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Abstract

Background: Quantitative structure-activity relationship (QSAR) is a computational modeling method for revealing
relationships between structural properties of chemical compounds and biological activities. QSAR modeling is
essential for drug discovery, but it has many constraints. Ensemble-based machine learning approaches have been
used to overcome constraints and obtain reliable predictions. Ensemble learning builds a set of diversified models
and combines them. However, the most prevalent approach random forest and other ensemble approaches in QSAR
prediction limit their model diversity to a single subject.

Results: The proposed ensemble method consistently outperformed thirteen individual models on 19 bioassay
datasets and demonstrated superiority over other ensemble approaches that are limited to a single subject. The
comprehensive ensemble method is publicly available at http://data.snu.ac.kr/QSAR/.

Conclusions: We propose a comprehensive ensemble method that builds multi-subject diversified models and
combines them through second-level meta-learning. In addition, we propose an end-to-end neural network-based
individual classifier that can automatically extract sequential features from a simplified molecular-input line-entry
system (SMILES). The proposed individual models did not show impressive results as a single model, but it was
considered the most important predictor when combined, according to the interpretation of the meta-learning.
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Background
Quantitative structure-activity relationship (QSAR) is
a computational or mathematical modeling method to
reveal relationships between biological activities and the
structural properties of chemical compounds. The under-
lying principle is that variations in structural properties
cause different biological activities [1]. Structural proper-
ties refer to physico-chemical properties, and biological
activities correspond to pharmacokinetic properties such
as absorption, distribution, metabolism, excretion, and
toxicity.
QSAR modeling helps prioritize a large number of

chemicals in terms of their desired biological activities
as an in silico methodology and, as a result, significantly
reduces the number of candidate chemicals to be tested
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with in vivo experiments. QSAR modeling has served
as an inevitable process in the pharmaceutical industry,
but many constraints are involved [2, 3]. QSAR data may
involve a very large number of chemicals (more than hun-
dreds of thousands); each chemical can be represented by
a variety of descriptors; commonly used fingerprints are
very sparse (most of the values are zero), and some fea-
tures are highly correlated; it is assumed that the dataset
contains some errors because relationships are assessed
through in situ experiments.
Due to these constraints, it has become difficult for

QSAR-based model prediction to achieve a reliable pre-
diction score. Consequently, machine learning approaches
have been applied to QSAR prediction. Linear regres-
sion models [4] and Bayesian neural networks [5–7] have
been used for QSAR prediction. Random forest (RF) [8,
9] is most commonly used algorithm with a high level of
predictability, simplicity, and robustness. RF is a kind of
ensemble method based on multiple decision trees that
can prevent the overfitting from a single decision tree.
RF is considered to be the gold standard in this field [2];
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thus, newly proposed QSAR prediction methods ofen
have their performance compared to RF.
The Merck Kaggle competition in 2012 turned people’s

attentions to neural networks. The winning team used
multi-task neural networks (MTNNs) [10]. The funda-
mental learning structure is based on plain feed-forward
neural networks; it avoids overfitting by learning multi-
ple bioassays simultaneously. The team obtained results
that consistently outperformed RF. Despite achieving high
performance using a multi-task neural network, the team
ultimately used an ensemble that combined different
methods.
Both RF and the aforementioned technique from the

Kaggle competition used ensemble learning, a technique
which builds a set of learning models and combines multi-
ple models to produce final predictions. Theoretically and
empirically, it has been shown that the predictive power
of ensemble learning surpasses that of a single individ-
ual learner if the individual algorithms are accurate and
diverse [11–14]. Ensemble learning manages the strengths
and weaknesses of individual learners, similar to how peo-
ple consider diverse opinions when faced with critical
issues.
Ensemble methods, including neural network ensem-

ble based on bootstrap sampling in QSAR (data sampling
ensemble) [15]; ensemble against different learning meth-
ods for drug-drug interaction [16], Bayesian ensemble
model with different QSAR tools (method ensemble) [7],
ensemble learning based qualitative and quantitative SAR
models [17], Hybrid QSAR prediction model with var-
ious learning methods [18], ensembles with different
boosting methods [19], Hybridizing feature selection and
feature learning in QSAR modeling [20], and ensemble
against diverse chemicals for carcinogenicity prediction
(representation ensembles) [21] have been extensively used
in drug (chemical) research. However, these ensemble
approaches limit model diversity to a single subject, such
as data sampling, method, and input representation (drug-
specific).
To overcome this limitation, we propose a multi-subject

comprehensive ensemble with a new type of individual
classifier based on 1D-CNNs and RNNs. The detailed key
characteristics and contributions of our proposed meth-
ods are as follows:

• Instead of limiting ensemble diversity to a single
subject, we combine multi-subject individual models
comprehensively. This ensemble is used for
combinations of bagging, methods, and chemical
compound input representations.

• We propose a new type of individual QSAR classifier
that is an end-to-end neural network model based on
one-dimensional convolutional neural networks
(1D-CNNs) and recurrent neural networks (RNNs).

