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Abstract

Background: MiRNAs play significant roles in many fundamental and important biological processes, and predicting
potential miRNA-disease associations makes contributions to understanding the molecular mechanism of human
diseases. Existing state-of-the-art methods make use of miRNA-target associations, miRNA-family associations, miRNA
functional similarity, disease semantic similarity and known miRNA-disease associations, but the known miRNA-disease
associations are not well exploited.

Results: In this paper, a network embedding-based multiple information integration method (NEMII) is proposed for
the miRNA-disease association prediction. First, known miRNA-disease associations are formulated as a bipartite
network, and the network embedding method Structural Deep Network Embedding (SDNE) is adopted to learn
embeddings of nodes in the bipartite network. Second, the embedding representations of miRNAs and diseases are
combined with biological features about miRNAs and diseases (miRNA-family associations and disease semantic
similarities) to represent miRNA-disease pairs. Third, the prediction models are constructed based on the miRNA-
disease pairs by using the random forest. In computational experiments, NEMII achieves high-accuracy performances
and outperforms other state-of-the-art methods: GRNMF, NTSMDA and PBMDA. The usefulness of NEMII is further
validated by case studies. The studies demonstrate the great potential of network embedding method for the miRNA-
disease association prediction, and SDNE outperforms other popular network embedding methods: DeepWalk, High-

Order Proximity preserved Embedding (HOPE) and Laplacian Eigenmaps (LE).

Conclusion: We propose a new method, named NEMI, for predicting miRNA-disease associations, which has great
potential to benefit the field of miRNA-disease association prediction.
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Background

MiRNAs are a kind of small non-coding RNA molecules
containing about 22 nucleotides, which are involved in
the regulation of post-transcriptional gene expression in
plants and animals [1]. MiRNAs are usually considered
as negative gene regulators, which regulate the expres-
sion of messenger RNAs in a sequence-specific manner
and repress the protein translation of their target genes.
However, studies showed that miRNAs also act as posi-
tive regulators. For example, two well-studied miRNAs:
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Let-7 and the synthetic miRNA miRcxcr4 induce trans-
lation upregulation of target messenger RNAs on cell
cycle arrest [2]. The increasing evidence demonstrated
that miRNAs play critical roles in important biological
processes, such as cell growth [3], tissue differentiation
[4], cell proliferation [5], embryonic development and
apoptosis [6, 7]. More importantly, plenty of miRNAs have
been discovered to be related to a wide range of human
diseases, such as breast cancer, heart diseases and cardio-
vascular disease [8—10]. Therefore, the identification of
miRNA-disease associations is significant for understand-
ing the molecular mechanisms of human diseases and
promoting the diagnosis and treatment of human diseases.
Experimental determination of miRNA-disease associa-
tions is tremendously expensive and laborious, and has a
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high failure rate. Therefore, identifying miRNA-disease
associations through computational approaches attracts
wide attention from scientific communities.

In the past few years, plenty of computational methods
have been developed to predict miRNA-disease associa-
tions. For example, Sun et al. [11] proposed a method
named NTSMDA, which used the network topological
information and the network-based resource allocation
algorithm to predict miRNA-disease associations. You et
al. [12] constructed a heterogeneous graph by integrating
miRNA-disease associations, miRNA-miRNA similarities
and disease-disease similarities, and developed a network
path-based computational method. Chen et al. [13] pro-
posed a method called RKNNMDA, which implemented
k-nearest-neighbor algorithm to select candidate miR-
NAs (or diseases) and used ranking support vector ma-
chine (SVM) to rank candidates and make predictions.
Xiao et al. [14] proposed a graph regularized non-nega-
tive matrix factorization method called GRNMF, which
integrated the disease semantic information, miRNA
functional information and miRNA-disease associations.
Chen et al. [15] proposed an inductive matrix comple-
tion method named IMCMDA by integrating miRNA
functional similarity, disease semantic similarity and
Gaussian interaction profile kernel similarity. Luo et al.
[16] proposed a novel semi-supervised prediction
method named MDAGRF based on the graph
regularization framework. Chen et al. [17] proposed a
bipartite network projection-based method named
BNPMDA based on the rating-integrated bipartite net-
work recommendation and the known miRNA-disease
associations.

