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Deep gene selection method to select
genes from microarray datasets for cancer
classification
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Abstract

Background: Microarray datasets consist of complex and high-dimensional samples and genes, and generally the
number of samples is much smaller than the number of genes. Due to this data imbalance, gene selection is a
demanding task for microarray expression data analysis.

Results: The gene set selected by DGS has shown its superior performances in cancer classification. DGS has a high
capability of reducing the number of genes in the original microarray datasets. The experimental comparisons with
other representative and state-of-the-art gene selection methods also showed that DGS achieved the best
performance in terms of the number of selected genes, classification accuracy, and computational cost.

Conclusions: We provide an efficient gene selection algorithm can select relevant genes which are significantly
sensitive to the samples’ classes. With the few discriminative genes and less cost time by the proposed algorithm
achieved much high prediction accuracy on several public microarray data, which in turn verifies the efficiency and
effectiveness of the proposed gene selection method.
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Background
Studying the correlation between microarray data and
diseases such as cancer plays an important role in bio-
medical applications [1]. Microarray data contains gene
expressions extracted from tissues (samples). We can
obtain more information about the disease pathology by
comparing the gene expressions of the normal tissues
with the ones of the diseased tissues [1]. Exploring the
difference between the cancerous gene expression in
tumor cells and the gene expression in normal tissues
can reveal important information from microarray data-
sets, based on which a number of classification tech-
niques have been used to classify tissues into cancerous
/ normal or into types/subtypes [2–6]. However, micro-
array data generally has its own high dimensionality
problem, i.e., usually there are thousands of genes/attri-
butes but a few samples in a dataset. Moreover, most of
these attributes are irrelevant to the classification

problem. Therefore, reducing the attribute dimensional-
ity and meanwhile ensuring that the selected attributes
still contain rich and relevant information could address
this data imbalance problem, although it remains a big
challenge. In addition, small sample set makes the prob-
lem much harder to solve because the Machine Learning
(ML) algorithms do not have enough space to learn
(training examples) and this will increase the risk of over
fitting. Moreover, microarray data is known as of highly
complicated because most of the attributes (genes) in
microarray data are directly or indirectly correlated with
each other [7]. Selecting a small relevant attribute subset
can solve many problems related to microarray data [8,
9]. By removing irrelevant and redundant attributes, we
can reduce the dimensionality of the data, simplify the
learning model, speed up the learning process and
increase the classification accuracy. Several studies have
developed and validated a novel gene expression signa-
ture and used it as a biomarker to predict cancer in
clinical trials [10, 11]. Cancer-associated microarray bio-
markers allow less-invasive monitoring and can facilitate
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patient diagnosis, prognosis, monitoring, and treatment
in the oncology field [12, 13].
Several gene selection methods have been developed

to select the genes that are directly related to the disease
diagnosis, prognosis, and therapeutic targets [14]. In
addition to statistical methods, recently data mining and
machine learning solutions have been widely used in
genomic data analysis [9, 15]. However, still most of the
existing gene selection approaches are suffering from
several problems such as the stagnation in local optima
and the high computational cost [16–18]. Therefore, to
solve these problems an efficient new selection approach
is needed.
Evolutionary Algorithms (EA) have recently played an

important role in gene selection field due to their ability
in global search [19]. Besides, many hybrid EA have been
proposed to improve the accuracy of the classification
methods [20–23]. Various evolutionary algorithms aim
to find an optimal sub-set of features by using bio-
inspired solutions (such as Genetic Algorithm (GA) [24],
Genetic programming (GP) [25], particle swarm
optimization (PSO) [26], and Honey Bee [27]). These
kinds of algorithms have shown appropriate perfor-
mances over various problems but are dependent on ex-
pert’s intervention to obtain the desired performance.
Recently, a new gene selection method called Gene Se-

lection Programming (GSP) [28] was proposed which
showed good results in terms of accuracy, the number of
selected genes and time cost. However, the problem of
search space is still unsolved.
Gene Expression Programming (GEP) [29] is a new

evolutionary algorithm, which was widely used for classi-
fication and gene selection [30–35]. GEP has two merits:
flexibility which makes it easy to implement, and the
capability of getting the best solution, which is inspired
by the ideas of genotype and phenotype. In this paper,
we use GEP to construct our algorithm.
The purpose (and contribution) of this paper is to

present a simple and thus computational efficient algo-
rithm to solve the problem of attribute selection from
microarray gene expression data. To this end we explore
how to extract the important features from massive
datasets.
The rest of this paper is organized as follows: In Gene

Expression Program a brief background of GEP is pre-
sented. The proposed gene selection algorithm DGS is
presented in Results. Evaluation results and discussions,
as well as statistical analysis, are presented in Discussion.
Finally, Conclusion gives the conclusions.