It automatically extracts sequential features from a
simplified molecular-input line-entry system
(SMILES).

• We combine a set of models using second-level
combined learning (meta-learning) and provide an
interpretation regarding the importance of individual
models through their learned weights.

To validate our proposed method, we tested 19 bioas-
says specified in [10]. In our experiments, we confirmed
the superiority of our proposed method by compar-
ing individual models, limited ensemble approaches, and
other combining techniques. Further, we identified the
importance of the proposed end-to-end individual clas-
sifier through an interpretation of second-level meta-
learning.
Results
Experimental setup
Dataset
A bioassay is a biochemical test to determine or esti-
mate the potency of a chemical compound on targets and
has been used for a variety of purposes, including drug
development, and environmental impact analysis. In our
experiment, we used 19 bioassays downloaded from the
PubChem open chemistry database [22], which are listed
in Table 1. All bioassays are those specified in [10]. The

Table 1 Details of the bioassay datasets used in the experiments

Assay ID Description of BioAssay # Active # Inactive

1851_1a2 Cytochrome P450 Panel Assay, cyp1a2 5,902 6,974

1851_2c19 Cytochrome P450 Panel Assay, cyp2c19 5,840 7,135

1851_2c9 Cytochrome P450 Panel Assay, cyp2c9 4,065 8,361

1851_2d6 Cytochrome P450 Panel Assay, cyp2d6 2,601 10,826

1851_3a4 Cytochrome P450 Panel Assay, cyp3a4 5,175 7,446

1915 Streptokinase Expression Inhibition 2,219 1,017

2358 Inhibitors of Protein Phosphatase 1 (PP1) 1,006 934

463213 Inhibitors of tim10-1 yeast 4,138 3,234

463215 Inhibitors of tim10 yeast 2,941 1,695

488912 Inhibitors of Sentrin-specific protease 8 2,491 3,705

488915 Inhibitors of Sentrin-specific protease 6 3,568 2,628

488917 Inhibitors of Sentrin-specific protease 7 4,283 1,913

488918 Inhibitors of Sentrin-specific proteases 3,691 2,505

492992 Inhibitors of KCNK9∗ 2,094 2,820

504607 Inhibitors of Mdm2/MdmX interaction 4,825 1,406

624504 Inhibitors of the mtPTP† 3,944 1,090

651739 Inhibition of T.cruzi proliferation 4,043 1,322

651744 NIH/3T3 (mouse embryonic fibroblast)
toxicity

3,099 2,303

652065 Molecules that bind r(CAG) RNA repeats 2,965 1,286

The 19 bioassays are those specified in [10]
∗Two-pore domain potassium channel
†Mitochondrial permeability transition pore
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purpose of the paper was to address multi-task effects;
thus, a number of experimental assays are closely related,
such as the 1851, 46321*, 48891*, and 6517** series.
From each bioassay, we extracted a PubChem chemical

ID and activity outcome (active or inactive). We only used
duplicate chemicals once, and we excluded inconsistent
chemicals that had both active and inactive outcomes. A
class imbalance ratio between active and inactive ranged
from 1:1.1 to 1:4.2 depending on the dataset; most bioas-
says are imbalanced, with an average ratio of 1:2.

Representation of chemical compounds
In our experiment, we used three types of molecular fin-
gerprints PubChem [22], ECFP [23], MACCS [24], and
string type SMILES [25]. Because SMILES is a sequential
string type descriptor, it is not a proper form for conven-
tional learningmethods.We used an end-to-end 1D-CNN
and RNN which are capable of handling a sequential
forms. On the other hand, a binary vector type fingerprint
consists of 1’s and 0’s in a form of non-sequential form.
Thus, conventional machine learning approaches such as
plain feed-forward neural network are used.
The SMILES and PubChem fingerprint were retrieved

from the preprocessed chemical IDs using PubChemPy
[26], and ECFP and MACCS fingerprints were retrieved
from SMILES using RDKit [27].

Experimental configuration and environment
We followed the same experimental settings and perfor-
mance measures as described for the multi-task neural
network [10]. We randomly divided the dataset into two
parts: 75% of the dataset was used as a training set, and
the other 25% was used as a testing set. The training
dataset was also randomly partitioned into five portions:
one for validation, and the remaining four for training (5-
fold cross-validation). The prediction probabilities from
the 5-fold validations were concatenated as P, and were
then used as inputs for the second-level learning.
We ran our experiments on Ubuntu 14.04 (3.5GHz Intel

i7-5930K CPU and GTX Titan X Maxwell(12GB) GPU).
We used the Keras library package (version 2.0.6) for
neural network implementation, the Scikit-learn library
package (version 0.18) for conventional machine learn-
ing methods, and PubChemPy (version 1.0.3) and RDKit
(version 1.0.3) for input representation preparation of the
chemical compounds.