Existing state-of-the-art methods make use of miRNA-
target associations, miRNA-family associations, miRNA
functional similarity, disease semantic similarity and known
miRNA-disease associations. However, the known miRNA-
disease associations are not well exploited. To the best of
our knowledge, known miRNA-disease associations can be
formed as a bipartite network, but features from the net-
work are seldom considered. The network embedding is to
learn embedding representations of nodes by preserving
the property of the network. Recently, the network embed-
ding methods, such as DeepWalk [18] and node2vec [19],
have been applied to many bioinformatics problems and
produced good performances. For example, Zong et al. [20]
utilized node embeddings learned by DeepWalk in a het-
erogeneous network to calculate drug-drug similarity and
target-target similarity, and then predicted novel drug-tar-
get associations. Li et al. [21] proposed a similarity-based
miRNA-disease prediction method, which used DeepWalk
to obtain node embeddings and then calculated cosine
similarities. Liu et al. [22] used node2vec to obtain node
embeddings, and then utilized them to train random forest
model for protein complexes identification.
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In this paper, a network embedding-based multiple
information integration method (NEMII) is proposed for
the miRNA-disease association prediction. First, known
miRNA-disease associations are formulated as a bipartite
network, and the network embedding method Structural
Deep Network Embedding (SDNE) is adopted to learn
node embeddings in the bipartite network. Second, the
embedding representations of miRNAs and diseases are
combined with biological features about miRNAs and
diseases to represent miRNA-disease pairs. Third, pre-
diction models are constructed based on the miRNA-
disease pairs by using random forest. In computational
experiments, NEMII achieves high-accuracy perfor-
mances and outperforms other state-of-the-art methods:
GRNMF, NTSMDA and PBMDA. The usefulness of
NEMII is further validated by case studies. The studies
demonstrate the great potential of network embedding
methods for the miRNA-disease association prediction,
and the embedding method SDNE outperforms other
popular network embedding methods: DeepWalk, High-
Order Proximity preserved Embedding (HOPE) and
Laplacian Eigenmaps (LE).

Results

Evaluation metrics

In a miRNA-disease bipartite network, non-association
miRNA-disease pairs are much more than association
pairs. The miRNA-disease association prediction is a
semi-supervised learning task, and the key point is to
predict undiscovered miRNA-disease associations from
all non-association miRNA-disease pairs. We adopt five-
fold cross-validation to evaluate the performances of
prediction models. Additional file 1: Figure S1 shows
how to implement five-fold cross-validation. The known
miRNA-disease associations are randomly equally di-
vided into five subsets. In each fold, one subset of associ-
ations is removed, and we can train a prediction model
only based on the remaining four subsets of associations.
In the stage of training, SDNE is to learn embeddings of
miRNAs and diseases from the network with remaining
four subsets of associations. Then, the embeddings are
combined with biological features about miRNAs and dis-
eases to represent miRNA-disease pairs. Four subsets of
associations (miRNA-disease pairs) are naturally used as
positive instances. For the semi-supervised learning task,
all other pairs (non-association) can be used as negative
instances. Therefore, a RF-based prediction model is con-
structed. In the stage of prediction, the prediction model
makes prediction for all non-association miRNA-disease
pairs, which include the removed associations and real
non-association pairs. Then, the prediction scores and
their real labels about these pairs are used to calculate the
metric scores. To avoid the bias of data split, we
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implement 10 runs of five-fold cross-validation for each
model, and average performance is adopted.

We adopt several evaluation metrics: the area under the
precise-recall curve (AUPR) and the area under the re-
ceiver-operating characteristic curve (AUC), F1-measure
(F1), recall (REC) and precision (PRE), accuracy (ACC)
and specificity (SPEC).

Discussion of NEMII

NEMII combines three types of feature vectors for
describing miRNA-disease pairs, i.e. vectors based on
miRNA-family associations, vectors based on disease
semantic similarity and vectors based on Structural Deep
Network Embedding (SDNE). Vectors based on Structural
Deep Network Embedding (SDNE) are obtained from the
known miRNA-disease bipartite network.

First, we try to discuss the influence of different
feature combinations on the performance of NEMIL
We consider different combinations of these three
features: miRNA-family, disease similarity and SDNE
feature by combining their feature vectors, and build
the corresponding random forest-based prediction
models. All models based on feature combinations are
evaluated by 10 runs of five-fold cross-validation, and
the results are shown in Table 1. In general, combi-
nations with SDNE feature produce better perform-
ance than combinations without SDNE feature. For
example, the AUPR score of combination 2 (without
SDNE feature) is around 57% lower than that of the
other four combinations (with SDNE feature). The
AUC score of combination 2 (without SDNE feature)
is 14% lower than that of other four combinations
(with SDNE feature). Therefore, the results suggest
that SDNE feature plays an important role in the pre-
diction of miRNA-disease associations. Moreover,
NEMII models which make use of SDNE feature,
miRNA-family feature and disease similarity feature
(combination 5) performs better than the models
based on other combinations, indicating that the
proposed method can well combine diverse features
to achieve high-accuracy performances. To further
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demonstrate the advantage of NEMII, we conduct the
statistical analysis to test the difference between
NEMII and other feature combinations in terms of
AUPR scores. The results show that although there is
no significant difference between NEMII and the
model based on combination 3 (p-value =0.3449 by
one-way ANOVA followed by post hoc Tukey test),
and the model based on combination 4 (p-value=
0.2759), the NEMII model produces significantly bet-
ter results than the model based on combination 1
(p-value =0.001) and the model based on combination
2 (p-value=0.001). The results demonstrate that
NEMII which integrates SDNE feature, miRNA-family
feature and disease similarity feature can produce
good performance in the prediction of miRNA-disease
associations.

