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Abstract

Background: Influenza is an infectious respiratory disease that can cause serious public health hazard. Due to its
huge threat to the society, precise real-time forecasting of influenza outbreaks is of great value to our public.

Results: In this paper, we propose a new deep neural network structure that forecasts a real-time influenza-like illness
rate (IL1%) in Guangzhou, China. Long short-term memory (LSTM) neural networks is applied to precisely forecast
accurateness due to the long-term attribute and diversity of influenza epidemic data. We devise a multi-channel LSTM
neural network that can draw multiple information from different types of inputs. We also add attention mechanism
to improve forecasting accuracy. By using this structure, we are able to deal with relationships between multiple
inputs more appropriately. Our model fully consider the information in the data set, targetedly solving practical
problems of the Guangzhou influenza epidemic forecasting.

Conclusion: We assess the performance of our model by comparing it with different neural network structures and
other state-of-the-art methods. The experimental results indicate that our model has strong competitiveness and can
provide effective real-time influenza epidemic forecasting.
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Background

Influenza is an infectious respiratory disease that can
cause serious public health hazard. It can aggravate the
original underlying disease after infection, causing sec-
ondary bacterial pneumonia and acute exacerbation of
chronic heart and lung disease. Furthermore, the 2009
HINI1 pandemic caused between 151,700 and 575,400
deaths in worldwide during the first year the virus cir-
culated [1]. Therefore, precise on-line monitoring and
forecasting of influenza epidemic outbreaks has a great
value to public health departments. Influenza detection
and surveillance systems provide epidemiologic informa-
tion that can help public health sectors develop preventive
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measures and assist local medical institutions in deploy-
ment planning [2].

Influenza-like-illness (ILI) is an infectious respiratory
infection measurement defined by the World Health
Organization (WHO). ILI with a measured fever higher
than 38°C, and cough, with onset within the previous 10
days [3]. Our prediction target, IL1%, is equal to the ratio
of the influenza-like cases number to the visiting patients’
number. In the field of influenza surveillance, IL1% is often
used as an indicator to help determine if there is a possible
influenza epidemic. When the ILI% baseline is exceeded,
the influenza season has arrived, reminding the health
administrations to take timely preventive measures.

In recent years, more and more researchers have con-
centrated on precise on-line monitoring, early detec-
tion and influenza epidemic outbreaks forecasting. Thus,
influenza epidemic outbreaks forecasting has become the
most active research direction. The information from
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website search or social network applications, such as
Twitter and Google Correlate[4—6], provides sufficient
data support for this research area. Previous methods are
commonly built on linear models, such as least absolute
shrinkage and selection operator (LASSO) or penalized
regression[4, 6, 7]. Some people also implement deep
learning models when solving influenza epidemic fore-
casting problems[8, 9]. However, these methods can't effi-
ciently provide the precise forecasting of ILI% one week
in advance. First, the online data is not accurate enough
and lacks necessary features, which cannot fully reflect the
trend of the influenza epidemic. Second, influenza epi-
demic data is usually very complex, non-stationary, and
very noisy. Traditional linear models cannot handle multi-
variable inputs appropriately. Third, previously proposed
deep learning methods didn’t consider the time-sequence
property of influenza epidemic data.

In this paper, we use influenza surveillance data as our
data set, which is provided by the Guangzhou Center for
Disease Control and Prevention. This data set includes
multiple features and is count separately of each dis-
trict in Guangzhou. Our approach takes advantage of
these two characteristics. Meanwhile, we consider the
time-sequence property, making our approach solve the
influenza epidemic forecasting problem in Guangzhou
with pertinence. Due to the relevant specifications of data
collection, our method is also applicable in other regions.