Performance comparison with other approaches
Performance comparisonwith individual models

We compared our comprehensive ensemble method with
13 individual models: the 12 models from the combina-
tion of three types of fingerprints (PubChem, ECFP, and
MACCS) and four types of learning methods (RF, SVM,
GBM, and NN), and a SMILES-NN combination.

As shown in Table 2, the comprehensive ensemble
showed the best performance across all datasets, fol-
lowed by ECFP-RF and PubChem-RF. We can see that
the top-3 AUCs (represented in bold) are dispersed across
the chemical compound representations and learning
methods, except for PubChem-SVM, ECFP-GBM, and
MACCS-SVM. The individual SMILES-NN models were
within the top-3 ranks of the three datasets. In terms
of learning methodology, RF showed the highest number
of top-3 AUC values followed by NN, GBM, and SVM.
In terms of chemical compound representation, ECFP
showed the highest number of top-3 AUC values fol-
lowed by PubChem, SMILES (compared proportionally),
and MACCS. In terms of the averaged AUC, the compre-
hensive ensemble showed the best performance (0.814),
followed by ECFP-RF (0.798) and PubChem-RF (0.794).
The MACCS-SVM combination showed the lowest AUC
value (0.736). Aside from the best (proposed ensemble)
and the worst (MACCS-SVM) methods, all average AUC
values were less than 0.80. Predictability depends on the
combination of learning method and input representa-
tion. Although SVM showed better performance than
GBM in ECFP, GBM showed better performance than
SVM in MACCS.
Statistical analysis with paired t-tests was performed

to evaluate differences between the means of paired out-
comes. The AUC scores of the comprehensive ensembles
were compared with the top-scored AUC from the indi-
vidual classifier in each dataset from the five fold cross-
validation. Assuming that two output scores y1 and y2
follow normal distributions, the difference between these
two scores should also follow a normal distribution. The
null hypothesis of no difference between the means of two
output scores, calculated as d = y1 − y2, indicates that
the distribution of this difference has mean 0 and vari-
ance σ 2

d . The comprehensive ensemble achieved an AUC
score exceeding the top-scored AUC from an individual
classifier in 16 out of 19 PubChem bioassays as shown
in Table 3. Let d̄, sd, n denote the mean difference, the
standard deviation of the differences, and the number of
samples, respectively. The results are significant at a p-
value of 8.2 × 10−7, where the t value is calculated by
td = d̄

sd√
n

∼ tn−1.

Performance comparisonwith other ensemble approaches
In addition to a comparison with individual models, we
compared the proposed ensemble method with other
ensemble approaches based on the ensemble subject and
combining technique, as shown in Table 4.
The first three columns showe the method ensemble,

which combines predictions from RF, SVM, GBM, and
NN by fixing them to a particular chemical represen-
tation. The ensembles based on PubChem, ECFP, and
MACCS showed AUC values of 0.793, 0.796, and 0.784,
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Table 2 Performance comparison between the proposed comprehensive ensemble and the individual models on 19 bioassay datasets

BioAssay
PubChem fingerprint ECFP fingerprint MACCS fingerprint SMILES comprehensive
RF SVM GBM NN RF SVM GBM NN RF SVM GBM NN NN ensemble

1851_1a2 0.921 0.896 0.900 0.921 0.919 0.906 0.882 0.920 0.912 0.879 0.894 0.912 0.922 0.934

1851_2c19 0.871 0.852 0.848 0.872 0.882 0.871 0.854 0.880 0.874 0.842 0.850 0.885 0.875 0.900

1851_2c9 0.871 0.857 0.851 0.873 0.880 0.866 0.843 0.880 0.858 0.828 0.840 0.870 0.877 0.898

1851_2d6 0.858 0.847 0.832 0.869 0.867 0.850 0.833 0.856 0.854 0.816 0.830 0.852 0.846 0.884

1851_3a4 0.877 0.868 0.865 0.887 0.891 0.887 0.855 0.895 0.867 0.832 0.851 0.875 0.891 0.914

1915 0.754 0.692 0.709 0.722 0.731 0.700 0.700 0.712 0.758 0.716 0.736 0.741 0.701 0.755

2358 0.787 0.705 0.736 0.770 0.780 0.767 0.722 0.761 0.774 0.731 0.763 0.775 0.697 0.803

463213 0.673 0.639 0.652 0.651 0.685 0.652 0.644 0.661 0.668 0.642 0.655 0.651 0.636 0.689

463215 0.620 0.576 0.592 0.604 0.617 0.585 0.598 0.595 0.629 0.600 0.630 0.625 0.587 0.627

488912 0.679 0.643 0.634 0.668 0.693 0.654 0.668 0.675 0.667 0.634 0.650 0.673 0.644 0.698

488915 0.718 0.686 0.679 0.713 0.731 0.693 0.680 0.708 0.692 0.659 0.680 0.693 0.679 0.735

488917 0.808 0.777 0.759 0.805 0.814 0.788 0.760 0.799 0.788 0.726 0.752 0.786 0.780 0.834

