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Abstract

Background: A massive amount of proteomic data is generated on a daily basis, nonetheless annotating all
sequences is costly and often unfeasible. As a countermeasure, machine learning methods have been used to
automatically annotate new protein functions. More specifically, many studies have investigated hierarchical
multi-label classification (HMC) methods to predict annotations, using the Functional Catalogue (FunCat) or Gene
Ontology (GO) label hierarchies. Most of these studies employed benchmark datasets created more than a decade
ago, and thus train their models on outdated information. In this work, we provide an updated version of these
datasets. By querying recent versions of FunCat and GO yeast annotations, we provide 24 new datasets in total. We
compare four HMC methods, providing baseline results for the new datasets. Furthermore, we also evaluate whether
the predictive models are able to discover new or wrong annotations, by training them on the old data and
evaluating their results against the most recent information.

Results: The results demonstrated that the method based on predictive clustering trees, Clus-Ensemble, proposed in
2008, achieved superior results compared to more recent methods on the standard evaluation task. For the discovery
of new knowledge, Clus-Ensemble performed better when discovering new annotations in the FunCat taxonomy,
whereas hierarchical multi-label classification with genetic algorithm (HMC-GA), a method based on genetic
algorithms, was overall superior when detecting annotations that were removed. In the GO datasets, Clus-Ensemble
once again had the upper hand when discovering new annotations, HMC-GA performed better for detecting
removed annotations. However, in this evaluation, there were less significant differences among the methods.

Conclusions: The experiments have showed that protein function prediction is a very challenging task which should
be further investigated. We believe that the baseline results associated with the updated datasets provided in this
work should be considered as guidelines for future studies, nonetheless the old versions of the datasets should not be
disregarded since other tasks in machine learning could benefit from them.
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Background
Due to technological advancements, the generation of
proteomic data has increased substantially. However,
annotating all sequences is costly and time-consuming,
making it often unfeasible [1]. As a countermeasure,
recent studies have employed machine learning methods
due to their capacities of automatically predicting protein
functions.
More specifically, protein function prediction is gen-

erally modeled as a hierarchical multi-label classification
(HMC) task. HMC is a classification task whose objec-
tive is to fit a predictive model f which maps a set of
instances X to a set of hierarchically organized labels Y,
while respecting hierarchy constraints among Y [2, 3].
The hierarchy constraint states that whenever a particular
label yi is predicted, all ancestors labels of yi up to the root
node of the hierarchy must be predicted as well.
In the machine learning literature when proposing a

new method, this method is typically compared to a set of
competitor methods on benchmark datasets. For HMC,
many studies [2–22] utilized the benchmark datasets
proposed in [2]. These datasets are available at https://
dtai.cs.kuleuven.be/clus/hmcdatasets/ and contain pro-
tein sequences from the species Saccharomyces cerevisiae
(yeast) whose functions are mapped to either the Func-
tional Catalogue (FunCat) [24] or Gene Ontology (GO)
[23]. The task associated with these datasets is to predict
the functions of a protein, given a a set of descriptive fea-
tures (e.g., sequence, homology or structural information).
FunCat and GO are different types of hierarchies. In

FunCat (Fig. 1), labels are structured as a tree, meaning
that they can have only a single parent label [24]. The
GO (Fig. 2), however, allows labels to have multiple parent
labels, forming a directed acyclic graph [23]. This com-
plicates the fulfillment of the hierarchy constraint, since
multiple classification paths are allowed throughout the
graph.
These benchmark datasets were introduced to the HMC

community in 2007, and, thus, the functional labels asso-
ciated with each protein can be considered outdated.
There are two reasons for this. First, functional annota-
tions are updated on a regular basis. Second, as can be
seen in Fig. 3a, there was a drastic increase in the number
of terms throughout the Gene Ontology since the creation
of these datasets (January 2007). A similar observation can
be made for the number of obsolete terms as shown in
Fig. 3b. Accordingly, one of the main goals of this article
is to provide updated versions of these widely used HMC
benchmark datasets to the research community.
Using these new datasets, we present a comparison

among four recent and open-source HMC methods that
can be considered state-of-the-art,thus providing base-
line performances as guidelines for future research on this
topic. Finally, having two different versions of the same

datasets provides us with the unique opportunity to be
able to evaluate whether these HMC methods are able
to generalize when learning from data with mislabeled
instances. In particular, we evaluate whether they were
able to predict the correct label in cases where the label
has been altered since 2007. In order to do so, we pro-
pose an evaluation procedure where a predictive model
is trained using the data from 2007, but tested with data
from 2018.
The major contributions of this work are the follow-

ing: i) We provide new benchmark datasets for HMC1; ii)
We provide baseline results for the new datasets; iii) We
provide an evaluation procedure and results that evaluate
whether HMCmethods are able to discover new or wrong
annotations.
The remainder of this article is organized as follows.