Gene expression program
Gene Expression Program (GEP) [36] is an evolution al-
gorithm that creates a computer programing/ model
from two parts. The first part, which is also known as

genotype, is the characteristic linear chromosomes with
a fixed length. Each chromosome consists of one or
more genes and each gene consists of a head (h) and a
tail (t). The head consists of terminals (attributes) and
functions while the tail consists of attributes only, and
the head length and tail length follow the rule t = h (n-1)
+ 1 where n is the maximum number of parameters re-
quired in the used functions. The second part is the ex-
pression tree (ET) which is also known as phenotype.
For example, suppose h = 5 and the chromosome has
only one gene. The function set is {+, Q, /} where Q is
the square root and the terminals set (the attributes in
the data) is coded as {a0,…, a6} then an example of
chromosome could be.
+/a4Qa2a1a5a6a3 a0 a3,(Genotype)

where the bold part represents the head and the rest
represents the tail. The ET is.

(Phenotype)

The basic GEP algorithm consists of four steps: creat-
ing the chromosomes to initialise the population, evalu-
ating the fitness of each individual/ chromosome by
using a predefined fitness function, identifying a suitable
stop condition/s and applying the genetic operations to
modify the individuals for the next generation. GEP was
successfully applied on microarray data to find different
biological characteristics [30, 37]. More details about
GEP algorithm and process can be found in [29, 36, 38].

Results
Materials
In our experiments, we evaluated the performance of
DGS method on an integrated lung cancer microarray
dataset downloaded from NCBI (https://www.ncbi.nlm.
nih.gov/geo/query/ acc.cgi?acc=GSE68465). The dataset
contains 442 patients collected from 4 hospitals: Moffitt
Cancer Center (MCC) 79 patients, Memorial Sloan-
Kettering Cancer Center (MSKCC) 104 patients, Univer-
sity of Michigan Cancer Center (UMCC) 177 patients,
and Dana Farber Cancer Centre (DFCC) 82 patients.
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The data include various prognosis information, we
used lung cancer recurrence information to predict the
lung cancer recurrence. To this end, we extracted only
the samples with recurrence or free survival (non-recur-
rence) and delete all the unrelated information such as
the dead patients and the disease-free patients. After the
preparation the total number of the patients in the data-
set was 362. The number of cancer recurrence patients
was 205 while the number of free survival patients was
157. The total number of attributes (probe sets) was 22,
283. Regarding the training and testing of the method,
we used 10-fold cross- validation method. The 9 folds
were used for training DGS while the left fold was used
for testing. For more reliability we repeated the experi-
ment ten times and obtained the average results of these
experiments.
To make the evaluations more reliable, we validated

the prediction model using another independent dataset
with the same statistical measures. The validation data-
set from South Korea (GSE8894) can be downloaded
from NCBI. GSE8894 dataset had 138 NSCLC samples
from Affymetrix Hu133-plus2 platform microarray
chips. It had an equal number of samples for two classes,
i.e. 69 samples were labelled ‘recurrence’ and 69 samples
were labelled ‘nonrecurrence’.

The best setting for the number of chromosome (CH) and
the number of genes (N)
To find out the best settings for the number of chromo-
somes in each generation (CH) and the number of genes
(N) in each chromosome, we did experiments with dif-
ferent values of CH and N. To show the effect of CH
and N on the DGS classification performance, we se-
lected nine different settings. Three different values for
CH, 100, 200 and 300, and for each CH value, three dif-
ferent N values are selected: 1, 2 and 3. The values of
CH are increased by 100 to make the effect of CH values
clear, especially when the effect of increasing CH is very
slight. To make the experiments more reliable, we re-
peated the experiment 10 times and took the average as
a final result. The parameters used in DGS, which is
based on gene expression programming (GEP) algo-
rithm, are showed in Table 1.

The average experimental results are presented in
Table 2. ACavg, Iavg, Savg and TMavg represent the
average accuracy, the number of iterations, the number
of selected attributes and CPU time respectively for ten
runs, while ACstd, Istd, Sstd. and TMstd. represent the
standard deviation of the classification accuracy, the
number of iterations, the number of selected attributes
and CPU time respectively.
We observed from Table 2 that:

1- Comparing CH with N: CH has a less effect on the
results than N.

2- Regarding CH results: CH has positive relationships
with ACavg, TMavg and Savg.That is when CH value
was increased, ACavg, TMavg and Savg. values also
increased. While CH has negative relationships with
ACstd, TMstd. and Sstd. That is when CH values
increased, ACstd, TMstd. and Sstd. values were
decreased. The results became stable when the CH
was over 200.

3- Regarding N results: N has positive relationships
with, ACavg, TMavg and Savg and negative
relationships with ACstd, TMstd. and Sstd. The results
became stable after two genes.

4- Increasing CH values over 200 would increase the
processing time while the AC and N results would
not significantly change.

5- The best results were achieved when the value of
CH is 200 and the value of N is 2.

DGS evaluations
Evaluate DGS performance based on the AC, SN, SP, PPV,
NPV, S, TM and AUC
The performance of DGS was evaluated and measured
for each test in terms of classification accuracy (AC),
Sensitivity (SN), Specificity (SP), Positive predictive value

Table 1 Parameters used in DGS

Parameter Setting

Terminal set Start with all the attributes in microarray
dataset.