488918 0.762 0.745 0.735 0.778 0.778 0.766 0.729 0.767 0.737 0.690 0.708 0.742 0.746 0.799

492992 0.829 0.784 0.783 0.800 0.849 0.807 0.802 0.822 0.825 0.726 0.759 0.790 0.802 0.845

504607 0.694 0.678 0.692 0.686 0.690 0.668 0.673 0.656 0.676 0.640 0.662 0.655 0.649 0.721

624504 0.884 0.850 0.857 0.867 0.884 0.858 0.858 0.861 0.872 0.832 0.862 0.876 0.868 0.897

651739 0.791 0.770 0.773 0.781 0.802 0.782 0.771 0.788 0.779 0.729 0.759 0.754 0.792 0.804

651744 0.884 0.862 0.872 0.885 0.889 0.883 0.875 0.896 0.869 0.829 0.843 0.853 0.899 0.901

652065 0.800 0.752 0.782 0.780 0.785 0.775 0.758 0.774 0.776 0.736 0.759 0.772 0.763 0.826

average 0.794 0.762 0.766 0.786 0.798 0.777 0.763 0.784 0.783 0.741 0.762 0.778 0.771 0.814

Each value shows the averaged AUC from twenty repeated experiments on the test set (bold: top 3 AUC on each dataset), and the last row shows the averaged AUC
calculated from 19 AUC results

which are 0.016, 0.015, and 0.018 higher than the average
AUC value for the four individual methods based on those
representations, respectively. The next five columns show
the representation ensembles, which combine the Pub-
Chem, ECFP, and MACCS molecular representations by
fixing them to a particular learning method. As with the
method ensembles, the representation ensembles outper-
formed the average results from the individual representa-
tion models based on their learning methods. In particu-
lar, the NN-based individual models showed lower AUCs
values than the RF-based models, but the NN-based com-
bined representation ensemble showed a higher AUC
value than the RF-based ensemble.
Bagging is an easy-to-develop and powerful technique

for class imbalance problems [28]. Figure 1a shows the
effectiveness of bagging by comparing a plain neural net-
work (NN) with a bootstrap aggregated neural network
(NN-bagging) and a neural network-based representa-
tion ensemble (NN-representation ensemble). As shown
in Fig. 1a, bagging improved the AUC in both ensemble
techniques. As shown in Fig. 1b, the improved AUC by
bagging was correlated with the imbalance ratio of the
dataset (Pearson’s r=0.69, p-value=1.1×10−3). The results
showed greater improvement with a higher imbalance
ratio.

Table 3 The AUC scores of the ensemble classifier and the best
single classifier for 19 PubChem assays

Assay ID The Best Single Classifier
(AUC)

The Ensemble Classifier
(AUC)

1851_1a2 0.922 0.934

1851_2c19 0.885 0.900

1851_2c9 0.88 0.898

1851_2d6 0.867 0.884

1851_3a4 0.895 0.914

1915 0.758 0.755

2358 0.787 0.803

463213 0.685 0.689

463215 0.630 0.627

488912 0.693 0.698

488915 0.731 0.735

488917 0.814 0.834

488918 0.778 0.799

492992 0.849 0.845

504607 0.694 0.721

624504 0.884 0.897

651739 0.802 0.804

651744 0.899 0.901

652065 0.800 0.826
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Table 4 Performance comparison with other ensemble approaches