The known miRNA-disease associations are import-
ant factors for predicting unobserved miRNA-disease
associations. In order to test the influence of the
number of known associations, i.e. data richness, we
randomly remove 10, 20, 30% known miRNA-disease
associations from our dataset respectively, and then
we perform 10 runs of five-fold cross-validation to
evaluate NEMII on the datasets with fewer associa-
tions. As shown in Table 2, data richness greatly
influenced the performance of our model, and AUPR
and AUC scores decrease as more associations are re-
moved. For example, the AUPR score is 0.6104 when
there are no associations removed, but it decreases to
0.6001 when removing 10% associations. Then, the
AUPR score decreases from 0.5956 (20% associations
removed) to 0.5863 (30% associations removed). The
AUC score also decreases as associations are removed.
More specifically, 10% decrease of associations can
lead to around 0.1% decrease of the AUC score. Al-
though the performances of NEMII decrease when re-
ducing associations, NEMII still produces satisfying
and robust results in the miRNA-disease predictions.
The results demonstrate that SDNE is a robust em-
bedding learning method, and can perform well even
if the network becomes sparser.

Table 1 Performance of NEMII based on different feature combinations

AUPR

AUC

F1

ACC

REC

SPEC

PRE

combination 1
combination 2
combination 3
combination 4

combination 5

0.6036 + 0.0018
0.2630 + 0.0032
0.6086 + 0.0015
0.6085 + 0.0024
06104 + 0.0012

0.9252 £ 0.0014
0.7890 + 0.0056
0.9284 + 0.0012
0.9262 £ 00018
0.9293 + 0.0017

0.6072 £ 0.0020
0.3338 + 0.0032
06129 + 0.0031
06115 £ 0.0026
06147 + 0.0025

0.9955 + 0.0001
0.9933 + 0.0000
0.9956 + 0.0001
0.9956 + 0.0000
0.9956 + 0.0001

04860 + 0.0052
0.2360 + 0.0025
04887 + 0.0069
04836 + 0.0055
0.4893 + 0.0060

0.9992 + 0.0001
0.9987 + 0.0000
0.9992 + 0.0001
0.9993 + 0.0001
0.9993 + 0.0001

08128 £ 0.0158
0.5681 + 0.0058
0.8247 £ 0.0160
0.8366 + 0.0105
0.8289 + 0.0164

" combination 1: SDNE feature alone
“ combination 2: miRNA-family feature and disease similarity feature
" combination 3: SDNE feature and miRNA-family feature

“ combination 4: SDNE feature and disease similarity feature
" combination 5: SDNE feature, miRNA-family feature and disease similarity feature
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Table 2 Performances of NEMII on datasets with fewer associations

Ratio AUPR AUC F1 ACC REC SPEC PRE

0% 06104 + 0.0012 0.9293 + 0.0017 0.6147 + 0.0025 0.9956 + 0.0001 04893 + 0.0060 0.9993 + 0.0001 0.8289 + 0.0164
10% 0.6001 + 0.0018 0.9276 + 0.0011 0.6045 + 0.0037 0.9969 + 0.0001 04811 £ 0.0051 0.9993 + 0.0001 0.8176 + 0.0168

20%
30%

0.5956 + 0.0030
0.5863 + 0.0026

0.9266 + 0.0014
0.9255 + 0.0010

0.6036 + 0.0040
0.5946 + 0.0036

0.9965 + 0.0000
0.9960 + 0.0001

04738 £ 0.0091
04620 + 0.0074

0.9995 + 0.0001
0.9995 + 0.0001

0.8354 £ 0.0169
0.8390 + 0.0290

Comparison with other network embeddings and other
classifiers
As discussed in Discussion of NEMII Section, features
extracted by the embedding method SDNE are critical
for building NEMII models. To demonstrate the advan-
tage of SDNE, we also consider other popular network
embedding methods: Laplacian Eigenmaps (LE) [23],
High-Order Proximity preserved Embedding (HOPE)
[24] and DeepWalk [18], and compare them with SDNE.
LE keeps embeddings of two nodes close when these
two nodes have high similarity. HOPE preserves high
order proximity by decomposing the similarity matrix
and using a generalized Singular Value Decomposition
(SVD). DeepWalk uses random walks on graphs to learn
latent representations of nodes and encodes them in a
continuous space. These embedding methods usually
have different parameters, and we set their parameters
according to their publication and mainly discuss a com-
mon parameter: the dimension of node embeddings.
Here, we discuss the model performance under the
different dimensions of node embeddings, ranging from
32 to 512 (25 k=5, 6, 7, 8, 9). We respectively adopt
these embedding methods to extract embedding features
from the network, and then combine them with
miRNA-family feature and disease similarity feature to
build similar SDNE models. The results of all models are
shown in Fig. 1. The y-axis denotes the AUPR and AUC

scores obtained by the corresponding model, and the x-
axis denotes different dimensions of node embeddings.
Clearly, the model using SDNE embedding leads to bet-
ter AUPR scores and AUC scores than the models using
other three embeddings over the different dimensions.
To further demonstrate the advantage of SDNE, we con-
duct one-way ANOVA followed by post hoc Tukey test
to test the difference between SDNE and other embed-
ding methods in terms of AUPR scores. The results
show that the SDNE model produces significantly better
results than the HOPE model (p-value = 0.0027) and the
LAP model (p-value =0.0019). The p-value between the
SDNE model and the DeepWalk model is 0.0507, which
suggests that there is no significant difference between
the SDNE model and the DeepWalk model. Therefore,
we conclude that SDNE method can learn more effective
node embeddings in the miRNA-disease bipartite net-
work and performs better than other three methods, be-
cause the miRNA-disease bipartite network is sparse and
SDNE method was proved to be robust to sparse net-
works [25]. Anothers reason why SDNE works better
than other embedding learning methods is that SDNE
combines the autoencoder objective with the Laplacian
eigenmaps objective.