We concentrate on implementing deep learning models
to address the influenza outbreaks forecasting prob-
lem. Recently, deep learning methods have obtained
remarkable performances in various research areas from
computer vision, speech recognition to climate fore-
casting[10-12]. We implement long-short term memory
(LSTM) neural networks[13] as a fundamental method
for forecasting, because the influenza epidemic data nat-
urally has time series attribute. Considering that different
types of input data correspond to different character-
istics, one single LSTM with a specific filter may not
capture the time series information comprehensively. By
using a multi-channel architecture, we can better cap-
ture the time series attributes from the data. Not only
ensures the integration of various relevant descriptors in
the high-level network, but also ensures that the input
data will not interfere with each other in the underlying
network. The structured LSTM can provide robust fitting
ability that has been provided in several papers [14, 15].
We further enhance our method using attention mecha-
nism. In attention layer, the probability of occurrence of
each value in the output sequence depends on the val-
ues in the input sequence. By designing this architecture,
we can better deal with input stream relationships among
multiple regions more appropriately. We named our
model as Att-MCLSTM, which stands for attention-based
multi-channel LSTM.
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Our main contributions can be summarized as follows:
(1) We test our model on Guangzhou influenza surveil-
lance data set, which is authentic and reliable. It contains
multiple attributes and time series features. (2) We pro-
pose an attention-based multi-channel LSTM structure
that associates different well-behaved approaches. The
structure takes the forecasting problem and the influenza
epidemic data attributes into account. The proposed
model can be seen as an alternative to forecast influenza
epidemic outbreaks in other districts. (3) The proposed
model makes full use of information in the data set, solv-
ing the actual problem of influenza epidemic forecasting
in Guangzhou with pertinence. The experimental results
demonstrate the validity of our method. To the best of
our knowledge, this is the first study that applies LSTM
neural networks to the influenza outbreaks forecasting
problem.

The rest of this paper is organized as follows. In
the second section, we illustrate details of our method.
In the third section, we evaluate performances of our
method by comparing it with different neural network
structures and other prior art methods. In the fourth
section, we discuss conclusions and prospects for future
works.

Methods

The accurateness of the forecasting problems can be
enhanced by combining multiple models[16—26]. In this
paper, we devise an novel LSTM neural network structure
to settle the influenza epidemic forecasting problem in
Guangzhou, China. Our model can extract characteristics
more effectively from time series data, and take differ-
ent impacts of different parts of data into consideration.
In order to illustrate our model clearly, we illustrate our
data set first. The following sections will give further illus-
trations on the data set, the overall idea of our model,
details of LSTM neural networks, attention mechanism,
attention-based multi-channel LSTM, data normalization,
and evaluation method.

Data set description

The influenza surveillance data we used includes 9 years
data. Statistics on influenza epidemic data in 9 regions
are counted each year. The data set includes 6 modules,
and each of these modules has multiple features. The data
set has one record each week, and data for 52 weeks is
counted each year.

Design of the proposed model

In Fig. 1, we demonstrate the flow diagram of our method.
The integrated flow diagram has two parts, training part
and test part. In the training part, first, we select 19
relevant features after data cleaning and normalization
processes. We further illustrate the chosen modules and
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features in Table 1. Table 1 doesn’t include basic informa-
tion module, which includes time information, districts,
and population. We use model-based ranking method
as our feature selection method. In order to implement
model-based ranking method, we delete one feature at a
time, and input the rest of features into the same fore-
casting model every time. If the forecasting accuracy is
low, this means that the feature we removed is relevant
to our forecasting objective. After ranking all the fore-
casting accuracy, we select 19 features that are relevant
to the forecasting objective. Then we separate the data
set into training data set and test data set. The train-
ing data set contains 80 percent of data to extract annual
trend and seasonal periodicity. In the test part, we test
our model on the test data set. Then, we preform denor-
malization process to reconstruct the original values.
Finally, we assess our model and compare it with other
models.

Data normalization

Min-Max normalization is a linear transformation
strategy[27]. This method maintains the relationship
among all the original data. Min-Max normalization
transforms a value x to y, y is defined as Eq. 1.

o (x — min) )

"~ (max — min)

Where min is the smallest value in the data, max is the
biggest value in the data. After data normalization, the
features of data will be scaled between 0 and 1.

We preform denormalization process to reconstruct the
original data. Given a normalized value y, its original value
x is defined as Eq. 2.

x = (max — min)y + min 2)
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Table 1 Modules and features description for Section 2.1
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Module name

Feature name

Description

Legal influenza cases report
module

Epidemic monitoring module

Symptom monitoring module

Legal influenza cases numbers
Influenza outbreaks numbers

Affected cases numbers
Influenza-like cases numbers (0-5 age)

(
Influenza-like cases numbers (5-15 age)
Influenza-like cases numbers (15-25 age)
(

Influenza-like cases numbers (25-60 age)
Influenza-like cases numbers ( > 60 age)

The number of influenza cases in the national infectious disease
reporting system.