BioAssay

limited ensemble
comprehensive ensemble

method ensemble representation ensemble

PubChem ECFP MACCS RF SVM GBM NN NN (+SMILES)∗ average meta-learning

1851_1a2 0.921 0.922 0.910 0.931 0.920 0.907 0.937 0.941 0.934 0.943

1851_2c19 0.875 0.889 0.879 0.893 0.887 0.869 0.902 0.905 0.900 0.908

1851_2c9 0.878 0.885 0.866 0.888 0.882 0.865 0.899 0.905 0.898 0.908

1851_2d6 0.870 0.869 0.853 0.880 0.869 0.852 0.884 0.886 0.884 0.892

1851_3a4 0.890 0.902 0.874 0.898 0.901 0.881 0.913 0.919 0.914 0.920

1915 0.729 0.721 0.750 0.766 0.728 0.739 0.747 0.750 0.755 0.764

2358 0.758 0.781 0.780 0.805 0.780 0.772 0.805 0.803 0.803 0.807

463213 0.669 0.672 0.669 0.689 0.671 0.666 0.682 0.684 0.689 0.694

463215 0.604 0.603 0.639 0.636 0.604 0.623 0.623 0.624 0.627 0.634

488912 0.674 0.682 0.676 0.698 0.668 0.667 0.695 0.698 0.698 0.700

488915 0.720 0.719 0.699 0.731 0.711 0.700 0.732 0.737 0.735 0.739

488917 0.811 0.815 0.785 0.824 0.808 0.782 0.832 0.838 0.834 0.841

488918 0.777 0.783 0.743 0.780 0.782 0.752 0.793 0.799 0.799 0.801

492992 0.820 0.829 0.795 0.854 0.818 0.812 0.836 0.845 0.845 0.862

504607 0.710 0.687 0.682 0.708 0.701 0.703 0.698 0.706 0.721 0.726

624504 0.879 0.875 0.867 0.896 0.880 0.878 0.892 0.900 0.897 0.904

651739 0.795 0.806 0.774 0.800 0.776 0.783 0.803 0.807 0.804 0.809

651744 0.892 0.902 0.868 0.890 0.882 0.879 0.899 0.905 0.901 0.909

652065 0.795 0.791 0.784 0.807 0.804 0.803 0.813 0.822 0.826 0.832

average 0.793 0.796 0.784 0.809 0.793 0.786 0.810 0.814 0.814 0.821

All AUC values except those in the last two columns are based on limited subject ensembles, while the AUC values in the last two columns are from the comprehensive
ensemble. The first three columns are method ensembles that consider various methods by fixing them to a target molecular fingerprint. The next five columns are
representation ensembles that consider various chemical compound representations by fixing them to a learning method. Except for the final meta-learning approach,
combining is based on uniform averaging. Each value is the averaged AUC from five repeated experiments (bold: top 3)
∗NN(+SMILES) is a representation ensemble that combines a set of models trained on a diversified input representation of fingerprints (PubChem, ECFP, MACCS) and
SMILES-based on NN

The proposed multi-subject comprehensive ensemble
combines all models regardless of learning method or rep-
resentation: 12 models consisting of the unique combina-
tions of representations (PubChem, ECFP, and MACCS)
and learning methods (RF, SVM, GBM, and NN) and

the newly proposed SMILES-NN model. All ensembles
except for the last column combined the various mod-
els by uniform averaging. The comprehensive ensemble
outperformed all limited ensemble approaches based on
average combining.

Fig. 1 Ensemble effects on class-imbalanced datasets. a Improved average AUC value produced by neural network bagging (NN-bagging) and
neural network-based representation ensemble (NN-representation ensemble) over three fingerprints. b Pearson’s correlation (r=0.69,
p-value=1.1x10−3) between the improved AUC values from NN-bagging and the class imbalance ratio. The class imbalance ratio was calculated
from the number of active and inactive chemicals, as shown in Table 1
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In terms of the combination technique, we com-
pared simple uniform averaging with the proposed meta-
learning techniques in both comprehensive ensembles.
The results of the comprehensive ensemble from Table 2
are presented in the second to the last column of Table 4.
The last column in Table 4 shows the performance com-
parison between meta-learning and the comprehensive
ensemble. The multi-task neural networks [10] achieved
state-of-the-art performance on 19 PubChem bioassays
with performance measurement of the AUC. As shown
in Table 5, our approach outperformed multi-task learn-
ing in 13 out of 19 PubChem bioassays. From “Convol-
utional and recurrent neural networks” section, this result
was statistically significant at a p-value of 3.9 × 10−8

in 13 out of 19 datasets and resulted in a higher mean
AUC value for the meta-learning network than for the
multi-task network.

Performance comparison on other dataset
The Drug Therapeutics Program (DTP) AIDS Antivi-
ral Screen developed an HIV dataset for over 40,000
compounds. These results are categorized into three
groups: confirmed inactive (CI), confirmed active (CA)
and confirmed moderately active (CM). Following previ-
ous research [29], we also combined the latter two labels

Table 5 Performance comparison between multi-task [10] and
meta-learning neural networks

Assay ID Multi-task Proposed (Meta-learning)

1851_1a2 0.938 0.943

1851_2c19 0.903 0.908

1851_2c9 0.907 0.908

1851_2d6 0.861 0.892

1851_3a4 0.897 0.920

1915 0.750 0.764

2358 0.751 0.807

463213 0.676 0.694

463215 0.654 0.634

488912 0.816 0.700

488915 0.873 0.739

488917 0.894 0.841

488918 0.842 0.801

492992 0.829 0.862

504607 0.670 0.726

624504 0.889 0.904

651739 0.825 0.809

651744 0.900 0.909

652065 0.792 0.832

The mean AUC values for both neural networks are shown (bold: top AUC on each
dataset)

(CA and CM), resulting it a classification task to discrim-
inate inactive and active.
We evaluated our meta-learning neural network on the

HIV dataset following identical experimental settings as
described in MoleculeNet [29]. The HIV dataset was
divided by scaffold-based splitting into training, valida-
tion, and test sets at a ratio of 80:10:10. Scaffold-based
splitting separates structurally different molecules into
different subgroups [29]. For the performance metrics,
we used AU-ROC, accuracy, Matthews correlation coeffi-
cient (MCC), and F1-score. Accuracy, MCC, and F1-score
were defined as follows:

Accuracy = TP + TN
TP + TN + FP + FN

MCC = TP ∗ TN − FP ∗ FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

F1-score = 2TP
2TP + FP + FN

where TP, FP, FN , and TN represent the number of
true positives, false positives, false negatives, and true
negatives, respectively. Table 6 shows the results for the
comparison between multi-task [10] and meta-learning
on the various performance metrics. For meta-learning,
we applied our neural networks described in Section 2.3.4
to the multi-task neural network. We repeated the exper-
iments 100 times and calculated the mean test score. In
terms of AU-ROC, both neural networks performed sim-
ilarly, however, meta-learning outperformed multi-task
learning in other metrics.