Moreover, we observe from Fig. 1 (right) that the
SDNE model using 128 dimensions produces the lowest
AUC score of 0.9293. In order to avoid overestimating

0.63 1
0.621

32 64 128 256 512
Dimension

—SDNE —~-DeepWalk
Fig. 1 AUPR and AUC of embedding methods based on different dimensions

32 64 128 256 512
Dimension

HOPE - LAP
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our model, we set the embedding vectors of SDNE as
128 dimensions in this study.

In order to show the advantage of random forest (RF)
classifier, naive Bayes (NB), logistic regression (LR) and
support vector machine (SVM) are used for comparison.
By considering the number of trees ranging from 10 to
500 in a step of 10, we set the number of trees in a RF
classifier as 350 according to the performances of corre-
sponding models. We adopt the radial basis function for
SVM, and use the grid search to obtain optimal parame-
ters C=1.0 and gamma=0.1. The prediction models
based on different classifiers are evaluated by five-fold
cross-validation, and the results are shown in Table 3.
Clearly, the model using RF classifier (AUC:0.9293,
AUPR: 0.6104) performs better than the models using
NB (AUC: 0.9103, AUPR: 0.1846), LR (AUC: 0.9023,
AUPR: 0.2129) and SVM (AUC: 0.9021, AUPR: 0.0968).
The results demonstrate that RF classifier is suitable for
the miRNA-disease association prediction, because RF
classifier is effective for the imbalanced and high-dimen-
sional datasets.

We also implement weighted random forest to build
the prediction model and compare it with the conven-
tional random forest-based model. The conventional
random forest assigns equal weights to output labels (0,1)
predicted by the decision trees of the random forest, while
the weighted random forest assigns different weights to
output labels (0,1), denoted as w;=n_samples/(2 +n;),
i =10, 1}, where n _samples denotes the number of sam-
ples in the training set, and #; denotes the number of sam-
ples of each label (0,1). The performance of the weighted
random forest is shown in Table 3. Compared with the
conventional RF, the weighted RF produces better AUC
but lower AUPR and F1. In general, the weighted RF and
conventional RF have the similar performances in the
miRNA-disease association prediction, and thus conven-
tional RF classifier is finally adopted in this work.

Comparison with existing state-of-the-art methods

To further demonstrate the advantages of NEMII, we
compare it with three state-of-the-art methods: PBMDA
[12], NTSMDA [11] and GRNMF [14], because they are
latest methods with high-accuracy performances. PBMDA
constructed a heterogeneous network based on miRNA-
miRNA similarity, disease-disease similarity and known

Table 3 Performance of models based on different classifiers
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miRNA-disease associations, and then scored miRNA-dis-
ease associations by using the number of paths from miR-
NAs to diseases. NTSMDA considered topological
information of the miRNA-disease association network,
and used the network-based resource allocation algorithm.
GRNMF integrated disease semantic similarity and
miRNA functional similarity, and used a graph regularized
nonnegative matrix factorization framework to predict as-
sociations. Here, we implement these prediction methods
according to their publications, and evaluate all models by
using five-fold cross-validation under same conditions.

As shown in Table 4, NEMII produces the best perfor-
mances, achieving the AUPR score of 0.6104, and the
AUC score of 0.9293. PBMDA, NTSMDA and GRNMF
produce the AUPR score of 0.2095, 0.0916 and 0.2446,
and the AUC score of 0.9164, 0.8857 and 0.9128 respect-
ively. The AUPR score of NEMII is significantly higher
than the other three methods, and the AUC score is also
higher than the other three methods. Moreover, we
analyze the statistical differences between NEMII and
the other three methods in terms of AUC scores, and we
observe that there exists a very significant difference
between NEMII and other three methods: PBMDA (p-
value = 0.001 by one-way ANOVA followed by post hoc
Tukey test)) NTSMDA (p-value =0.001) and GRNMF
(p-value =0.001). Therefore, NEMII produces signifi-
cantly better results than PBMDA, NTSMDA and
GRNMEF in the cross-validation experiment.

Further, we compare the predictive performances of
four methods for specified diseases. We select three dis-
eases of wide interests: “breast neoplasms”, “lung neo-
plasms” and “prostatic neoplasms”, and then we explore
the results of different methods on these three diseases.
Breast neoplasm develops from breast tissues which are
highly prevalent in women. Lung neoplasm is a kind of
malignant lung neoplasm caused by uncontrolled growth
of lung tissue cells. Prostatic neoplasm is a kind of ma-
lignant neoplasm occurring in the prostate. We imple-
ment 10 runs of five-fold cross-validation and then
obtain the prediction results of all these methods for
each disease. As shown in Fig. 2 (left), NEMII produces
significantly higher AUPR scores than PBMDA,
NTSMDA and GRNMEF for all three diseases. For ex-
ample, the AUPR score for breast neoplasm produced by
NEMII is 0.8476, which is 37.78% higher than the AUPR