“Related work” section presents an overview of stud-
ies on HMC which have used the functional annotation
benchmark datasets proposed in 2007. “Updated datasets”
section provides a description on how the datasets were
updated, together with a quantification of new labels and
annotations. In “Results” section, we present the results
of our experiments. In “Discussion” section, we discuss
our results. In “Conclusion” section we present our con-
clusion. Finally, “Methods” section contains the HMC
methods employed and the evaluation strategies;

Related work
In this section, we provide a literature overview of stud-
ies that have used the datasets addressed in this work,
and a brief review on hierarchical multi-label classification
applications. In Table 1, we present studies which have
used the FunCat and GO datasets.
In the HMC literature, methods are separated into

two approaches: local and global. The difference between
these approaches relies on how their predictive models
are designed. The local approach employs machine learn-
ing decompositions where the task is divided into smaller
classification problems, then the solutions of the sub-
problems are combined to solve the main task. As an
advantage, any predictive model, or even an ensemble of
models, can be incorporated into the solution.
According to Silla and Freitas [33], the local approach is

further divided into three strategies: Local Classifier per
Level [3, 5, 14, 25, 30], Local Classifier per Node [7, 9] and
Local Classifier per Parent Node [11, 16]. As their name
suggest, these strategies train a predictive model for each
level, node or parent node of the hierarchy, respectively.
Allowing many types of decomposition is particularly
interesting, since different problems may require different
solutions. For instance, when handling large hierarchies,

1Available in: https://www.kuleuven-
kulak.be/nl/onderzoek/itec/projects/researchfocus/software

https://dtai.cs.kuleuven.be/clus/hmcdatasets/
https://dtai.cs.kuleuven.be/clus/hmcdatasets/
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Fig. 1 Partial representation of the FunCat. Each node represents a protein function, and each node can only have a single parent node

Fig. 2 Partial representation of the Gene Ontology. Each node represents a term, and terms can have multiple parent terms
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Fig. 3 Quantification of terms in the Gene Ontology since 2007. a Number of terms in the Gene Ontology. b Number of obsolete terms in the Gene
Ontology

the usage of the Local Classifier per Parent Node and
Local Classifier per Node result in a large number of clas-
sifiers being trained, making the Local Classifier per Level
strategy more computationally efficient as it requires only
one predictive model per level. However, the hierarchy
may contain many labels per level, forcing the models to
distinguish among them, and possibly making the task
more difficult.
Using several strategies, Cerri and De Carvalho [32]

investigated how problem transformation methods from
the non-hierarchical multi-label literature, which decom-
pose the task into smaller problems similarly to the local
approach, behave on the HMC context using Support
Vector Machines. Cerri et al. [3, 14, 30] use the Local
Classifier per Level by training one neural network for
each level of the hierarchy where prediction probabilities
of the previous level are used as extra attributes for the
neural network associated to the next level. Wehrmann

et al. [5] extended this idea with an extra global loss
function, allowing gradients to flow across all neural net-
works. Li [34] proposed to use this strategy with deep
neural networks to predict the commission number of
enzymes. In a follow up work, Zou et al. [35] extended
thismethod by enabling the prediction ofmulti-functional
enzymes.
The work of Feng et al. [9] proposed to use the Local

Classifier per Node strategy by training one Support Vec-
tor Machine for each node of the hierarchy combined
with the SMOTE oversampling technique. This work was
slightly improved in Feng et al. [7] where the Support Vec-
tor Machines were replaced by Multi-Layer Perceptron
and a post-prediction method based on Bayesian net-
works was used. Also using Support Vector Machines, the
studies of Bi and Kwok [12, 20] proposed new loss func-
tions specific for HMC which were optimized using Bayes
optimization techniques. On a similar manner, Vens et al.
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Table 1 Review on HMC studies which used FunCat and GO datasets