Meta-learning and interpretation of model importance
Wemade a final decision through meta-learning using the
predictions from independent first-level models as input.
Any learning algorithm could be used as a meta-learner.
We used SVM, which achieved the highest average AUC
value in further experiments compared with NN, RF,
GBM, and ordinary regression.
We interpreted the importance of the models through

their learned weights. In the process of meta-learning,
a weight is assigned to each model, and this weight
could be interpreted as the model importance. As shown
in Fig. 2, the degree of darkness for each method is
slightly different depending on the dataset, just as the
best prediction method and representation depends on
the datasets (Table 2). A darker color indicates a higher
weight and importance. PubChem-SVM, ECFP-GBM, and
MACCS-SVM showed low importance, while SMILES-
NN and ECFP-RF showed high importance throughout
the dataset. The SMILES-NN model did not show as high
a performance as an individual model, but it was regarded
as the most important model.
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Fig. 2 Interpretation of model importance through meta-learning. Weights through meta-learning were used to interpret model importance.
Darker green indicates a highly weighted and significant model, while lighter yellow indicates a less weighted and less significant model

Discussion
Ensemble learning can improve predictability, but it
requires a set of diversified hypotheses; bagging requires
a set of randomly sampled datasets, a method ensemble
needs to exploit diverse learning methods, and a rep-
resentation ensemble needs to prepare diversified input
representations. A comprehensive ensemble requires
diversified datasets, methods, and representations across
multi-subjects; thus, it has difficulties in preparation and
learning efficiency for these hypotheses.
Diversity is a crucial condition for ensemble learning.

RF was superior to NN among the individual models,
but NN outperformed RF in the representation ensem-
ble. This is presumably due to model variation diversi-
ties caused by random initialization and random dropout
of the neural network. In addition to model variation
diversity, SMILES seems to contribute to ensemble rep-
resentation diversity. The SMILES-based model did not
show impressive results as an individual model, but it was
considered the most important predictor when combined.
The proposed comprehensive ensemble exploits diver-

sities across multi-subjects and exhibits improved pre-
dictability compared to the individual models . In particu-
lar, the neural network and SMILES contribute to diversity
and are considered important factors when combined.
However, the proposed ensemble approach has difficulties
associated with these diversities.

Conclusions
We proposed a multi-subject comprehensive ensemble
due to the difficulties and importance of QSAR problems.
In our experiments, the proposed ensemble method con-
sistently outperformed all individual models, and it exhib-
ited superiority over limited subject ensemble approaches
and uniform averaging. As part of our future work, we
will focus on analyzing as few hypotheses as possible or

combinations of hypotheses whilemaintaining the ensem-
ble effect.

Methods
Ensemble learning
Ensemble learning builds a set of diversified models and
combines them. Theoretically and empirically, numerous
studies have demonstrated that ensemble learning usu-
ally yields higher accuracy than individual models [11, 12,
30–32]; a collection of weak models (inducers) can be
combined to produce a single strong ensemble model.

Framework
Ensemble learning can be divided into independent and
dependent frameworks for building ensembles [33]. In the
independent framework, also called the randomization-
based approach, individual inducers can be trained inde-
pendently in parallel. On the other hand, in the dependent
framework (also called the boosting-based approach),
base inducers are affected sequentially by previous induc-
ers. In terms of individual learning, we used both inde-
pendent and dependent frameworks, e.g., RF and gradient
boosting, respectively. In terms of combining learning, we
treated the individual inducers independently.

Diversity
Diversity is well known as a crucial condition for ensemble
learning [34, 35]. Diversity leads to uncorrelated induc-
ers, which in turn improves the final prediction perfor-
mance [36]. In this paper, we focus on the following three
types of diversity.

• Dataset diversity
The original dataset can be diversified by sampling.
Random sampling with replacement (bootstrapping)
from an original dataset can generate multiple
datasets with different levels of variation. If the
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original and bootstrap datasets are the same size (n),
the bootstrap datasets are expected to have (1 − 1

e )
(≈ 63.2% for n) unique samples in the original data,
with the remainder being duplicated. Dataset
variation results in different prediction, even with the
same algorithm, which produces homogeneous base
inducers. Bagging (bootstrap aggregating) belongs to
this category and is known to improve unstable or
relatively large variance-error factors [37].