ACC

REC

SPEC

PRE

Classifiers AUPR AUC F1

RF 06104 £0.0012 09293 £0.0017 06147 £ 0.0025
NB 0.1846 + 0.0008 09103 £ 0.0089  0.2528 + 0.0028
LR 02129 +£ 00008  0.9023 £ 0.0008  0.2734 + 0.0017
SYM 0.0968 + 0.0034  0.9021 £ 00010  0.1718 £ 0.0036

weighted RF

0.5944 + 0.0014

0.9336 + 0.0014

0.5920 + 0.0025

0.9956 + 0.0001
0.9892 + 0.0004
0.9884 + 0.0004
0.9740 + 0.0012
0.9953 + 0.0001

04893 + 0.006

0.2572 + 00124
0.3078 + 0.0094
03761 £ 00144
04741 + 0.0085

0.9993 £ 0.0001
0.9944 + 0.0005
0.9933 + 0.0005
0.9783 £ 0.0013
0.9991 + 0.0001

0.8289 £ 0.0164
0.2532 + 0.0056
0.2480 + 0.0096
0.1121 £ 0.0037
0.7913 £ 0.0233
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Table 4 Performances of NEMII, PBMDA, NTSMDA and GRNMF

Methods AUPR AUC F1 ACC REC SPEC PRE

NEMII 0.6104 + 0.0012 0.9293 + 0.0017 0.6147 + 0.0025 0.9956 + 0.0001 04893 + 0.0060 0.9993 + 0.0001 0.8289 + 0.0164
PBMDA 0.2095 + 0.0015 0.9164 + 0.0005 0.2676 + 0.0021 0.9892 + 0.0005 02759 + 00139 0.9944 + 0.0006 02642 + 0.0103
NTSMDA 0.0916 + 0.0012 0.8857 + 0.0009 0.1410 £ 0.0013 0.9740 + 0.0015 0.2988 + 0.0171 0.9788 + 0.0017 0.0931 + 0.0020
GRNMF 0.2446 + 0.0024 0.9128 + 0.0008 03192 £ 00137 0.9945 + 0.0005 0.2989 + 0.0127 0.9897 + 0.0004 0.3066 + 0.0016

score of 0.5274 produced by PBMDA (the highest
among PBMDA, NTSMDA, and GRNMEF). And as
shown in Fig. 2 (right), NEMII also produces higher
AUC scores than PBMDA, NTSMDA and GRNMF for
all three diseases. For example, the AUC score of pros-
tatic neoplasm obtained by NEMII is 0.9296, which is
9.76% higher than 0.8389 obtained by GRNMEF (the
highest among PBMDA, NTSMDA, and GRNME).
Therefore, we can conclude that NEMII outperforms
PBMDA, NTSMDA and GRNMF in predicting miRNAs
for three specified diseases.

We further investigate what the percentage of re-
moved known miRNA-disease associations could be cov-
ered by NEMII and other approaches. We randomly
remove 10, 20 and 30% known miRNA-disease associa-
tions respectively, then train models based on the
remained known and unknown associations and test
what percentage of removed associations could be recov-
ered. We use REC values to represent the results. The
performances of NEMII and other approaches are shown
in Fig. 3. Clearly, NEMII leads to better REC values than
other approaches when removing 10, 20 and 30% known
associations. To further demonstrate the advantage of
NEMII, we conduct one-way ANOVA followed by post
hoc Tukey test to test the difference between NEMII
and other approaches in terms of REC values. The re-
sults show that NEMII produces significantly better

results than PBMDA (p-value = 0.001), NTSMDA (p-
value = 0.001) and GRNMF (p-value = 0.001). Therefore,
we can conclude that NEMII outperforms PBMDA,
NTSMDA and GRNMEF in recovering the removed
known miRNA-disease associations.

Case studies

Here, we use case studies to test the capability of our
method for predicting unknown miRNA-disease associa-
tions. We build the NEMII model by using all miRNA-
disease associations in our dataset, and make predictions
for non-association miRNA-disease pairs. Since all
known associations in HMDD database are used to build
models, the predicted associations have to be verified by
public literature and other available sources. We list top
10 miRNA-disease associations predicted by NEMII in
Table 5, and found evidence to confirm 5 out of them.
For example, hsa-let-7c expression was found to be re-
lated to non-atrophic gastritis and atrophic gastritis [26].
Hsa-mir-103a-2 expression was downregulated in pa-
tients with myelodysplastic syndromes [27]. The expres-
sion of hsa-let-7e has an influence of time-dependent
suppression on Biliary Atresia [28]. Increased expression
of hsa-mir-1179 can inhibit breast cancer cell metastasis
by modulating Notch signaling pathway [29]. The ex-
pression of hsa-mir-1179 was found to be associated
with Hepatocellular Carcinoma. Therefore, our method

i

PBMDA NTSMDA GRNMF

GEMII

[Mlbreast neoplasms[_Jlung neoplasms| _Jprostatic neoplasms

Fig. 2 Performances of different methods on predicting miRNAs associated with three diseases

0.8

AUC

0.4

0.2

GEMII PBMDA  NTSMDA  GRNMF
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Fig. 3 Performances of recovering associations of NEMII and other approaches
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ratio

can help to unknown miRNA-disease
associations.