More than 10 influenza-like cases occurred within one week in
the same unit.

The total number of people affected by the epidemic.
The number of influenza-like cases (0-5 age).

The number of influenza-like cases (5-15 age).

The number of influenza-like cases (15-25 age).

The number of influenza-like cases (25-60 age).

The number of influenza-like cases (over 60 age).

Total influenza-like cases numbers
Total visiting patients numbers

Upper respiratory tract infections numbers

Pharmacy monitoring module Chinese patent cold medicines
Other cold medicines

Climate data module Average temperature (°C)
Maximum temperature (°C)
Minimum temperature (°C)
Rainfall (mm)

Air pressure (hPa)

Relative humidity (%)

The total number of influenza-like cases.
The total number of visiting patients.
The number of upper respiratory tract infections.
Sales of Chinese patent cold medicines.
Sales of other cold medicines.

Average temperature.

Maximum temperature.

Minimum temperature.

Rainfall.

Air pressure.

Relative humidity.

Long-short term memory neural network
Recurrent neural networks have the ability to dynam-
ically combine experiences because of their internal
recurrence[28]. Different from other traditional RNNS,
LSTM can deal with the gradient vanishing prob-
lem[29]. The memory units of LSTM cells retain time
series attributes of given context[29]. Some researches
have proven that LSTM neural networks can yield
a better performance compared with other tradi-
tional RNNs when dealing with long-term time series
data[30].

The structure of a single LSTM cell illustrate in Fig. 2.
The gates control the flow of information, that is, inter-
actions between different cells and cell itself. Input gate

controls the memory state updating process. Output gate
controls whether the output flow can alter other cells’
memory state. Forget gate can choose to remember or for-
get its previous state. LSTM is implemented by following
composite functions:

it = o (Wiixe + Wyihe—1 + Weice—1 + by) (3)
St = o (Warxr + Wyehe—1 + Weper1 + by) (4)
Ct :ft—l + iy tanh(Wiexr + Wichi 1 + be) (5)
0r = 0 (Wixoxt + Wiohi—1 + Weoc + bo) (6)
hy = os tanh(c;) (7)

Where o represent the logistic sigmoid function. i, f, o,
and c represent the input gate, forget gate, output gate,

Forget gate

....................................................... .

Memory cell input

Memory cell output

O=s=>

|
Input gate

Fig. 2 The structure of single LSTM cell

Output gate
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cell input activation vectors respectively. s represents the
hidden vector. The weight matrix subscripts have the intu-
itive meaning. Like, W},; represents the hidden-input gate
matrix etc.

Attention mechanism
Traditional Encode-Decode structures typically encode
an input sequence into a fixed-length vector representa-
tion. However, this model has drawbacks. When the input
sequence is very long, it is difficult to learn a feasible
vector representation.

One fundamental theory of attention mechanism[31]
is to abandon the conventional Encoder-Decoder struc-
ture. Attention mechanism trains a model that selectively
learns the input streams by conserving the intermedi-
ate outputs of LSTM. In attention structure, the output
sequences are affiliated with the input sequences. In other
words, the probability of occurrence of each value in
the output sequence depends on the value in the input
sequence. Figure 3 illustrates the attention mechanism.
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Attention layer calculates the weighted distribution of
X1, ..., Xr. The input of S; contains the output of the
attention layer. The probability of occurrence of the out-
put sequence ..., ¥r—1,¥s, ... depends on input sequence
X1, Xy, ..., XT. hj represents the hidden vector. A;; repre-
sents the weight of i input at time step £. Attention layer
inputs n parameters y1, ..., ¥4, context sequence ¢, and
outputs vector z, z is the weighted distribution of y; for a
given context c. Attention mechanism is implemented by
following composite function:

m; = tanh(Wepne + Wymyi) ®)
si ¢ exp({(W, m;)) &)
ZSL‘ =1 (10)
2= sy (11)

Where m; is calculated by tanh layer, s; is the softmax of
the m; projected on a learned direction. The output z is
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St-1
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hs hr
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Fig. 3 The diagram of attention mechanism. Attention layer calculates the weighted distribution of Xj, ..., X7. The input of S; contains the output of
the attention layer. The probability of occurrence of the output sequence ..., yi—1, yt, ... depends on input sequence X1, X, ..., X7. h; represents the
hidden vector. A;; represents the weight of M input at time step t
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the weighted arithmetic mean of all y;, W represents the
relevance for each variable according to the context c.