Function set +, −, ÷, Q where Q is the square root

Maximum Iterations number 200

Mutation 0.044

Recombination 0.3

Table 2 the results of different setting for the number of genes
(N) and the number of chromosomes (CH)

genes(N) CH AC avg. I avg S avg. TM avg.

1 100 77.92 200 7.37 189.00

200 85.45 192.50 10.07 247.28

300 86.18 152.40 4.00 285.01

average 83.18 181.63 7.15 240.43

2 100 82.29 191.30 4.00 183.52

200 87.49 145.90 3.90 218.85

300 87.54 144.03 3.90 279.74

average 85.77 160.41 3.93 227.37

3 100 87.20 144.00 3.90 204.72

200 87.54 135.00 3.90 288.05

300 87.54 135.00 3.90 362.05

average 87.43 138.00 3.90 284.94
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(PPV), Negative predictive value (NPV), the number of
selected genes (S), and processing time (TM) with confi-
dence intervals (CI 95%).
To make the evaluations more reliable, we compared

DGS with five representative models on the integrated lung
cancer dataset. These five gene selection algorithms were
Correlation-based Feature Selection (CFS), Consistency
Subset Feature Selection (CSFS), Wrapper Subset (WS),
Support Vector Machine (SVM) which applied using
WEKA with their default configurations, and Gene Expres-
sion Programming (GEP) using GEP4J package. All the
values are the average (avg) values over ten runs of the
models. Table 3 gives the performance evaluation values
for all the prediction models.
In term of AC, the experimental results showed that

the DGS method achieved the highest average accuracy
result (0. 8749), while the average accuracies of other
methods were 0.8436, 0.8370, 0.8395, 0.8544 and
0.8577for CSF, CSFS, WS, SVM and GEP respectively.
In term of SN, the experimental results showed that

the DGS method achieved the highest average accuracy
result (0. 9522), while the average sensitivity results of
other methods were 0.8995, 0.8907, 0.8932, 0.9307and
0.9278 for CSF, CSFS, WS, SVM and GEP respectively.
In term of SP, the experimental results showed that

the DGS method achieved the highest average accuracy
result (0. 7739), while the average sensitivity results of
other methods were 0.7707, 0.7669, 0.7694, 0.7548 and
0.766242 for CSF, CSFS, WS, SVM and GEP
respectively.

The DGS model achieved the highest average PPV
which was 0. 8462, while the average PPV of other
models were 0.8373, 0.8332, 0.8351, 0.832 and 0.8382 for
CSF, CSFS, WS, SVM, GEP respectively.
The highest average NPV was for DGS (0. 9253) while

the average PPV of other models were 0.8550, 0.8434,
0.8468, 0.8931 and 0.8907 for CSF, CSFS, WS, SVM,
GEP respectively.
DGS achieves the smallest number of selected genes

(3.9) which is almost half of the number of genes
selected by other comparison methods.
Regarding TM, the less processing time was for DGS

(218.85) while the average time results of other models
were 600.12, 600.02, 600.01, 600.21 and 620.51 for CSF,
CSFS, WS, SVM, GEP respectively.
Figure 1 shows the effectiveness of DGS method in

term of AC, SN, SP, PPV, NPV, S, TM and AUC.
For more reliability, we validated the prediction model

using an independent dataset (GSE8894). The selected
genes were used as biomarkers to classify the recur-
rence/ non-recurrence patients. The evaluation results
for DGS on the validation dataset in terms of AC, SN,
SP, PPV, NPV and AUC are presented in Table 4, which
show the effectiveness of the proposed gene selection
algorithm DGS that enabled the prediction model to
achieve the accuracy of 87.68%.
Figure 2 shows that the selected genes are able to

separate risk groups (recurrence/non-recurrence) charac-
terized by differences in their gene expressions.

The biological meaning for the selected genes from DGS
method
In this section we present the biological meanings of the
selected genes obtained from “Expression Atlas” data-
base of EMBL-EBI (http://www.ebi.ac.uk/gxa/). Table 5
shows the genes that were selected by DGS method for
the ten runs.
We used the OMIM, Expression Atlas and NCBI web-

sites to find the biological meanings of the selected
microarray probe-ids and list their corresponding genes.
The specifications are shown in Table 6.

DGS comparison with up-to-date models
We also compared DGS method with models recently
proposed, which are IBPSO [39], IG-GA [40], IG-ISSO
[41], EPSO [42], mABC [43] and IG-GEP [32]. The com-
parison results were based on two criteria: the classifica-
tion accuracy and the number of the selected genes
regardless of the methods of data processing.
We used the same datasets that were used by these

up-to-date models to compare DGS results. A brief
description of these datasets is presented in Table 7.
The comparison results are presented in Table 8.

