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Abstract

Background: Over the past decades, a large number of long non-coding RNAs (lncRNAs) have been identified.
Growing evidence has indicated that the mutation and dysregulation of lncRNAs play a critical role in the
development of many complex human diseases. Consequently, identifying potential disease-related lncRNAs is an
effective means to improve the quality of disease diagnostics and treatment, which is the motivation of this work.
Here, we propose a computational model (LncDisAP) for potential disease-related lncRNA identification based on
multiple biological datasets. First, the associations between lncRNA and different data sources are collected from
different databases. With these data sources as dimensions, we calculate the functional associations between
lncRNAs by the recommendation strategy of collaborative filtering. Subsequently, a disease-associated lncRNA
functional network is built with functional similarities between lncRNAs as the weight. Ultimately, potential disease-
related lncRNAs can be identified based on ranked scores derived by random walking with restart (RWR). Then,
training sets and testing sets are extracted from two different versions of a disease-lncRNA dataset to assess the
performance of LncDisAP on 54 diseases.

Results: A lncRNA functional network is built based on the proposed computational model, and it contains 66,060
associations among 364 lncRNAs associated with 182 diseases in total. We extract 218 known disease-lncRNA pairs
associated with 54 diseases to assess the network. As a result, the average AUC (area under the receiver operating
characteristic curve) of LncDisAP is 78.08%.

Conclusion: In this article, a computational model integrating multiple lncRNA-related biological datasets is
proposed for identifying potential disease-related lncRNAs. The result shows that LncDisAP is successful in
predicting novel disease-related lncRNA signatures. In addition, with several common cancers taken as case studies,
we found some unknown lncRNAs that could be associated with these diseases through our network. These results
suggest that this method can be helpful in improving the quality for disease diagnostics and treatment.
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Background
Long non-coding RNAs (lncRNAs), which compose the
largest portion of the mammalian non-coding transcrip-
tome [1], are emerging as important regulators of tissue
physiology and disease processes [2]. lncRNAs are
expressed in a more tissue-specific fashion than mRNA
genes [3] and are highly specific to cell type‚ organs‚ and
species [4]. A large amount of lncRNAs have been dem-
onstrated to have a close relationship with many com-
plex human diseases [5–8]. Therefore, an increasing
recognition of the roles of lncRNAs in human disease
has created new diagnostic and therapeutic opportun-
ities [9]. The identification of potential lncRNAs related
to complex diseases is a hot topic in medicine.
LncRNAs are the key to explaining disease mecha-

nisms. As analysing lncRNAs is very appealing to
researchers, many researchers have devoted their work
to lncRNAs for exploring complex human diseases at
the molecular level. For example, BCYRN1 has been
demonstrated to induce the proliferation and migration
of non-small cell lung cancer (NSCLC) cells and play an
important role in NSCLC progression [10]. LncRNA
SNHG1 regulates NOB1 expression by sponging miR-
326 and promotes tumourigenesis in osteosarcoma [11].
Ye et al. found that LINC00460 promotes the progres-
sion of lung adenocarcinoma by competitively binding
miR-302c-5p and regulating the FOXA1 signalling path-
way [12]. F. Aksoy et al. postulated that the overexpres-
sion of lncRNA DANCR may be associated with poor
outcomes in upper rectal cancer [13]. LncRNA HOTAIR
plays a role as an oncogenic molecule in different can-
cers, including breast, gastric, colorectal and cervical
cancer cells [14]. Similarly, lncRNA MALAT1 is consid-
ered a potential biomarker for the diagnosis and predic-
tion of cancers and may also serve as a therapeutic
target for the treatment of specific tumours [15]. In
2018, Chen C et al. deduced that the expression of
lncRNA ZEB1-AS1 might be used as a promising prog-
nostic biomarker for cancer [16]. The above studies
show that lncRNAs have been recently regarded as pos-
sible biomarkers for disease.
Although a large number of lncRNAs have been re-