Attention-based multi-channel LSTM

In Fig. 4, we illustrate the overall architecture of our
model. We separate our data set into two categories. First,
we classify average temperature, maximum temperature,
minimum temperature, rainfall, air pressure and relative
humidity together as climate-related data category. Then,
the rest of features are classified together as influenza-
related data category. In our data set, each region has
its own influenza-related data, and they share the same
climate-related data every week.

Because our data set has the above characteristics, the
inputs of Att-MCLSTM contains two parts. First, the
influenza-related data is input into a series of LSTM neu-
ral networks (LSTM 1, ..., LSTM 9) to capture correlative
features. Second, the climate-related data is input into a
single LSTM neural network (LSTM 10) to capture the
long-term time series attribute of influenza epidemic data.
For the first part, each LSTM neural network acquires the
influenza-related data from one distinct region. In order
to make full use of the complementarity among every
regions, the outputs of LSTM neural networks (LSTM 1,
..., LSTM 9) are concatenated in a higher layer (Merge
1). This higher layer can obtain the fused descriptors of
underlying neural networks. After we capture the fea-
tures of every regions, we still want to weight intermediate
sequences. The reason is that the data of each region
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has different influences on the final forecasting result.
Therefore, the intermediate sequences pass through an
attention layer (Attention) and a fully connected layer
(Dense 1) in turn. Thereafter, we concatenate the outputs
of these two parts together (Merge 2). Finally, the interme-
diate sequences are passed through two fully connected
layers (Dense 2, Dense 3). So far, we acquire the high-level
features of the input data, and they are used to solve the
influenza epidemic forecasting.

By designing a multi-channel structure, we can bet-
ter extract the time-sequence property of each type of
data. Not only ensures the integration of various relevant
descriptors in the high-level network, but also ensures
that input data will not interfere with each other in the
underlying network. In the attention layer, the probability
of occurrence of each value in the output sequence
depends on the value in the input sequence. This structure
allows us to handle the relationship of input data between
different districts more appropriately.

Evaluation method

To evaluate our method, we use the mean absolute per-
centage error (MAPE) as the criteria standard. Its formula
is express as Eq. 12.

Vi — %

Yi

1 n
MAPE = — x 100 12
- | (12)

i=1

Fully connected
layers analysis

1

High-level
descriptors mergence

~

Multiple time series [ Lst™1 | [ Lst™2 | LSTM 9 LSTM 10
descriptors extraction =
and fusion District 1st I l District 2nd I """ I District 9th I | Climate data |
~ \ J . J
Y Y
Influenza-related channel Climate-related channel
Preprocessing Multivariable input data |

Fig. 4 The structure of Attention-based multi-channel LSTM
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Where y; denotes the i actual value, and x; denotes
the i predicted value. If the value of MAPE is low, the
accuracy of the method is high.

Experiments

In this section, we did two experiments to verify the Att-
MCLSTM model. In the first experiment, we evaluate the
numbers of consecutive weeks of data that we need to
forecast ILI% for the next week. In the second experiment,
we compare our model with different neural network
structures and other methods. Each experiment result is
the average of 10 repeated trials.

Selection of consecutive weeks

In this experiment, we set the numbers of consecu-
tive weeks as 6, 8, 10, 12, 14 respectively. The hyper-
parameters of each layer are listed in Table 2. The acti-
vation functions we used are linear activation function.
The loss function and optimizer are mape and adam
respectively.

We use the first 370 consecutive weeks’ data in training
phase and the remaining data in the test phase. Each data
sample includes 6 features in climate-related data cate-
gory and 9 different districts’ influenza-related data. Each
influenza-related data contains 13 features. The climate-
related data and each district’s influenza-related data are
input into the climate-related channel and the influenza-
related channel respectively. The forecasting results are
shown in Table 3.

Performance validation
In this experiment, we verify the validity of our model.

e First, we compare Att-MCLSTM with MCLSTM by
comparing their forecasting accuracy. The purpose of
doing this is to verify the effect of the attention
mechanism. For both models, we use the same
multi-channel architecture (as shown in Fig.4). The
only difference between these two models is that we
delete the attention layer in MCLSTM. The
parameters settings and data inputs method are as
described in the first experiment.