• Learning method diversity
Diverse learning algorithms that produce
heterogeneous inducers yield different predictions
for the same problem. Combining the predictions
from heterogeneous inducers leads to improved
performance that is difficult to achieve with a single
inducer. Ensemble combining of diverse methods is
prevalently used as a final technique in competitions,
that presented in [10]. We attempted to combine
popular learning methods, including random forest
(RF) [8, 38], support vector machine (SVM) [39],
gradient boosting machine (GBM) [40], and neural
network (NN).

• Input representation diversity
Drugs (chemical compounds) can be expressed with
diverse representations. The diversified input
representations produce different types of input
features and lead to different predictions. [21]
demonstrated improved performance by applying
ensemble learning to a diverse set of molecular
fingerprints. We used diverse representations from
PubChem [22], ECFP [23], and MACCS [24]
fingerprints and from a simplified molecular input
line entry system (SMILES) [25] .

Combining a set of models
For the final decision, ensemble learning should com-
bine predictions from multiple inducers. There are two
main combinationmethods: weighting (non-learning) and
meta-learning. Weighting method, such as majority vot-
ing and averaging, have been frequently used for their
convenience and are useful for homogeneous induc-
ers. Meta-learning methods, such as stacking [41], are
a learning-based methods (second-level learning) that
use predictions from first-level inducers and are usually
employed in heterogeneous inducers. For example, let fθ
be a classifier of an individual QSAR classifier with param-
eter θ , trained for a single subject (drug-specific task) p(X)

with datasetX that outputs y given an input x. The optimal
θ can be achieved by

θ∗ = argmaxθE(x,y)∈X[ pθ (y|x)] (1)

Then, the second-level learning will learn to maximize
output y by learning how to update the individual QSAR

classifier fθ∗ . “First-level: individual learning” section
details the first-level learning and, “Second-level: com-
bined learning” section details the second-level learning.

Chemical compound representation
Chemical compounds can be expressed with various types
of chemical descriptors that represent their structural
information. One representative type of chemical com-
pound descriptor is a molecular fingerprint. Molecular
fingerprints are encoded representations of a molecu-
lar structure as a bit-string; these have been studied
and used in drug discovery for a long time. Depend-
ing on the transformation to a bit-string, there are sev-
eral types of molecular fingerprints: structure key-based,
topological or path-based, circular, and hybrid [42]. Struc-
ture key-based fingerprints, such as PubChem [22] and
MACCS [24], encode molecular structures based on the
presence of substructures or features. Circular finger-
prints, such as ECFP [23], encode molecular structures
based on hashing fragments up to a specific radius.
Another chemical compound representation is the sim-

plified molecular-input line-entry system (SMILES) [25],
which is a string type notation expressing a chemical com-
pound structure with characters, e.g., C,O, or N for atoms,
= for bonds, and (,) for a ring structure. SMILES is gen-
erated by the symbol nodes encountered in a 2D structure
in a depth-first search in terms of a graph-based compu-
tational procedure. The generated SMILES can be recon-
verted into a 2D or 3D representation of the chemical
compound.
Examples of SMILES and molecular fingerprints of

leucine, which is an essential amino acid for hemoglobin
formation, are as follows:

• SMILES string: CC(C)CC(C(=O)O)N
• PubChem fingerprint:

1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, · · ·
• ECFP fingerprint:

0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, · · ·
• MACCS fingerprint:

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, · · ·
(Most values in this molecular fingerprint are zero).

Figure 3 shows the two-levels of learning procedure.
First-level learning is an individual learning level from
diversified learning algorithms and chemical compound
representations. The prediction probabilities produced
from first-level learning models are used as inputs for
second-level learning. Second-level learning makes the
final decision by learning the importance of individual
models produced from the first-level predictions.

Notation
The notation used in our paper is as follows:
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Fig. 3 Learning procedure of the proposed comprehensive ensemble. The individual i-th learning algorithmLi outputs its prediction probability Pi
for the training dataset through 5-fold cross-validation. The n diverse learning algorithms produce n prediction probabilities (P1, P2, · · · , Pn). The
probabilities are concatenated and then used as input to the second-level learning algorithmL, which makes a final decision ŷ. a First-level
learning. b Second-level learning

• x: preprocessed chemical compound-representation
input, where x can be a particular type of molecular
fingerprints or SMILES.

• h: hidden representation
• L: first-level individual learning algorithm (Li: i-th

algorithm, i = {1, · · · , n})
• L: second-level learning algorithm
• P: predicted probability from the individual model

(Pi: predicted probability from the Li)

• ŷ: final predicted decision from the second-level
learning

• σ : activation function (σs: sigmoid, σr : rectified linear
unit (ReLU), and σt : hyperbolic tangent)

• n: total number of individual algorithms

First-level: individual learning
With a combination of learning algorithms and chemical
compound input representations, we generated thirteen

Fig. 4 Proposed CNN + RNNmodel. The input SMILES strings are converted with one-hot encoding and truncated to a maximum length of 100. The
preprocessed input is subsequently fed to the CNN layer without pooling, and the outputs are directly fed into the GRU layer
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kinds of individual learning models: nine models from
conventional machine learning methods, three models
from a plain feed-forward neural network, and one model
from the 1D-CNN and RNN-based newly proposed neu-
ral network model.