corded in public databases, such as GENCODE [17],
NONCODE [18], LNCipedia [19], only a few lncRNAs
have been characterized functionally [20]. Several
methods have been developed to predict potential
lncRNA-disease associations [21, 22]. However, they take
into account only disease semantic similarity and ignore
disease functional similarity. Improved knowledge has
suggested that exploring both the semantic and func-
tional associations of diseases, which are two types of
significant associations, are beneficial in measuring dis-
ease similarity because not all associations between dis-
eases are represented by the disease ontology, and many

of them are reflected through the functional associations
among disease-related genes [23]. Moreover, the lack of
unified identifications for lncRNAs leads to an
underutilization of information from different public
lncRNA databases when lncRNA functional annotations
are approached. Therefore, we aimed to identify more
lncRNAs by efficiently analysing the lncRNA and disease
data. First, we extracted and utilized functional informa-
tion related to lncRNAs, including disease similarity,
protein-protein interactions and lncRNA-mRNA associ-
ations. Subsequently, we established functional associa-
tions between lncRNAs and built a disease-related
lncRNA network. Potential disease-related lncRNA sig-
natures were predicted by a random walking with restart
(RWR).

Materials and methods
Workflow
The workflow of LncDisAP is shown in Fig. 1. First, map-
pings between lncRNAs and lncRNA-related datasets are
established, and these datasets are extracted from multiple
biological datasets. Mappings between lncRNA and protein
are provided by the Search Tool for the Retrieval of Inter-
acting Genes/Proteins (STRING) [24] and starBase v2.0
[25] databases, while those between lncRNA and disease
are from the Human Disease Ontology (DO) [26], MEDIC
[27] and LncRNADisease [28] databases. The mappings of
lncRNA-mRNA are from starBase v2.0 [25] and the Hu-
man Protein Reference Database (HPRD) [29]. Subse-
quently, different similarity measures can be defined
considering that different data sources have different data
characteristics. Given the associations between lncRNA and
mRNA, the number of lncRNA-related mRNAs can be
taken as a statistical indicator to calculate lncRNA similar-
ity. In view of disease functional similarity and protein func-
tional similarity, associations of lncRNA-disease and
lncRNA-protein are used to make a multi-dimensional vec-
tor model for each lncRNA. Finally, a disease-related
lncRNA functional network is built based on lncRNA func-
tional similarity. We employ RWR in this network to calcu-
late the ranking of candidate lncRNAs, which are related to
certain diseases. Thus, the potential relationships between
diseases and lncRNAs can be identified.

Data source
Disease database
DO [26] database is focused on representing a common
and rare disease concept, which aims to provide an open
source ontology for the integration of biomedical data
associated with human disease. Each node in DO repre-
sents one disease term. All of these nodes are organized
in a directed acyclic graph (DAG) with an ‘IS_A’ rela-
tionship. MEDIC [27], as a part of the Comparative Tox-
icogenomics Database (CTD) [30], integrates Online
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Mendelian Inheritance in Man (OMIM) terms, syno-
nyms and identifiers with MeSH [31] terms, synonyms,
definitions, identifiers and hierarchical relationships. It is
composed of 9700 unique diseases described by more
than 67,000 terms. In this study, we map lncRNA-
related diseases to DO, utilizing terms and synonyms
from DO and MEDIC.

LncRNA database
RNAcentral [32] is a database of non-coding RNA
(ncRNA) sequences that aggregates data from special-
ized ncRNA resources. It assigns unique identifiers to
every distinct RNA sequence. Because there is no uni-
form identity number in the different lncRNA databases,
we use identifiers from RNAcentral as unified labels of
lncRNAs to ensure the smooth progress of this work.

Human lncRNA-disease association data
LncRNADisease [28] is a database that curated the ex-
perimentally supported lncRNA-disease association data.
Presently, there are three versions available. The 2017
version of the LncRNADisease database integrated 2947
lncRNA-disease entries, including 888 lncRNAs and 328
diseases, while the 2015 version covered 1102 lncRNA-
disease entries, including 373 lncRNAs and 252 diseases.
The newest version [33] was released in 2018, containing
5714 lncRNAs and 423 diseases. Here, we extract associ-
ations between lncRNAs and diseases from this database
and use the differences between its versions to validate
the reliability of LncDisAP.