Table 2 The size of every unit in Att-MCLSTM neural network for

Page 7 of 10

Table 3 The MAPE of the prediction results for Section 3.1

Number of weeks MAPE
6 0.107
8 0.092
10 0.086
12 0.106
14 0.109

e Second, we compare MCLSTM with LSTM by
comparing their forecasting accuracy. The purpose of
doing this is to verify the effect of the multi-channel
structure. For MCLSTM, parameters settings and
data inputs method are as described in the first
experiment. For LSTM, we input entire features into
one LSTM layer to capture the fused descriptors.
Instead of separating data set according to different
regions, we sum corresponding influenza-related
features in each week from every regions together.
Therefore, each data record includes 19 selected
features. The data that contains these 19 features are
passed through a fully connected layer to acquire
high-level features. The units’ number of LSTM layer
and fully connected layer are 32 and 1 respectively.

e Third, we demonstrate that LSTMs can yield better
performance than RNNs when dealing with time
series data.

Results

(1) As can be seen from Table 3, 10 consecutive weeks’
data yields the best performance. (2) Table 4 shows that
Att-MCLSTM has strong competitiveness and can pro-
vide effective real-time influenza epidemic forecasting.

Discussion

The results of the first experiment indicate that 10 consec-
utive weeks data can appropriately reflect the time series
attribute of influenza data. If the length of input data is
shorter than 10, the input data doesn’t contain enough
time series information. On the contrary, if the length of
input data is longer than 10, the noise inside the input data
increased, leading to a decrease in forecasting accuracy.
Therefore, in our experiments, each data record includes
10 consecutive weeks’ data.

Section 3.1

Layer name Units number ~ Table 4 The MAPE of the prediction results for Section 3.2

LSTM 1, ...,LSTM 9 32 Schemes MAPE
LSTM 10 32 Att-MCLSTM 0.086
Dense 1 16 MCLSTM 0.105
Dense 2 10 LSTM 0.118
Dense 3 1 RNN 0.132
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The results of the second experiment show that Att-
MCLSTM can yield the best performance. In Table 4,
from the first two rows, we can conclude that using atten-
tion mechanism can improve the MAPE from 0.105 to
0.086. The reason is that the attention layer can bet-
ter deal with the relationships of input streams among
every regions more appropriately. From the second row
and the third row, we can conclude that using multi-
channel structure can improve the MAPE from 0.118
to 0.105. The reason is that the multi-channel structure
can better capture the time series attributes from dif-
ferent input streams. From the last two rows, we can
conclude that using LSTM can improve the MAPE from
0.132 to 0.118. The reason is that LSTM neural net-
work can better deal with time series data. This result
also demonstrates the time series attribute of influenza
epidemic data.

Figure 5 shows the actual values and predicted val-
ues of four models. We can see that the result of
Att-MCLSTM is close to the actual output. There
are more obvious differences between the pre-
dicted results and the actual value by using the
other three models. So, this can verify that adopting
Att-MCLSTM to analyze the sequential information
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can help to extract time-sequence characteristic more
accurately and comprehensively.

Conclusion and future work

In this paper, we propose a new deep neural net-
work structure (Att-MCLSTM) to forecast the ILI%
in Guangzhou, China. First, we implement the multi-
channel architecture to capture time series attributes from
different input streams. Then, the attention mechanism
is applied to weight the fused feature sequences, which
allows us to deal with relationships between different
input streams more appropriately. Our model fully con-
sider the information in the data set, targetedly solving
the practical problem of influenza epidemic forecasting in
Guangzhou. We assess the performance of our model by
comparing it with different neural network structures and
other state-of-the-art models. The experimental results
indicate that our model has strong competitiveness and
can provide effective real-time influenza epidemic fore-
casting. To the best of our knowledge, this is the first study
that applies LSTM neural networks to the influenza out-
breaks forecasting. Continuing work will further improve
the expansion ability of our model by introducing transfer
learning.
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Fig. 5 The results of one-week ahead prediction by using four individual models. a shows the comparison of Att-MCLSTM and real data; b shows
the comparison of MCLSTM and real data; € shows the comparison of LSTM and real data; d shows the comparison of traditional RNN and real data.
In each figure, the blue line denotes the actual values, and the orange line denotes the predicted values
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