#Year #Method #Approach #Hierarchy

2019 Genetic algorithms [4] Global FunCat

2018 Neural networks [5] Local FunCat and GO

2018 Neural networks [6] Global FunCat and GO

2018 Neural networks [7] Local GO

2018 Neural networks and genetic Algorithms [25] Global FunCat and GO

2017 Partial least squares [8] Global FunCat and GO

2017 Support vector machines [9] Local GO

2017 Ant colony optimization [10] Global FunCat and GO

2017 K-Nearest Neighbours [26] Global GO

2016 Various [11] Local FunCat and GO

2016 Neural networks [3] Local FunCat

2016 Predictive clustering trees [27] Global FunCat and GO

2015 Bayesian optimization [12] Local FunCat and GO

2015 Decision trees [13] Global FunCat and GO

2015 Neural networks [14] Local GO

2014 Genetic algorithm [15] Global GO

2014 Naive Bayes [16] Local FunCat and GO

2012 Various [28] Local FunCat and GO

2013 Centroid based classification [17] Global FunCat and GO

2013 Predictive clustering trees [18] Global FunCat and GO

2013 Grammatical evolution [29] Global FunCat and GO

2012 Genetic algorithms [19] Global FunCat

2011 Various [30] Local FunCat

2012 Neural network [31] Global GO

2011 Bayesian optimization [20] Local FunCat and GO

2011 Neural network [30] Local FunCat

2011 Predictive clustering trees [21] Global FunCat and GO

2010 Artificial ant colony [22] Global FunCat and GO

2010 Support vector machines [32] Local FunCat

2008 Predictive clustering trees [2] Global and local FunCat and GO

[2] proposed to train Predictive Clustering Trees, a vari-
ant of decision trees which create splits by minimizing the
intra-cluster variance, for each node, and also an alter-
native version where one predictive model is trained per
edge.
Ramirez et al. [11, 16] employed the Local Classifier per

Parent Node by training one predictive model per parent
node of the hierarchy and augmenting the feature vectors
with predictions from ancestors classifiers. On a similar
note, Kulmanov et al. [36] proposed to train a predictive
model for each sub-ontology of the Gene Ontology, com-
bining features automatically learned from the sequences
and features based on protein interactions.
Differently from the local approach, the global one

employs a single predictive model which is adapted to

handle the hierarchy constraint and relationships among
classes. When compared to the local approach, the global
one tends to present lower computational complexity, due
to the number of models trained. However, its implemen-
tation ismore complex, since traditional classifiers can not
be used straightforwardly. The global approach is further
divided into two strategies: algorithm adaptation and rule
induction.
As its name suggests, the algorithm adaptation strat-

egy consists of adapting a traditional algorithm to handle
hierarchical constraints. Masera and Blanzieri [6] cre-
ated a neural network whose architecture incorporates the
underlying hierarchy, making gradient updates flow from
the neurons associated to the leaves up neurons asso-
ciated to their parent nodes; Sun et al. [8] proposed to
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use Partial Least Squares to reduce both label and feature
dimension, followed by an optimal path selection algo-
rithm; Barros et al. [17] proposed a centroid basedmethod
where the training data is initially clustered, then predic-
tions are performed by measuring the distance between
the new instance and all clusters, the label set associated
to the closest cluster is given as the prediction; Borges
and Nievola [31] developed a competitive neural network
whose architecture replicates the hierarchy; Vens et al. [2]
also proposed to train a single Predictive Clustering Tree
for the entire hierarchy; as an extension of [2], Schietgat et
al. [21] proposed to use ensemble of Predictive Clustering
Trees; Stojanova et al. [18] proposed a slight modification
for Predictive Clustering Trees in which the correlation
between the proteins is also used to build the tree.
In the rule induction strategy, optimization algorithms

are designed to generate classification rules which consist
of conjunctions of attribute-value tests, i.e. many if →
then tests connected by the boolean operator ∧. In this
regard, several studies from Cerri et al. [4, 15, 19] pro-
posed to use Genetic Algorithms with many different
fitness functions. Similarly, other optimization algorithms
such as Ant Colony Optimization [10, 22] and Grammar
Evolution [29] were also investigated in this context.
Additionally, some studies have also addressed similar