Across the ten datasets used in the comparison, DGS

Table 3 Comparison of DGS performance with different feature
selection models in term of AC, SN, SP, PPV, NPV, AUC, S and
TM with CI 95% for each test

CSF CSFS WS SVM GEP DGS

AC avg. 0. 8436 0.8370 0.8395 0.8544 0.8577 0. 8749

CI 95% ±0.1921 ±0.1279 ±0.1180 ±0.0986 ±0.0922 ± 0.1287

SN avg. 0.8995 0.8907 0.8932 0.9307 0.9278 0.9522

CI 95% ±0.2520 ±0.1893 ±0.1753 ±0.1362 ±0.1575 ±0.1187

SP avg 0.7707 0.7669 0.7694 0.7548 0.7662 0.7739

CI 95% ±0.5809 ±0.3157 ±0.3417 ±0.1682 ±0.1001 ±0.2569

PPV avg. 0.8373 0.8332 0.8351 0.8321 0.8382 0.8462

CI 95% ±0.2956 ±0.1652 ±0.1744 ±0.0910 ±0.0637 ±0.1362

NPVavg. 0.8550 0.8434 0.8468 0.8931 0.8907 0.9253

CI 95% ±0.3803 ±0.2855 ±0.2557 ±0.2475 ±0.2749 ±0.2401

AUCavg. 0.8293 0.8104 0.8414 0.8499 0.8423 0.8687

CI 95% ±0.0223 ±0.0213 ±0.0211 ±0.0218 ±0.0216 ±0.0210

Savg. 6.5 6.9 6.7 6.3 6.2 3.9

CI 95% ±0.8430 ±0.978 ±1.0013 ±1.3016 ±0.9917 ±0.3338

TM avg 600.12 600.02 600.01 600.21 620.51 218.85

CI 95% ±0.1821 ±0.0189 ±0.0134 ±0.3700 ±24.6415 ±34.6227
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achieved the best results in seven datasets (11_Tumors,
9_Tumors, Leukemia1, Leukemia2, Lung_ Cancer,
DLBCL and SRBCT) compared with the other compara-
tor models, while mABC achieved better results in three
data sets (Prostate, Brain_Tumor1, and Brain_Tumor2).
Moreover, DGS achieved superior results in term of the
number of selected genes which were the best results in
all experimental datasets. The average evaluation values
in terms of accuracy (ACavg) and the number of selected
genes (Savg) for IBPSO, IG-GA, IG-ISSO, EPSO, mABC
and IG-GEP are listed in Table 8.

Discussion
We improve the genetic operations that can improve the
generation quality effectively. The experimental results
show that the proposed DGS can provide a small set of
reliable genes and achieve higher classification accur-
acies in less processing time.
These superior achievements are due to the following

DGS features -

1- The ability of DGS to reduce the complexity by
using different ways
a. Narrowing the search space gradually. In each

iteration DGS extract a new terminal set by
removing the genes that don’t provide high
fitness values (see DGS Population Generation)

b. Reducing the generation size by applying Eq. 3.
(see Generation size controlling)

2- The ability to select the related genes. In each
generation DGS removes the unrelated genes to
increase the probability of choosing related genes
for generating 200 chromosomes, and after several
generations DGS can finally find the most related
genes. Table 5 shows the gene selection process and
results.

3- DGS is faster compared with other comparative
methods. This feature comes from the DGS’s
abilities.

� The ability of narrowing the search space.
� The ability of resizing the chromosomes in each

iteration

Table 9 shows the differences between DGS and the
related methods GA and GEP.

Conclusion
In this paper, an innovative DGS algorithm is proposed
for selecting informative and relevant genes from micro-
array data sets to improve cancer classifications. The
proposed method inherits the evolutionary process from
GEP. DGS has the ability of reducing the size of attri-
bute space iteratively and achieve the optimal solution.
We applied this method on an integrated dataset and se-
lected 4 genes which can achieve better classification
results.

Method
Proposed method
A novel evolutionary method named Deep Gene Selec-
tion (DGS) is presented in this section, which is based
on the gene expression programming (GEP) algorithm.

Fig. 1 Comparison of DGS performance with different feature selection models in term of AC, SN, SP, PPV, NPV and AUC

Table 4 Validation results of DGS on the independent dataset
GSE8894

AC avg. 0.8768 PPV avg. 0.8714

CI 95% ±0.1932 CI 95% ±0.5191

SN avg. 0.8841 NPVavg. 0.8824

CI 95% ±0.2360 CI 95% ± 0.3148

SP avg 0.8696 AUCavg. 0.8686

CI 95% ±0.4721 CI 95% ±0.0210
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Fig. 2 The evaluation results for the selected genes. aThe gene expression level of the selected genes shown as a heatmap. b The prediction
results using the selected genes
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DGS is developed to explore the subset of highly relevant
genes. The proposed evolutionary method consists of sev-
eral steps as depicted in Fig. 3. According to Fig. 3, the at-
tributes/genes are coded as a0, ----, am where m represents

the number of attributes in the dataset. T is the size of the
terminal set which is used to create a population of chro-
mosomes. In the first-generation T =m.
The length of each chromosome (L) is defined