Moreover, we predict miRNAs which are associated
with three diseases “breast neoplasms”, “lung neoplasms”
and “prostatic neoplasms” mentioned in Comparison
with existing state-of-the-art methods Section. Then we
select the top 10 miRNAs associated with each disease,
and try to obtain evidence to confirm our findings. As
shown in Table 6, we have evidence to support 5 miR-
NAs associated with breast neoplasms. For example,
miR-1179 expression was found to be frequently down-
regulated in breast cancer tissues and cell lines [29]. We
find evidences to confirm that 5 miRNAs are associated

with lung neoplasms. For example, hsa-mir-376c can

identify

suppress non-small-cell lung cancer cell growth and
invasion by targeting LRH-1-mediated Wnt signaling
pathway [35]. Moreover, 4 miRNAs are found to be
associated with prostatic neoplasms. For example, hsa-
mir-1179 was found to be one of the most highly upreg-
ulated miRNAs from the observation of micro dissected
prostate tumor cells [39], and hsa-mir-10a was found to
be one of the most highly expressed miRNAs in prostate
tumors [39]. These evidence shows that these disease-re-
lated miRNAs have close relationships with breast neo-
plasms, lung neoplasms and prostatic neoplasms and
may be of potential use in the diagnosis of these dis-
eases. Therefore, NEMII is useful for predicting miRNAs
associated with given diseases.

Table 5 The top 10 miRNA-disease associations predicted by our method

miRNA Disease Rank Evidence
hsa-let-7c Crohn Disease 1 N.A.
hsa-let-7¢ Gastritis, Atrophic 2 [26]
hsa-let-7e Lymphoproliferative Disorders 3 N.A.
hsa-let-7e Giant Cell Tumors 4 N.A.
hsa-mir-103a-2 Myelodysplastic Syndromes 5 [27]
hsa-let-7e Biliary Atresia 6 [28]
hsa-mir-10a Carotid Artery Diseases 7 N.A.
hsa-mir-10b Eczema 8 N.A.
hsa-mir-1179 Breast Neoplasms 9 [29]
hsa-mir-1179 Carcinoma, Hepatocellular 10 https://figshare.com/articles/Liver_hepatocellular_carcinoma/6804233
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Table 6 Predicted miRNAs associated with three diseases

Disease miRNA Rank Evidence
breast neoplasms hsa-mir-1179 1 [29]
hsa-mir-1180 2 [30]
hsa-mir-106a 3 [31]
hsa-mir-377 4 N.A.
hsa-mir-1909 5 N.A.
hsa-mir-181c 6 N.A.
hsa-mir-1202 7 N.A.
hsa-mir-1296 8 [32]
hsa-mir-2110 9 N.A.
hsa-mir-711 10 [33]
lung neoplasms hsa-mir-1180 1 N.A.
hsa-mir-1179 2 [34]
hsa-mir-376c 3 [35]
hsa-mir-500b 4 N.A.
hsa-mir-1293 5 [36]
hsa-mir-296 6 [37]
hsa-mir-1183 7 N.A.
hsa-mir-99b 8 [38]
hsa-mir-298 9 NA.
hsa-mir-2110 10 NA.
prostatic neoplasms hsa-mir-103a-2 1 N.A.
hsa-mir-1179 2 [39]
hsa-mir-10b 3 N.A.
hsa-mir-10a 4 [39]
hsa-mir-1180 5 [40]
hsa-mir-147a 6 N.A.
hsa-mir-217 7 N.A.
hsa-mir-125a 8 [41]
hsa-mir-624 9 N.A.
hsa-mir-630 10 N.A.

Conclusion

The identification of miRNA-disease associations plays
an important role in furthering understanding the mo-
lecular mechanism of many human diseases. In this
work, we propose a novel computational method, called
NEMII, to predict unknown miRNA-disease associa-
tions. Different from existing methods which mainly
make use of biological features of miRNAs and diseases,
NEMII extracts the embedding representations of miR-
NAs and diseases from the miRNA-disease bipartite net-
work, and further combines them with biological
features to build the prediction model. Experimental re-
sults reveal that NEMII performs better than the models
using biological features alone and models using embed-
ding representations alone, and SDNE produces better
results than using other network embedding methods.
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NEMII also produces better results when compared with
other state-of-the-art methods. Case studies show that
NEMII can predict novel miRNA-disease associations,
and can predict miRNAs associated with given diseases.
In conclusion, NEMII is a promising method for the
miRNA-disease association prediction.

Methods

Datasets

There are several databases about miRNA-disease associa-
tions, e.g. the human microRNA disease database
(HMDD) [42], the database of differentially expressed
miRNAs in human cancers (dbDEMC) [43] and the data-
base for microRNA deregulation in human disease (miR2-
Disease) [44]. The databases lay the basis for developing
computational methods to predict unobserved miRNA-
disease associations.