topics to HMC. For instance, Cerri et al. [25] exam-
ined how Predictive Clustering Trees can be used to
perform feature selection using Neural Networks and
Genetic Algorithms as base classifiers. Almeida and
Borges [26] proposed an adaptation of K-Nearest Neigh-
bours to address quantification learning in HMC. Simi-
larly, Triguero and Vens [27] investigated how different
thresholds can increase the performance of Predictive
Clustering Trees in this context.
Other application domains have also explored HMC,

such as managing IT services [37, 38], text classification
on social media [39], large scale document classification
[40] and annotation of non-coding RNA [41]. It can even
be applied to non-hierarchical multi-label problems where
artificial hierarchies are created [42].

Updated datasets
In this section, we present an overall description of the
datasets and their taxonomies, followed by details on how
we updated both FunCat and Gene Ontology versions.
The resulting updated versions are available at https://
www.kuleuven-kulak.be/nl/onderzoek/itec/projects/
research-focus/software.

Overall description
Clare [43] originally proposed 12 datasets containing fea-
tures extracted from protein sequences of the organism
Saccharomyces cerevisiae (yeast) whose targets are their
protein functions. These 12 datasets contain largely the

same proteins, nonetheless differ in their descriptive fea-
tures. Furthermore, these datasets are divided into train,
test and validation sets.
It is known that the yeast and human genomes have

many similar genes, furthermore yeast is considerably
cheaper and experiment-wise efficient when compared to
other species, making it a widely addressed subject in
bioinformatics applications [44]. In Table 2, we provide
more information about these datasets.
The Hom dataset presents information between anal-

ogous (similar) yeast genes. Using an homology engine,
such as BLASTn 2, other similar yeast genes are dis-
covered. Then, properties between the sequences from
the dataset and their analogous ones are measured. The
Pheno dataset contains phenotype data based on knock-
out mutants. Each gene is removed to form a mutant
strain, and the corresponding change in phenotype as
compared to the wild type (no mutation) is observed
after growing both strains on different growth media.
The Seq dataset stores features extracted from the amino
acid sequences of the proteins, such as molecular weight,
length and amino acid ratios. As its name suggests, the
Struc dataset contains features based on the second struc-
ture of the proteins annotated in a binary format. In the
case of an unknown structure, the software PROF [45] was
used to predict it. Known structures were promptly anno-
tated. All the other datasets were constructed based on
the expression of genes recorded across an entire genome
using microchips [43].
As an extension to these datasets, Vens [2] mapped

the targets to the Gene Ontology taxonomy. Addition-
ally, the FunCat annotations used by Clare [43] were
updated.
FunCat is an organism independent functional tax-

onomy of proteins functions which is widely adopted
throughout bioinformatics. As shown in Fig. 1, FunCat
places generic functions in high levels of the taxonomy,
then it sequentially divides such functions into specific
ones, forming a tree-shaped hierarchy where each func-
tion has one ancestor function. From the machine learn-
ing perspective, FunCat is used as an underlying hierarchy
of labels. Thus, each protein function is addressed as
a label in a classification task where the relationships
established by FunCat are taken in account.
Similarly, the Gene Ontology (GO) is a taxonomy whose

main goal consists of defining features of genes in an
accurate and species independent fashion [23]. More
specifically, the GO is composed of three sub-ontologies:
molecular function, cellular component and biologi-
cal process. The molecular function sub-ontology con-
tains information about activities performed by gene
products in the molecular-level. The cellular component

2https://blast.ncbi.nlm.nih.gov/Blast.cgi

https://www.kuleuven-kulak.be/nl/onderzoek/itec/projects/research-focus/software
https://www.kuleuven-kulak.be/nl/onderzoek/itec/projects/research-focus/software
https://www.kuleuven-kulak.be/nl/onderzoek/itec/projects/research-focus/software
https://blast.ncbi.nlm.nih.gov/Blast.cgi
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Table 2 Statistical information on the 2007 datasets