based on the dimensionality of the dataset. Further-
more, the minimum length of L could also be de-
fined. Next, the population is evaluated using a
fitness function that employs a classifier and the
number of the attributes. After being assigned fitness
values, all chromosomes of the population are sorted
to find the best individuals that have the higher fit-
ness values. Improved genetic operators are then ap-
plied to the selected population individuals and
accordingly the top individuals (the individuals with
the highest fitness values) are selected to generate the
next generation. Then a new attribute subset with
new T is extracted from these best individuals of the
new generation. In other words, the output (new at-
tribute set) of previous generation is the input of the
next generation. After several generations, the attri-
bute set will represent the minimum genes that can
achieve the highest fitness values, because in each
generation only the attributes that can achieve the
highest fitness values will be selected. One termin-
ation condition of this iteration process is that there
is no change in the top fitness values. This means the
selected genes are the same (same attribute set) and
the classification results are the same. Another ter-
mination condition is the number of generations
reaches the maximum number although the program
cannot reach the ideal solution. The selection oper-
ation will stop once one of these two termination
conditions is met. The application of this algorithm
on real data sets is presented in Materials. It is worth
noting that the proposed method is taking the advan-
tages of evaluation algorithms and dynamic attribute
extraction to reach the optimal solution in a very
simple and effective way.
Overall, the proposed method focuses on searching

for superior solutions with the smallest number of
attributes by using the evolutionary structures to
evaluate the best solution and using the dynamic at-
tribute extraction approach to narrow the search
space. With the progress of iteration, the cost of
search will decrease, and the quality of the solution
will increase until the optimal solution (or the solu-
tion close to the optimal one) in the smallest space
is achieved. DGS was implemented using Java. To
implement the expression tree (ET), we used GEP4J
package [54]. The DGS flowchart is presented in
Fig. 3.
The detailed descriptions of the proposed method,

including chromosome representation, initial DGS
population, DGS fitness function and improved

Table 5 The selected gens of each run

Run number S Probe ID Gene symbol

1 4 204891_s_at LCK

208893_s_at DUSP6

202454_s_at ERBB3

202885_s_at MMD

2 4 204891_s_at LCK

208893_s_at DUSP6

202454_s_at ERBB3

202885_s_at MMD

3 4 204891_s_at LCK

208893_s_at DUSP6

202454_s_at ERBB3

202885_s_at MMD

4 4 204891_s_at LCK

208893_s_at DUSP6

202454_s_at ERBB3

202885_s_at MMD

5 4 204891_s_at LCK

208893_s_at DUSP6

202454_s_at ERBB3

202885_s_at MMD

6 3 204891_s_at LCK

208893_s_at DUSP6

202454_s_at ERBB3

7 4 204891_s_at LCK

208893_s_at DUSP6

202454_s_at ERBB3

202885_s_at MMD

8 3 208893_s_at DUSP6

202454_s_at ERBB3

202885_s_at MMD

9 4 204891_s_at LCK

208893_s_at DUSP6

202454_s_at ERBB3

202885_s_at MMD

10 5 204891_s_at LCK

208893_s_at DUSP6

202454_s_at ERBB3

202885_s_at MMD

205027_s_at MAP3K8
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genetic operations, are presented in the following
sub-sections.

DGS population generation
DGS population is the base of the proposed method.
The chromosome concept and representation of DGS
population are inherited from gene expression program-
ming (GEP) algorithm (see section 2.2). The chromo-
somes are constructed from two sets: terminal set (ts)
and function set (fs). The function set can be a set of
any mathematic operators such as {−, +, /, *, sqr, log}.
Terminal set in this paper represents the attribute set of
the microarray dataset.
The first generation is generated from all attributes

in the microarray dataset. Each individual (chromo-
some) of the generation is evaluated by the fitness
function and assigned a fitness value. All the individ-
uals are then sorted in a descending order from the
highest individuals (the individual with the highest fit-
ness value) to the lowest individual. Then the attri-
butes of the first 50% individuals are extracted to
generate a new terminal set (ts) for generating the
next generation. This means the attribute output of
an iteration will be the input of the next iteration for
generating a new generation. This iterative population
generation process will continue until one of the pro-
gram termination conditions is met. In this way, DGS
is able to reduce the dimension of the attribute
search space by extracting the attributes that can
achieve the high fitness values.
The details of this population generation process are

outlined in Algorithm.1.

The following simulation example illustrates the gen-
eration of a DGS population.

Example 1
If we have a dataset that has13 attributes, then.
ts = {a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13}.
Let h = 3 and fs = {+. -, *, /, Q} then n = 2, t = h (n-1) +

1 = 4 and the gene length g = h + t = 7. Suppose each
chromosome has only one gene. The population with 10

Table 6 The final selected genes from the gene selection
method DGS

Gene
symbol

Gene Name Chr. NCBI
UniGene
number

Specification

LCK lymphocyte-specific
protein tyrosine
kinase

1 3932 The encoded protein
is a key signaling
molecule in the
selection and
maturation of
developing T-cells

DUSP6 dual-specificity
phosphatase6

12 1848 This gene inactivates
(ERK2), resulting in
tumor suppression and
apoptosis. The protein
encoded by this gene
is a member of the
dual specificity protein
phosphatase subfamily

ERBB3 v-erb-b2 avian
erythroblastic
leukemia viral
oncogene homolog
3

12 2065 Also known as HER3
(human epidermal
growth factor receptor
3) This gene encodes a
member of the
epidermal growth
factor receptor (EGFR)
family of receptor
tyrosine kinases which
are often aberrantly
expressed and/or
activated in human
cancers

MMD monocyte-to-
macrophage
differentiation
associated protein

17 23,531 This protein is
expressed in mature
macrophages but the
function of this protein
is still unknown.