Human protein-protein interaction data
STRING [24] is a database of known and predicted
protein-protein interactions. These interactions in
STRING include direct (physical) interactions, as well as
indirect (functional) interactions, which stem from com-
putational prediction, knowledge transfer between or-
ganisms, and interactions aggregated from other
databases. The STRING database currently covers 9,643,
763 proteins from 2031 organisms. Here, protein-protein
interactions from STRING are involved in the lncRNA
similarity computation.

Human lncRNA interaction data
starBase v2.0 [25] systematically identified the RNA-
RNA and protein-RNA interaction networks from 108
CLIP-Seq data sets generated by 37 independent studies,
which provided 423,966 miRNA-mRNA, 10,212 miRNA-
lncRNA and 17,609 protein-lncRNA experimentally con-
firmed interactions based on large scale CLIP-Seq data.
The HPRD [29] represents an mRNA-mRNA interaction
network for humans. All the information in HPRD has
been manually extracted from the literature by expert bi-
ologists. Currently, HPRD covers 39,240 mRNA-mRNA
interactions with 9465 mRNA.

LncRNA functional similarity calculation
Data pre-processing
The differences in different data sets bring some difficul-
ties to the integration of lncRNA data. Two problems
must be solved before constructing the lncRNA func-
tional association network. One is the mapping of dis-
ease terms. MEDIC and DO are both comprehensive

Fig. 1 The workflow of LncDisAP for identifying potential disease-related lncRNAs
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disease corpuses and contain abundant disease terms, so
we can annotate DO entries with the vocabulary from
MEDIC and create a combined vocabulary of disease
terms. Referring to this vocabulary, we build mappings
between the DO terms and the disease terms of
LncRNADisease. The other problem that must be ad-
dressed is the unification of lncRNA identifications. As
mentioned above, the lncRNA naming rules of different
lncRNA databases are different. Therefore, we employ
the RNAcentral id as the unified identification system of
lncRNAs considering that the RNAcentral database pro-
vides mapping data among various public lncRNA
databases.

LncRNA-related disease similarity
The functional similarities between different diseases
can be calculated. Therefore, in view of associations be-
tween lncRNAs and diseases, we can make a multi-
dimensional vector model for each lncRNA with diseases
as dimensions. The functional similarities between these
lncRNA-related diseases can be taken as inputs to fur-
ther calculate relevance scores for lncRNAs. Here, we
employ FNSemSim [34] to calculate disease functional
similarity. This method, which we previously developed,
has good performance for calculating similarities be-
tween diseases. In this method, we first calculate disease
functional similarity utilizing associations between dis-
eases and genes. The functional similarity between dis-
ease da and db is defined as follows:

FNSim Ga;Gbð Þ ¼

X
1≤ i≤num Gað Þ

RGb gai
� �þ

X
1≤ j≤num Gbð Þ

RGa gbj
� �

num Gað Þ þ num Gbð Þ
ð1Þ

gai∈Ga; gbj∈Gb

where the gene sets Ga = {ga1, ga2, …} and Gb = {gb1, gb2,
…} are related to disease da and db, respectively; num(G)
represents the numbers of genes related to one disease;
and RG(g) represents the degree of association between a
gene g and a gene set G (see details in [34]). Considering
that sematic associations exist in DO, FNSemSim could
be defined as follows:

FNSemSim da; dbð Þ ¼ FNSim Ga;Gbð Þ� Gaj j Gbj j
GMICAj j2 ð2Þ

where |G| represents the size of a gene set G. GMICA

represents the genes related to the most informative
common ancestor of disease da and db. Finally, by min-
max normalization, we normalize similarities between
pair-wised diseases.