Dataset #Features #Train #Valid #Test #FunCat 2007 #GO 2007

Cellcycle 77 1628 848 1281 499 4122

Church 27 1630 844 1281 499 4122

Derisi 63 1608 842 1275 499 4116

Eisen 79 1058 529 837 461 3570

Expr 551 1639 849 1291 499 4128

Gasch1 173 1634 846 1284 499 4122

Gasch2 52 1639 849 1291 499 4128

Hom 47034 1669 870 1315 499 5828

Pheno 69 656 353 582 455 3124

Seq 478 1701 879 1339 499 4130

Spo 80 1600 837 1266 499 4116

Struc 19628 1665 860 1313 499 5838

sub-ontology, as its name suggests, describes the loca-
tions where gene products perform functions. Finally,
the biological process sub-ontology annotates processes
performed by multiple molecular activities.
All information in the GO is described using terms

which are nodes with an unique ID, a description and
their relationship with other terms. Due to these relation-
ships, the GO is defined as a directed acyclic graph in the
machine learning literature, making it a challenging task
due to the substantial high number of terms, and many
intrinsic relationships among them. Figure 2 presents a
small part of the GO.

FunCat update
In order to update these datasets, we have performed
the procedure described in Fig. 4. Using the IDs from
the sequences, we have queried UniProt, obtaining new
annotated functions for the sequences. Next, we built the
hierarchy of each dataset, and replaced the old annota-
tions by the new ones, i.e. we have removed entirely the
annotations from 2007, and concatenated the new anno-
tations with the original features. Mind that each dataset
described in Table 2 uses a slightly different FunCat sub-
set. The hierarchies differ between the datasets, because
the protein subset differs as seen in Table 2, since not
every protein can be found in every original dataset by
Clare.
In Table 3, we compared the 2007 datasets with the

2018 versions w.r.t. their label set. There was a signifi-
cant increase in the number of labels across the hierarchy.
More specifically, in the third and fourth level where the
mean number of labels has increased from 175 to 208
and 140 to 168 respectively. A smaller increase is also
noticeable in the first, second and last level.

In Table 4, we presented for each dataset the number
of instances with annotations per level. In this case, there
was a slight increase in deeper levels, whereas the mean
number of annotated instances on the second and third
level has decreased in all datasets.
Further, we compared the number of annotations per

level between the versions from 2007 and 2018 in Table 5.
There was a considerable increase in the number of anno-
tations across all levels of the hierarchy. The last level
seemed remarkable, as its number of annotations is signif-
icantly low in both versions.
When analyzing the number of annotations that were

added and removed in Table 6, the second level pre-
sented a higher average number of new annotations
despite having fewer annotated instances now. Notice-
able increases were also noticed in the third and fourth
level.

Gene ontology update
In order to update these datasets, we have performed the
procedure shown in Fig. 5.
Initially, we queried Universal Protein (UniProt) using

the IDs from the protein sequences using their web
service3, obtaining the GO terms associated to each
sequence. Next, we preprocessed the queried terms. The
GO keeps track of alternate (secondary) IDs which are
different labels with identical meaning, hence we have
merged them into a single label. Similarly, we have also
removed obsolete annotations since they are deprecated
and should not be used anymore. Finally, the old anno-
tations were entirely removed, and the new ones were
concatenated to the feature vector. Recall that we are not

3https://www.uniprot.org/uniprot/

https://www.uniprot.org/uniprot/
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Fig. 4 Procedure used to update each FunCat dataset. The sequence IDs are extracted from the 2007 dataset, and used to query new annotations
using UniProt. A hierarchy (subset of FunCat) is built using the new annotations. Finally, the old annotations are removed, and the new dataset is
created by concatenating the new annotations with the feature vector and IDs

considering the first level of the Gene Ontology, since it
contains 3 root terms which are present in all instances.
Further, as for FunCat, each dataset contains only a subset
of the entire Gene Ontology.
Mind that since the GO is a directed acyclic graph,

annotations can belong to multiple levels. In order to

Table 3 Comparison between the number of labels per level in
FunCat 2007 and FunCat 2018