Note: NCBI UniGene number with more information about the genes can be
found from NCBI website https://www.ncbi.nlm.nih.gov/geo/

Table 7 Description of the experimental datasets

No. Dataset Samples(X) Number of
Genes(Y)

Classes Reference

1 11_Tumors 174 12,533 11 [44]

2 9_Tumors 60 5726 9 [45]

3 Brain_Tumor1 90 5920 5 [46]

4 Brain_Tumor2 50 10,367 4 [47]

5 Leukemia 1 72 5327 3 [48]

6 Leukemia 2 72 11,225 3 [49]

7 Lung_Cancer 203 12,600 5 [50]

8 SRBCT 82 2308 4 [51]

9 Prostate_
Tumor

102 10,509 2 [52]

10 DLBCL 77 5469 2 [53]
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individuals/chromosomes, as well as their fitness values,
is listed below:

Take chromosome 0 as an example to show how to
calculate the fitness function.

+,-,a12 is the head, and a9,a3,a11 , a7 is the tail of
chromosome 0.
The Phenotype/ET of chromosome 0 is.

DGS will use the gene expression of a12, a9, a3 genes
to calculate the fitness.
DGS sorts the individuals in a descending order based

on their fitness values, then selects the top 50% individ-
uals from them (the highlighted individuals in the above
example). DGS then extracts the attributes from these
selected individuals to form a new terminal set which is
{a3, a4, a5, a6, a7, a8, a9, a11, a12}.

Table 8 Comparison of the gene selection algorithms on ten
selected datasets

11_Tumors IBPSO IG-GA IG-ISSO EPSO mABC IG-GEP DGS

AC avg. 95.06 92.53 95.92 95.4 99.5 93.88 99.88

AC std. 0.3 _____ 1.31 0.61 0 3 0.01

S avg. 240.9 479 19.8 237.7 47.27 18.6 17.9

S std. 9.55 ____ 2.57 9.66 7.79 3 1.2

9_Tumors IBPSO IG-GA IG-ISSO EPSO mABC IG-GEP DGS

AC avg. 75.5 85 91.67 75 98.65 89.83 98.89

AC std. 1.58 ____ 2.48 1.11 0.01 1.01 0.02

S avg. 240 52 15.7 247.1 34.73 20.3 13.7

S std. 7.95 ____ 2.2136 9.65 5.54 2.1 1.02

Brain_Tumor1 IBPSO IG-GA IG-ISSO EPSO mABC IG-GEP DGS

AC avg. 92.56 93.33 98 92.11 100 96.11 99.82

AC std. 0.54 ____ 0.88 0.82 0 1.41 0.31

S avg. 11.2 244 10.1 7.5 16.87 19 9.2

S std. 7.15 ____ 1.73 2.51 2.85 1.05 1.5

Brain_Tumor2 IBPSO IG-GA IG-ISSO EPSO mABC IG-GEP DGS

AC avg. 91 88 99.8 92.4 100 99.8 99.9

AC std. 0.05 ____ 0.63 1.27 0 1.01 0.1

S avg. 6.4 489 10.4 6 10.52 14.6 9.8

S std. 1.9 ____ 1.08 1.83 1.72 0.7 0.4

Lung_ Cancer IBPSO IG-GA IG-ISSO EPSO mABC IG-GEP DGS

AC avg. 95.86 95.57 99.41 95.67 100 98.48 100.00

AC std. 0.53 ____ 0.45 8.3 0 0.61 0.00

S avg. 14.9 2101 10.4 8.5 23.31 14.5 8.30

S std. 10.57 ____ 1.08 2.11 5.14 0.61 0.82

Leukemia1 IBPSO IG-GA IG-ISSO EPSO mABC IG-GEP DGS

AC avg. 100 100 100 100 100 100 100

AC std. 0 ____ 0 0 0 0 0

S avg. 3.5 82 4.6 3.2 5.67 7.7 2.9

S std. 0.71 ____ 0.52 0.63 0.73 0.67 0.63

Leukemia2 IBPSO IG-GA IG-ISSO EPSO mABC IG-GEP DGS

AC avg. 100 98.61 100 100 100 100 100

AC std. 0 ____ 0 0 0 0 0

S avg. 6.7 782 4.2 6.8 6.29 7.5 4.1

Sstd. 1.5 ____ 0.42 2.2 0.98 1.58 0.73

SRBCT IBPSO IG-GA IG-ISSO EPSO mABC IG-GEP DGS

AC avg. 100 100 100 99.64 100 ______ 100

AC std. 0 ____ 0 0.58 0 _______ 0

S avg. 17.5 56 4.3 14.9 5.59 _____ 4

S std. 8.32 ____ 0.48 13.03 0.51 ______ 0.67

Prostate IBPSO IG-GA IG-ISSO EPSO mABC IG-GEP DGS

AC avg. 97.94 96 98.82 97 100 98.33 99.87

AC std. 0.31 ____ 0.41 0.62 0 0.4 0.52

S avg. 13.6 343 8.4 6.6 10.73 18.1 8.2

Table 8 Comparison of the gene selection algorithms on ten
selected datasets (Continued)