Vector model construction for lncRNAs
STRING provides human protein-protein interactions,
and in the above section, the functional similarities be-
tween lncRNA-related diseases have been calculated.
Therefore, we can obtain the relational degrees between
one lncRNA and a certain disease or protein based on
the similarities of lncRNA-related diseases or proteins.
Then, these degrees can be used to make a multi-
dimensional vector for each lncRNA. Hence, we can cal-
culate lncRNA functional similarity by cosine similarity
in a multi-dimensional space, which is defined by
lncRNA-related diseases and proteins. The workflow of
calculating lncRNA functional similarity based on the
recommendation strategy of collaborative filtering is
shown in Fig. 2.
In this multi-dimensional space, neither all diseases nor

all proteins are directly related to one lncRNA. To predict
the score of a disease that is not directly related to one
lncRNA, we define L as the set of lncRNAs, D as the set of
lncRNA-related diseases and P as the set of lncRNA-
related proteins. DRl is defined as the set of diseases dir-
ectly related to lncRNA l. The predicted association score
between disease d and lncRNA l is defined as follows:

ASðd; lÞ ¼ MAXðFNSemSimðdi; dÞÞ
1

di∈DRl and d∉DRl

d∈DRl

8<
:

ð3Þ
where l ∈ L, d ∈D, DRl ⊆D and 1 ≤ i ≤ |DRl|; here, |DRl| rep-
resents the number of diseases in the set of DRl. Similarly,
for lncRNA-related proteins, PRl is defined as the set of pro-
teins directly related to lncRNA l. The predicted association
score between protein p and lncRNA l is defined as follows:

ASðp; lÞ ¼ MAXðSPscoreðpi; pÞÞ
1

pi∈PRl and p∉PRl

p∈PRl

8<
:

ð4Þ
where l ∈ L, p ∈ P, PRl ⊆ P and 1 ≤ i ≤ |PRl|; here, |PRl|
represents the number of proteins in the set of PRl and
SPscore (pi,p) represents the relevance score between
protein p and pi from STRING.
Subsequently, we define a vector of each lncRNA with

|D| + |P| dimensions. |D| and |P| represent the size of
the disease set D and the protein set P, respectively. For

each lncRNA, we can define its vector l
!

as follows:

l
!¼ ðASðd1; lÞ; ⋯⋯; ASðdk ; lÞ;ASðp1; lÞ;⋯⋯;ASðpj; lÞÞ

l∈L; 1≤k≤ jDj; 1≤ j≤ jPj
ð5Þ

where l
!

represents the vector of lncRNA l in this
multi-dimensional space. AS(dk, l) and AS(pj, l) are the
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scores of disease dk and protein pj, respectively, for
lncRNA l. Now, we can obtain |L| vectors of lncRNAs.

LncRNA functional similarity
In this multi-dimensional space, each lncRNA can be
depicted by a multi-dimensional vector. Therefore, we
can measure the similarity between any two vectors of
lncRNAs based on cosine similarity. The similarity be-
tween lncRNA l1 and lncRNA l2 is defined as follows:

CRðl1; l2Þ ¼
Pn

1ðAS1;i � AS2;iÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
1AS

2
1;i

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
1AS

2
2;i

q ð6Þ

where ASk,i represents the association score in the i-th
dimension of the vector l

!
k for lncRNA lk. The range of

CR(l1, l2) is 0 to 1 because these values of ASk,i are posi-
tive numbers.
In addition, mRNA can also be seen as a factor to cal-

culate lncRNA functional similarity because of the exist-
ing links between lncRNAs and mRNAs. In view of the
relationships between mRNAs, we can extract links be-
tween them from HPRD denoted as mRNALinkSet. First,

the relevance between an mRNA k and an mRNA set M
is defined as follows:

Rðk;MÞ ¼ f 1

linksðk;MÞ=jMj
k∈M

k∉M
ð7Þ

where links(k,M) represents the number of links between
mRNA k and members in the mRNA set M, and these
links have to be included in mRNALinkSet. Let a pair of
mRNA sets M1 = {m11, m12, …} and M2 = {m21, m22, …}
be related to lncRNA l1 and l2, respectively. The similar-
ity between lncRNA l1 and l2 based on mRNA is defined
as follows:

MRðl1; l2Þ ¼

X
1≤ i≤ jM1j

Rðm2i;M1Þ þ
X

1≤ j≤ jM2j
Rðm1 j;M2Þ

jM1j þ jM2j
ð8Þ

where |M1| and |M2| represent the numbers of mRNAs
related to lncRNA l1 and l2, respectively. Finally, we

Fig. 2 The workflow of calculating lncRNA similarity based on the recommendation strategy
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complete the calculation of lncRNA similarities based on
different lncRNA-related knowledge.

Identifying novel candidate disease-related
lncRNAs
We can take lncRNA similarities as weight to construct
a lncRNA functional association network. In this net-
work, the weight between lncRNA l1 and l2 is defined as
follows:

LncFunNet l1; l2ð Þ ¼ 1‐ 1‐CR l1; l2ð Þð Þ 1‐MR l1; l2ð Þð Þ ð9Þ

where the range of LncFunNet(l1,l2) is 0 to 1, as in
CR(l1,l2) and MR(l1,l2). Utilizing this lncRNA network,
we can identify novel candidate disease-related lncRNAs.
To identify novel candidate disease-related lncRNAs,

we employ RWR to fully exploit the global functional as-
sociations between lncRNAs in this network. RWR, as a
global optimization method, can reveal more informa-
tion between one lncRNA and all the others in the net-
work. The random walker in the network starts from the
root node and moves to adjacent nodes with the prob-
abilities from that node to the others. After enough iter-
ations, the probabilities from the root node to all the
other nodes will become stable, which can be used as
scores for predicting novel disease-related lncRNAs (see
[35] for RWR details). Finally, rankings for each lncRNA
in this network can be listed by RWR.

Results
LncRNAs and diseases
We obtained 3,801,586 associations among 4703 disease
terms from DO based on disease similarity calculations.
Meanwhile, we found 1083 relationships between 184
diseases and 374 lncRNAs by mapping DO terms to the
diseases in LncRNADisease (released in July 2017).
There were 5,600,133 relationships between 13,716
mRNA and 1034 lncRNAs extracted from starBase v2.0.
We found 15,622 associations between 33 proteins and
2750 lncRNAs from starBase v2.0 and STRING.
We calculated similarity among 374 lncRNAs and re-

moved lncRNA pairs that had a similarity of 0. Finally,
we built a lncRNA functional network, which contains
66,060 associations among 364 lncRNAs associated with
182 diseases.

Performance
To assess the performance of the lncRNA functional
network, we compared two different versions of
LncRNADisease and extracted 218 known disease-
lncRNA pairs associated with 54 diseases from the
newer version of LncRNADisease (released in June
2018). The detailed statistics for evaluating disease-
related lncRNA networks are given in Additional file 1.

For each of these 54 diseases, all of the tested lncRNAs,
which exist in the two different versions like other
lncRNAs involved in the performance evaluation, have
associations with their respective disease only in the
newer version of LncRNADisease. Take cholangiocarci-
noma (DOID:4947) as an example. There was only one
lncRNA associated with cholangiocarcinoma in
LncRNADisease (released in July 2017), while five new
lncRNAs were included in the newer version of
LncRNADisease. We tried to validate the performance
of the lncRNA functional network for predicting associa-
tions between the five lncRNAs and cholangiocarci-
noma. The information of these lncRNAs associated
with cholangiocarcinoma is shown in Table 1.
As a result, the disease-related lncRNA functional net-

