and the number of epoches is
between 130 and 140. This observation is also noticed on
accuracy.

The performance results of DEEPSEN with differ-
ent structures are given in Table 5, where the perfor-
mance results of improse [16] are listed for comparison.
We can see that DEEPSEN-3L and DEEPSEN-4L per-
form better than improse in terms of precision, recall
and F1. It demonstrates that the proposed DEEPSEN
method outperforms the stat-of-the-art method improse.
Figure 5 shows the performance comparison between our
models and improse, and Fig. 6 shows the best AUC
of DEEPSEN-4L when α=0.00005 and the number of
epoches is 110.

Performance comparison among different features
The results of the first six correlated features are pre-
sented in Table 6. The Pearson correlation coefficient
indicates the contribution of each feature to prediction
performance. For our method, the feature ranking accord-
ing to Pearson correlation coefficient is: Med12, cdk8,

Fig. 5 Performance comparison with improse
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Fig. 6 The best ROC curve of DEEPSEN

Brd4, Cdk9, P300, H3K27ac, which is roughly similar to
the findings of improse. The ranking given by improse is:
Brd4, H3K27ac, Cdk8, Cdk9, Med12 and p300.

Conclusion
In this paper, we proposed DEEPSEN, a new super-
enhancer prediction method based on convolutional
neural networks (CNNs). The data from GEO were
used to train and test the proposed method. 36 kinds
of features, including DNA sequence, histone mod-
ifications and TF bindings were integrated to train
three models with 2, 3 and 4 convolutional layers.
DEEPSEN uses a three-step scheme to construct and
train CNN based classifiers. The first step is data pre-
procesing and feature calculation. The second step is
to construct and train DEEPSEN. The third step is
feature ranking. Our experimental results show that
DEEPSEN outperforms the existing methods. DEEPSEN
can be used with high-throughput experimental tech-
niques to improve the accuracy of super-enhancer
prediction.

Table 6 The results of feature ranking

Features Med12 Cdk8 Brd4 Cdk9 p300 H3K27ac

Correlation 0.746 0.731 0.684 0.643 0.618 0.605
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