Sstd. 7.68 ____ 1.78 2.17 3.15 0.9 0.79

DLBCL IBPSO IG-GA IG-ISSO EPSO mABC IG-GEP DGS

AC avg. 100 100 100 100 100 ______ 100

AC std. 0 ____ 0 0 0 ____ 0

S avg. 6 107 3.9 4.7 4.05 ____ 3.5

S std. 1.25 ____ 0.32 0.82 0.78 ____ 0.5
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DGS will use this new terminal set which is smaller than
the original one and the function set to generate a new
population. This process will continue until the program
reaches the best solution (e.g., Accuracy = 100%) with no
changes to the consecutive terminal sets, or the program
reaches the maximum number of generations.

Generation size controlling
The generation size is determined by three values: the
number of individuals/ chromosomes (CH) in a gener-
ation, the length of each chromosome (L) and the size
of the terminal set (T). The generation size must be
properly defined. If the size is too big, it will lead to the
increment of the computational time, and if it’s too
small, the generation may not cover all attributes

/terminals. In the original evolution algorithms, the
number of chromosomes in each generation (i.e., the
generation size) is fixed, so the other values that are
suitable for the first generation, are also suitable for all
other generations. However, in our method, the first
generation is generated from all attributes, and the
number of attributes may be thousands in the big data-
sets. The attributes used for generating the second
generation are a subset of the attributes of the first gen-
eration as we see in example 1. Usually, the number of
attributes used for generating a generation is dynamic,
i.e. it decreases or non-decreases with the progress of
the evolution program. Therefore, the values of CH and
L that are suitable for a generation may not be suitable
for other generations. To ensure the generation size is

Table 9 the differences between DGS, GA and GEP

DGS GA GEP

number of chromosomes in each generation Same number Same number Same number

Chromosome length Flexible length Fixed length Flexible length

Generation size changeable size Fixed size Fixed size

Genetic Operation Systematic selection Random selection Random selection

Terminal set Different set in each generation Same set in each generation Same set in each generation

Fig. 3 DGS Flowchart
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properly defined, we define the following rule in Eq. (1)
for these three values.

L�CH ¼ 2T ð1Þ
Actually L*CH is the overall size of a generation in

terms attributes and functions. The constant 2 in Eq. (1)
is to ensure that each attribute in the terminal set has
nearly a double chance to be selected to generate a
generation.
Our previous experiments [32] showed that the value

of L has more impact on classification results and com-
putational time than CH. So usually we use a fixed CH
value (200) for all generations and changeable values
for L.
In fact, let N be the number of genes of a chromo-

some/individual, then

L ¼ N� gene lengthð Þ ¼ N� hþ tð Þ
where h is the length of gene head and t is the length of
gene tail, and

t ¼ h� n−1ð Þ þ 1 ð2Þ
where n represents the maximum number of parameters
needed in the function set.
From our experiments, we found that N = 2 can pro-

vide the best classification results from microarray data
sets. If we choose N = 2, then

L ¼ 2 n�hþ 1ð Þ
Considering Eq. (1), we have

2 n�hþ 1ð Þ�CH ¼ 2T

h ¼ T=CH−1ð Þ=n
Usually n = 2 for commonly used functions, therefore

h can be defined as the integer number of (T/CH-1)/n,
i.e.

h ¼ floor T=CH−1ð Þ=n½ �
On the other hand, it is necessary to set a minimum

value of h (h = 3 which is a commonly used value) to
guarantee the genes of a chromosome contain enough
information for evolution.
Based on the above rules and the minimum require-

ment, we can define the head size (h) of each gene in a
chromosome as:

h ¼ max 3; floor T=CH−1ð Þ=2½ �ð Þ ð3Þ
Since CH is fixed (e,g. 200) and the number of genes

in a chromosome is set as 2, once the value of h is de-
fined according to (3), the overall size of a generation is
defined. The following simulation example shows differ-
ent h values with different sizes (T) of terminal set.

Example 2
If a microarray dataset originally has 2200 attributes and
we set CH = 150, the values of h and T are listed in
Table 10.

Fitness function
The purpose of using gene selection methods is to ob-
tain a smallest gene subset that can provide the best
classification results. To this end, a new fitness function
is proposed to enable DGS to select the best individuals/
chromosomes. The fitness value of an individual i can be
calculated by the following equation

f i ¼ 1−rð Þ�AC ið Þ þ r� t−si
t

ð4Þ

This fitness function consists of two parts. The first
part is based on the classification accuracy AC(i) of the
individual i. We use support vector machine (SVM) as a
classification method to calculate the accuracy of an in-
dividual/chromosome because it is a powerful classifica-
tion algorithm which is widely used to solve the binary
and multi-classification problems [55, 56] and can
achieve a high classification accuracy. To calculate the
AC, we use the following Eq. (5), which is widely used in
cancer classification.