work has a good performance in predicting disease-
lncRNA pairs for the 54 diseases with an average AUC
value of 78.08%. The performance in predicting lncRNAs
associated with cholangiocarcinoma is shown in Fig. 3.
Meanwhile, we found that LncDisAP has outstanding per-
formance on some diseases. For example, gallbladder can-
cer (DOID:3121) had an AUC of 96.13% in this lncRNA
functional network. There were 22 diseases in these 54
diseases whose AUC were more than 80%, as shown in
Fig. 4. However, papillary thyroid carcinoma (DOID:3969)
had a small AUC value of 43.02%. We found that
LncRNADisease (released in June 2018) added a new
lncRNA associated with papillary thyroid carcinoma but
removed 6 lncRNAs related to this disease in comparison
with the version released in July 2017. This may have con-
tributed to a poor performance for finding lncRNAs asso-
ciated with papillary thyroid carcinoma owing to the
effect of noise in the data source. Even so, the perform-
ance of the lncRNA functional network based on our
computational model is remarkable in predicting candi-
date disease-related lncRNAs. The average AUC values
for these 54 diseases are shown in Fig. 4.

Case study
Many studies have indicated that lncRNAs play critical
roles in the development of various cancers [36]. To fur-
ther evaluate the performance of our computational
model in predicting potential disease-related lncRNAs,
we used acute myeloid leukaemia, breast cancer,

Table 1 Information on lncRNAs associated with
cholangiocarcinoma

LncRNA ID LncRNA Name

URS0000524E5C PANDAR

URS000075E0F9 AFAP1-AS1

URS000075ADFF CCAT1

URS000010576B CCAT2

URS0000812019 SPRY4-IT1
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Fig. 3 The performance in predicting candidate lncRNAs associated with cholangiocarcinoma. a. ROC curves of these five lncRNAs based on the
test set from the 2018 version, including AFAP1-AS1, SPRY4-IT1, PANDAR, CCAT1 and CCAT2. b. AUC of these five lncRNAs based on the test set
from the 2018 version

Fig. 4 Average AUC of 54 diseases based on the test set of the 2018 version. 22 diseases have average AUC values greater than 80%, while 27
diseases have average AUC values between 60 and 80%
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cholangiocarcinoma and cervical cancer as case studies.
First, we built a lncRNA functional network based on
the data source from LncRNADisease (released in 2017),
and the unknown lncRNA-disease associations of each
disease were ranked by RWR. We found that lncRNA
H19 had a high score of 0.84 for acute myeloid leukae-
mia, which was ranked in the top 8% and not included
in the latest version of LncRNADisease. Zhang et al. [37]
and Zhao et al. [38] showed that lncRNA H19 is associ-
ated with acute myeloid leukaemia. For breast cancer,
lncRNA Pvt1, which was ranked in top 5%, was validated
to regulate triple-negative breast cancer through KLF5/
beta-catenin signalling [39]. LncRNA AFAP1-AS1 and
wrap53 were both ranked in top 5% for cholangiocarci-
noma and had been studied to understand cholangiocar-
cinoma [40–42]. Furthermore, lncRNA XIST had a top
ranking of 4% for cervical cancer, as shown in Fig. 5.
Zhu et al. [43] explored the specific mechanism and bio-
logical function of lncRNA XIST in cervical cancer, and
their experiments indicated that lncRNA XIST acceler-
ates the progression of cervical cancer via upregulating
Fus through competitively binding with miR-200a.

Discussion
The impact of data sources and test sets
The relationship between diseases and lncRNAs in the data
source was extracted from LncRNADisease released in July
2017. Hence, we evaluated the impact of different data
sources and different test sets on the performance of pre-
dicting disease-lncRNA pairs in the disease-related lncRNA
functional network. First, with the LncRNADisease data set

released in June 2018 as the test set, we compared the two
lncRNA functional networks that were built based on data
sources from the 2015 and 2017 versions. After the above-
mentioned validation strategy was carried out, the lncRNA
functional network based on the data source from LncRNA-
Disease released in 2015 had an AUC value of 72.6%, while
the AUC of the network based on the 2017 version reached
78.08%. Simultaneously, we assessed the performance of the
lncRNA functional network based on the data source of the
2015 version with a test set extracted from the 2017 version,
whose AUC reached 72.8%, as shown in Fig. 6. The test re-
sult of the lncRNA functional network based on the data
source from LncRNADisease released in 2015 is given in
Table 2. It can be seen that there is not much differ-
ence between the two test sets, which may be the
reason why the AUCs of the network based on the
two test sets do not have much difference. This sug-
gests that the performance of predicting potential
disease-lncRNA pairs in the disease-related lncRNA
functional network can be noticeably impacted by dif-
ferent data sources and different test sets.