Conventional machine learningmethods
Among the conventional machine learning methods, we
used SVM, RF, and GBM with three types of molec-
ular fingerprints, resulting in nine combination models
consisting of all unique pairs of learning algorithms (SVM,
RF, and GBM) and fingerprints (PubChem, ECFP, and
MACCS). We set the penalty parameter to 0.05 for the
linear SVM, and the number of estimators was set to 100
for RF and GBM based on a grid search and experimental
efficiency. The prediction probabilities from these learn-
ing methods are used as inputs for second-level learning.
However, SVM outputs a signed distance to the hyper-
plane rather than a probability. Thus, we applied a proba-
bility calibration method to convert the SVM results into
probabilistic outputs.

Plain feed-forward neural network
We used a plain feed-forward neural network (NN) for
the vector-type fingerprints: PubChem-NN, ECFP-NN,
and MACCS-NN. The neural network structure consists
of three fully connected layers (Fcl) with 512, 64, and 1
units in each layer and using, the ReLU, tanh, and sigmoid
activation functions, respectively,

P = σs(Fcl(σt(Fcl(σr(Fcl(x)))))). (2)

The sigmoid activation function outputs a probabil-
ity for binary classification. We used the Adam opti-
mizer [43] with binary cross-entropy loss (learning rate:
0.001, epoch: 30, and mini-batch size: 256).

Convolutional and recurrent neural networks
To learn key features through end-to-end neural net-
work learning automatically, we used a SMILES string
as input and exploited the neural network structures of
the 1D-CNNs and RNNs. A CNN is used to recognize
the short-term dependencies, and an RNN is used as
the next layer to learn long-term dependencies from the
recognized local patterns.
As illustrated in Fig. 4 of the preprocessing step,

the input SMILES strings were preprocessed with one-
hot encoding [44–46], which sets only the correspond-

ing symbol to 1 and others to 0. The input is trun-
cated/padded to a maximum length of 100. We only
consider the most frequent nine characters in SMILES
and treat the remaining symbols as OTHERS, thus the
encoding dimension was reduced to 10.
As illustrated in Fig. 4 of the neural networks step, the

preprocessed input x was fed into the CNN layer with-
out pooling (CNN filter length: 17, number of filters: 384).
Then, the outputs from the CNN were fed into the GRU
layer (dimension: 9, structure: many-to-many).

h = σt(GRU(σr(Conv(x)))), (3)

where h is the output of GRU layer, σr is the ReLU, and σt
is the hyperbolic tangent. The output h was flattened and
then fed into a fully connected neural network.

P = σs(Fcl(σr(Fcl(hflatten)))), (4)

where P is the output probability from the sigmoid acti-
vation function for binary classification. The output P is
subsequently used for second-level learning as in the last
step in Fig. 4.
We used dropout for each layer (CNN: 0.9, RNN: 0.6,

first Fcl: 0.6) and an Adam optimizer (learning rate:
0.001, epoch: 120, mini-batch size: 256) with binary cross-
entropy. Most of these hyperparameters were empirically
determined.

Second-level: combined learning
We combined the first-level predictions generated from
the set of individual models to obtain the final decision.
We have n individual learning algorithms Li, where

i = {1, · · · , n}, and the i-th model outputs the prediction
probability Pi for a given x. We can determine the final
prediction ŷ by weighting, wi:

ŷ =
n∑

i=1
wiPi(x), (5)

where if the weight wi = 1/n, ∀i indicates, uniform
averaging.
As another technique, we can combine the first-level

output predictions through meta-learning. The perfor-
mance of individual methods varies depending on each
dataset as shown in “Performance comparison with indi-
vidual models” section; there is no invincible universal
method. The learned weights from the individual models
are applied to the corresponding datasets. Thus, we use

Table 6 Performance comparison with Multi-task neural networks [10] on HIV datasets [29]

AUC Accuracy MCC F1-score

Multi-task [10] 0.714 ±0.007 0.947 ±0.009 0.260 ±0.020 0.972 ±0.005

Meta-learning 0.714 ±0.007 0.964 ±0.001 0.269 ±0.026 0.982 ±0.001

The table shows the average test set of various measures for Multi-task neural networks and Meta-learning neural networks
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learning based combiningmethods (meta-learning) rather
than simple averaging or voting.

ŷ = L(L1(x),L2(x), · · · ,Ln(x)) (6)
= L ([P1,P2, · · · ,Pn] ) , (7)

where L is a second-level learning algorithm, and any
machine learning method can be applied this level. All
Pi, where i = {1, 2, · · · , n} are concatenated and used as
inputs. The model importance imposes a weight wi on Pi
and is determined through meta-learning.
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