AC ¼ TP þ TNð Þ= TP þ FN þ TN þ FPð Þ ð5Þ

where TP, TN, FP and FN represent True Positive,
True Negative, False Positive and False Negative re-
spectively. The second part is based on the number of
selected genes, specifically t is the total number of attri-
butes in the terminal set and si is the selected number
of attributes in the individual/chromosome i, rϵ [0,0.5)
is a predefined weight controlling the importance of
AC(i) and si.

Table 10 The results of example 2

Generation T h Generation T h

1 2200 7 11 650 3

2 2000 6 12 402 3

3 1852 6 13 254 3

4 1723 5 14 102 3

5 1583 5 15 79 3

6 1296 4 16 53 3

7 1101 3 17 31 3

8 972 3 18 19 3

9 801 3 19 5 3

10 734 3 20 5 3
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Improved genetic operations and DGS algorithm
The reason of using genetic operations is to improve the
individuals for achieving the optimal solution. In this
paper, we improve two genetic operations: Mutation and
Recombination. The improved genetic operations de-
pend more on the weight of genes, as we explain below.

Attribute weight
The weight (w) of each attribute (i) is calculated based
on Eq. (6)

wi ¼ ki
sum

∈ 0; 1ð Þ ð6Þ

where sum ¼
X

i

ki i∈ts, ki is the rank value of

the attribute i, and
X

i

wi ¼ 1 .

In this study we used Gain Ratio to calculate the rank
of the individual i as follow:

ki ¼ information gain ið Þ
intrinsic information ið Þ ð7Þ

The details of calculating the information gain and the
intrinsic information can be found in [57–59].
The attributes with a higher weight contain more

information for classification.

Mutation
Mutation is an important genetic operator which can
significantly affect the individual’s development. It
marks a minor variation in the genomes by exchan-
ging one component with another. In evolution algo-
rithms, the changes made by mutation might bring
substantial differences to chromosomes. For example,
a mutation might make a chromosome better in
terms of fitness, or the important attributes might be
lost due to a random mutation which could result in
the decreasing of accuracy and the increasing of pro-
cessing time.
The critical question is which attribute/terminal

should be added or deleted when performing a mutation.
Ideally, a weak terminal deleted by the mutation oper-
ation should be replaced by a strong one. This can be
achieved by using the following improved mutation
operation.
To clarify the DGS mutation operation, we provide

a simple example shown in Fig. 4. In the example,
the chromosome consists of a single gene (− / a6 a2
a0 a9 a7). The gene head size (h) is 3. The function
set is {Q, +, −, *, /} which means n = 2. According to
Eq. (2), the gene tail size (t) is 4 and the chromosome
length is (3 + 4) =7.
All the terminals in the database are weighed once

at the beginning of the program and sorted in a

Fig. 4 Example of mutation operation for DGS
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descending order based on their weights as shown at
the top of Fig. 4. In this example a3 has the highest
weight while a8 has the lowest weight. Terminal a6 is
identified by the DGS mutation as the weakest ter-
minal as it has the lowest weight among all terminals
in the example chromosome.
For this weak terminal a6, DGS mutation has two

options to replace it: either it is replaced by a func-
tion such as (+) or by a terminal. In the latter option,
the replacing terminal should have a weight higher
than that of a6. In this example terminal a7 is selected
as a replacing terminal. With the stronger terminals/
attributes after mutation, the new chromosome might
achieve a higher fitness value than the previous one.
The details of this mutation operator are outlined in
Algorithm 2.

Recombination

The second genetic operation we used in this proposed
method is the recombination operation.
Generally, in the recombination operation pairs of

chromosomes (parents) are randomly selected and
combined to generate new pair. To generate the new
chromosomes, the parents will exchange one or more
parts (short sequences) with each other. The exchan-
ging part can also be the entire gene from one parent
with the equivalent gene from the other parent.
In this study, we replace the random exchange

process with a new controlling process. To clarify
DGS recombination process we use the example in
Fig. 5. DGS program records all the fitness functions
for all the chromosomes. The program selects two
chromosomes. In this example, the fitness value of
chromosome1 is 80% and the fitness value of
chromosome2 is 70%. DGS recombination gene oper-
ation selects the “strong” gene (gene with the highest
weight summation ∑wi) from the chromosome that
has a lower fitness value (lc) and exchanges it with
the “weak” gene (gene with the lowest weight summa-
tion) from another chromosome that has a higher fit-
ness value (hc). The process is repeated until the

Fig. 5 DGS Recombination example
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program obtain a new chromosome (hc’) with a
higher fitness value than both parents (the original
chromosomes). This idea comes from the gene struc-
ture [60].
Based on the above improvements and innovations,

the deep gene selectin (DGS) algorithm is presented as
pseudocode in Algorithm 3 below.
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