In this study, we compile our datasets from HMDD
database v2.0, miRBase and Medical Subject Heading
(MeSH). HMDD [45] is a database which contains hu-
man miRNA-disease associations and comprehensive
annotations. We downloaded experimentally confirmed
miRNA-disease associations from HMDD, including 578
miRNAs, 383 diseases and 6448 associations. The data-
base miRBase [46] is an online repository of miRNA
sequences and the experimental miRNA-family relation-
ships. We collected miRNA-family associations from
miRBase, including 17,613 miRNAs and 1983 families; a
miRNA belongs to a family and a family contains more
than one miRNA. MeSH is a comprehensive medical vo-
cabulary, which is useful for exploring the relationship
between different diseases. We downloaded disease de-
scriptors from MeSH. The relationships of diseases can
be transformed into a directed acyclic graph (DAG), and
the nodes of a DAG represent the diseases and the edges
represent the relationships of different diseases. DAGs
can be used to calculate disease semantic similarity [12].

We removed miRNAs without family information as
well as diseases without MeSH descriptors. Finally, we
obtained 4479 miRNA-disease associations between 412
miRNAs and 314 diseases, 278 miRNA-family associa-
tions between 412 miRNAs and 278 families, and MeSH
descriptors for 314 diseases.

Pipeline of network embedding-based multiple
information integration method

For the following study, we first introduce several math-
ematical notations. Given miRNAs M = {M;, M, ..., M,,,},
diseases D = {Dy, Ds, -+, D,} and miRNA-disease associa-
tions, our task is to predict unknown miRNA-disease
associations based on known associations and biological
features. The associations between m miRNAs and n
diseases can be represented by a binary matrix A, in
which each row represents a miRNA and each column
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represents a disease. If the ith miRNA is associated with
the jth disease, A;; = 1; otherwise, A;; = 0. Formally, 7z miR-
NAs, n diseases and their known associations can be for-
mulated as a network, in which miRNAs and diseases are
taken as nodes and their associations are taken as edges.
The network can be represented by a (m + n) x (m + n)
0 A

AT 0]‘

The studies [47-53] have revealed that combining
diverse information helps to improve the accuracy of
prediction models in bioinformatics. The network em-
bedding-based  multiple information integration
method (NEMII) is to combine biological features of
miRNAs and diseases with their embedding represen-
tations. As described in Fig. 4, NEMII takes several
steps to construct a prediction model. First, miRNA-
family associations are used to represent miRNAs;
MeSH information of diseases are used to calculate
disease-disease similarity and then represent diseases.
Second, the known miRNA-disease associations are
formulated as a bipartite network, and node embed-
dings in the bipartite network are learned by using
SDNE and then used to represent miRNAs and dis-
eases. Third, all representations of miRNAs and dis-
eases are combined to represent miRNA-disease pairs.

adjacency matrix G, defined as G = [
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Finally, a prediction model is constructed based on
the miRNA-disease pairs by using random forest.

Constructing feature vectors to represent miRNA-disease
pairs

In order to predict miRNA-disease associations, we
should use a reasonable way to represent features of
miRNA-disease pairs. To our best knowledge, most
existing methods heavily rely on biological features of
miRNAs and diseases, such as miRNA-family associ-
ation, miRNA-functional similarity and disease semantic
similarity. Besides, the features learned from the
miRNA-disease association network can be taken into
account. Features from known miRNA-disease bipartite
network are seldom considered, but they are effective for
preserving the property of the network. Therefore, there
are three types of feature vectors for describing miRNA-
disease pairs, i.e. vectors based on miRNA-family associ-
ations, vectors based on disease semantic similarity and
vectors based on Structural Deep Network Embedding.

Representing miRNAs with miRNA-family associations

There is an assumption that miRNAs in the same family
may perform similar biological functions. Here, we
utilize miRNA-family associations to represent miRNA

© miRNA O family () disease

miRNA-family Zn | O L || O
association network

MeSH
disease descriptors

ss, -] |
ﬂ calculate DSS SS—’ﬂ[:- D i >

miRNA-disease
association network

K -1
DAG disease similarity feature:
e e 3
NE; l
...... J NE 1,

Fig. 4 Pipeline of NEMII (DSS: Disease Semantic Similarity, SDNE: Structural Deep Network Embedding, DAG: Directed Acyclic Graph)
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biological feature. For miRNAs M = {M;, My, ..., M,,.},
families F = {F,, F,, --, F;}, and their associations, we can
formulate them as a bipartite network, which uses miR-
NAs and families as nodes and uses their associations as
edges. The bipartite network can be represented by a
m x t adjacency matrix Z. This is, Z;=1 if miRNA M;
belongs to family F; otherwise, Z;=0. Then, for a
specific miRNA M;, we use the ith row vector of Z,
namely Z; . to denote its biological feature.

Representing diseases with disease semantic similarity
Inspired by previous works [12], diseases and their rela-
tionships can be transformed into a directed acyclic
graph (DAG), and DAGs can be used to calculate disease
semantic similarity.

For a given disease D, the directed acyclic graph
DAGp= (Vp, Ep). Vp denotes the node set including D
and other diseases which have relationships with D, and
Ep denotes the edge set which contains the links from
parent disease to child disease. According to DAG, the
semantic contribution of disease d in DAGp to disease D
can be denoted as:

lifd=D
So(d) = max{A**SD (d’) \d echildren of d} if d=D

Here, we set A, =0.5. The semantic value of disease D
can be calculated as:

SVD = ZdeVDSD(d)

The semantic similarity between disease D; and disease
D; is calculated by:

ZdEVDiﬂVD/. (SDi (d) + SD/ (d))

SS(DiaD/) = SVD,» +SVD/.

where Sp,(d) is the semantic contribution of d to disease
D;, and SVp, is the semantic value of D; for D, the
meanings of Sp (d) and SVp, are similar to D;. Then,
the semantic similarity between all the diseases can be
represented as a n x n matrix SS, and the value in row i
and column j of SS represents the disease semantic simi-
larity between D; and D;. For a specific disease D;, we
use the ith row vector of SS, namely SS; . to denote its
biological feature.