LncRNA expression similarity
The introduction of lncRNA expression similarity has
been considered before. However, the results are not
ideal. We obtained lncRNA expression profiles from
NONCODE [18]. This database is an integrated
knowledge database that provides expressed profiles
from human lncRNAs. Spearman’s rank correlation
coefficient is employed to calculate associations be-
tween lncRNA l1 and l2, denoted as ER(l1, l2). The

Fig. 5 The lncRNA functional network based on the data source from the 2017 version. The threshold of associations between lncRNAs is set as
0.4 because there are a large number of associations with low scores. The top 4% ranked candidate lncRNAs for cervical cancer are shown. The
green, blue and red nodes represent candidate lncRNAs, top 4% candidate lncRNAs and lncRNA Xist in top 4%, respectively
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similarity between lncRNA l1 and l2 is defined as
follows:

LncFunNet l1; l2ð Þ ¼ 1‐ 1‐CR l1; l2ð Þð Þ 1‐MR l1; l2ð Þð Þ 1−ER l1; l2ð Þð Þ
ð10Þ

Subsequently, we built two lncRNA functional net-
works based on data sources from the 2015 and 2017
versions with the lncRNA expression similarity operator
introduced. LncRNADisease released in June 2018 was
taken as the test set. The lncRNA functional network
based on LncRNADisease released in 2015 had an AUC
value of 68.3%, while the AUC of the network based on

the 2017 version achieved 75.46%. As shown in Fig. 7,
the original calculation model had a better performance
than one with the lncRNA expression similarity operator
introduced, regardless of whether the data source was
extracted from the 2015 or 2017 version of LncRNADi-
sease. We found that the number of mappings between
RNAcentral and NONCODE was insufficient. This may
have an impact on the performance because sufficient
and reliable data can make a contribution to predicting
potential disease-related lncRNAs, while a small amount
of data may have a negative impact. Hence, this is the
reason why the lncRNA expression similarity operator
was not introduced.

Fig. 6 Average AUC of different lncRNA functional networks with different test sets

Table 2 The test result based on different versions of the data source

Disease Name Disease Ontology 2017 Version 2018 Version

lung benign neoplasm DOID:3683 0.6744 0.7479

stomach cancer DOID:10534 0.7789 0.785

nasopharynx carcinoma DOID:9261 0.6279 0.6607

lung adenocarcinoma DOID:3910 0.6865 0.7433

squamous cell carcinoma DOID:1749 – 0.7354

malignant glioma DOID:3070 0.8566 0.7659

ovarian cancer DOID:2394 0.7364 0.5976

cancer DOID:162 – 0.7192

breast cancer DOID:1612 0.7534 0.7847

melanoma DOID:1909 – 0.6667

large intestine cancer DOID:5672 0.7859 0.7275

non-small cell lung carcinoma DOID:3908 0.6538 0.7782

Average value of AUC 0.7282 0.726
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Conclusions
In this article, a computational model for potential disease-
related lncRNA identification was proposed based on mul-
tiple biological datasets. The results showed that LncDisAP
was proven to be successful in predicting novel disease-
related lncRNA signatures with an average AUC value of
78.08% and can be an effective solution to improve the
quality of disease diagnostics and treatments. To further
evaluate the performance of our computational model, we
used several common cancers as case studies. We found
some unknown lncRNAs that could be associated with
these diseases through our network. In addition, we dis-
cussed the impact of different data sources and different
test sets on the performance of the disease-related lncRNA
functional network in predicting disease-lncRNA pairs.
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