Representing miRNA-disease pairs with structural deep
network embedding

Recently, the network embedding methods show the
great potentials of analyzing networks, especially extract-
ing node features. Compared with traditional network
analysis methods, which calculate network density, de-
gree statistics and clustering coefficient, the network
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embedding methods generate low-dimensional vectors
that reflect the comprehensive characteristic of
networks. Since known miRNA-disease associations
could be formulated as a miRNA-disease association
network, we naturally use the network embedding
methods to extract the features from it. We consider
several popular network embedding methods in this
work, and compare them in the Comparison with
other network Embeddings and other classifiers
Section. Because the Structural Deep Network Embedding
method performs best among all embedding methods,
it is finally adopted for the miRNA-disease association
prediction.

Structural Deep Network Embedding method,
namely SDNE, is semi-supervised deep model, which
has multiple layers of non-linear functions to capture
the highly non-linear network structure through first-
order and second-order proximity. Since SDNE jointly
optimizes first-order and second-order proximity,
SDNE is robust to sparse networks [54], and outper-
forms popular network embedding methods in many
applications, i.e. graph reconstruction, link prediction
and visualization [55].

Given a network with N nodes and the adjacency
matrix G =(G;), we introduce how to learn the node
embedding representations. SDNE utilizes the traditional
deep autoencoder [56], which has two components: en-
coder and decoder. The encoder consists of multiple
non-linear functions that maps initial representation of
each node x; to a low-rank space through K hidden
layers, and the low-rank vector is denoted as y;. x;=G;
.where G; . is the i th row of the adjacency matrix G
mentioned in Pipeline of network embedding-based
multiple information integration method Section. The
decoder attempts to reconstruct the representation of
the node, and the reconstructed vector is denoted by ;.

The first-order proximity is used as the supervised in-
formation to preserve the local network structure, and
its objective function is as follows:

Ly = ZiljzlGii (yi_yj) Hz (1)

where y; is the low-rank representation of node i, and y;
is the low-rank representation of node ;.

The second-order proximity is used as the unsuper-
vised information to capture the global network struc-
ture, and its objective function is as follows:

Lo = || ()8} @

where ©® means the Hadamard product. B is a NxN
matrix. B;; = 1, if G;;=0, else b;; = B, where f is free param-
eterand 8> 1. X = [x1, %, -, 0], X = [%1, %2, -~-,5cN]T.
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Moreover, a L2-norm regularization term is used to
prevent overfitting and defined as follows:

1K 2 o (k) ]|?
s =3 s (199 [ )

where K is the number of hidden layers, W* and w
are the kth-layer weight matrices.

SDNE combines Egs. 1, 2 and 3, and minimizes the
following objective function:

Linix = Lopa + L1y + VLyeq
2
(),

W(k))r)
F

N N
= H (X_X)GBHZF + “Zi,;zlG’f

1 K 2
> (L

(4)

More details about SDNE are available in [54].

We can apply SDNE to the miRNA-disease bipartite
network with the adjacency matrix G, and obtain a
(m+n) xd embedding matrix NE, where d is a free
parameter that denotes the dimension of node
embeddings. m and # are mentioned in Pipeline of
network embedding-based multiple information inte-
gration method Section. The rows of NE, namely NE;
. correspond to the embeddings of m miRNA node
and n disease nodes.

We also consider other popular network embedding
methods Laplacian Eigenmaps (LE) [23], High-Order
Proximity preserved Embedding (HOPE) [24] and
DeepWalk [18], and compare SDNE with them in
Comparison with other network Embeddings and other
classifiers Section.

Model construction

We combine three types of features to describe
miRNA-disease pairs, and then use them to build
classification-based models. Specifically, four feature
vectors: miRNA-family feature vectors, disease seman-
tic similarity feature vectors, miRNA embedding fea-
ture vectors and disease embedding feature vectors
are merged. We adopt random forest as the classifica-
tion engine to classify miRNA-disease pairs. Random
forest is an ensemble learning method containing
multiple classification trees [57]. Each tree is con-
structed by using a bootstrap sample of the training
dataset. For each node within each tree, a randomly
selected subset of the input features is used. Then the
classification output of random forest is determined
by the majority classification of all the trees. Random
forest is well-known for its ability to deal with unbal-
anced datasets [58], and studies also demonstrated
that random forest has good performances for bio-
informatics problems [22, 59].
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To the best of our knowledge, there are a great num-
ber of popular classifiers in bioinformatics, such as logis-
tic regression, naive Bayes and support vector machine.
We also compare random forest with these classifiers in
Comparison with other network Embeddings and other
classifiers Section.

Additional file

Additional file 1: Figure S1. Five-fold cross-validation (CV) for Network
Embedding-based Multiple Information Integration Method. (PDF 312 kb)
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