FunCat 2007 FunCat 2018

Cellcycle 18/80/178/142/77/4 20/86/210/171/92/6

Church 18/80/178/142/77/4 20/86/210/171/92/6

Derisi 18/80/178/142/77/4 20/86/210/171/92/6

Expr 18/80/178/142/77/4 20/86/210/171/92/6

Eisen 18/76/165/131/67/4 19/84/201/159/83/6

Gasch1 18/80/178/142/77/4 20/86/210/171/92/6

Gasch2 18/80/178/142/77/4 20/86/210/171/92/6

Hom 18/80/178/142/77/4 21/86/210/171/92/6

Pheno 18/74/165/129/65/4 20/86/198/156/83/5

Spo 18/80/178/142/77/4 20/86/210/171/92/6

Seq 18/80/178/142/77/4 20/86/210/171/93/6

Struc 18/80/178/142/77/4 20/86/210/171/93/6

Mean 18/79/175/140/75/4 20/85/208/168/90/5

present statistics about these datasets, we are considering
the deepest path to determine the level for all labels in
Tables 7, 8, 9 10.
As shown in Table 7, there was a similar behaviour as

in the FunCat update. There was a substantial increase in
the number of labels throughout all levels, specially in the
levels between the third and the twelfth. Two extra levels
were added, making a total of 15, nonetheless there are
only few classes in these levels.
We observed an overall increase in the number of

instances per level throughout the hierarchies (Table 8).
There were no remarkable decreases. We have noticed
that only the validation and test datasets contain instances
on the last level of the hierarchy. From the machine
learning perspective, such condition might hinder pre-
dictive models, as most of them are not capable of
predicting a class which is not present in the training
dataset. Possibly, future studies might consider remov-
ing the last level. Difficulties might also emerge on the
fourteenth level, as the datasets have very few instances
on it.
As seen in Table 9, once again there was an increment

in the number of annotations per level. The number of
annotations gradually increases up to a certain level, until
it decreases to almost none when it reaches the deepest
levels.
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Table 4 Comparison between the number of annotated instances per level for FunCat 2007 and FunCat 2018

Dataset Number of instances per level - FunCat 2007 Number of instances per level - FunCat 2018

Cellcycle Train 1628/1610/1472/975/303/11 1628/1552/1474/1057/370/16

Test 1281/1272/1163/766/245/8 1281/1222/1159/815/274/15

Valid 848/836/756/492/164/10 848/804/755/532/192/13

Church Train 1630/1612/1474/976/302/11 1630/1554/1476/1059/372/16

Test 1281/1272/1164/764/243/8 1281/1222/1160/813/272/16

Valid 844/832/752/490/164/10 844/801/752/529/192/13

Derisi Train 1608/1590/1456/969/300/11 1608/1535/1459/1052/366/16

Test 1275/1266/1153/761/243/8 1275/1216/1151/812/274/15

Valid 842/831/751/489/164/10 842/800/752/531/193/13

Expr Train 1639/1621/1481/979/303/11 1639/1563/1483/1062/372/16

Test 1291/1282/1173/767/245/8 1291/1231/1168/817/275/16

Valid 849/837/757/493/164/10 849/805/756/533/192/13

Eisen Train 1058/1054/997/667/210/8 1058/1019/987/714/251/11

Test 837/834/784/517/161/4 837/803/774/543/173/9

Valid 529/525/493/323/104/7 529/510/489/340/117/7

Gasch1 Train 1634/1616/1477/977/303/11 1634/1558/1479/1060/372/16

Test 1284/1275/1167/764/243/8 1284/1226/1163/814/273/16

Valid 846/834/754/491/164/10 846/803/754/531/192/13

Gasch2 Train 1639/1621/1481/979/303/11 1639/1563/1483/1062/372/16

Test 1291/1282/1173/767/245/8 1291/1231/1168/817/275/16

Valid 849/837/757/493/164/10 849/805/756/533/192/13

Hom Train 1669/1607/1470/979/302/11 1669/1548/1470/1059/372/16

Test 1315/1275/1167/766/245/8 1315/1226/1163/817/275/16

Valid 870/833/753/492/164/10 870/802/753/532/193/13

Pheno Train 656/649/593/403/133/6 656/625/590/438/158/8

Test 582/578/524/348/108/3 582/556/525/372/121/8

Valid 353/349/316/204/69/6 353/338/311/223/84/5

Spo Train 1600/1582/1448/963/299/11 1600/1527/1451/1043/365/16

Test 1266/1257/1146/758/243/8 1266/1208/1144/808/272/15

Valid 837/826/747/486/163/10 837/795/747/526/191/13

Seq Train 1701/1639/1499/990/305/11 1701/1578/1497/1072/376/16

Test 1339/1298/1188/774/248/8 1339/1246/1182/825/278/16

Valid 879/842/762/497/164/10 879/810/761/538/194/13

Struc Train 1665/1634/1495/988/304/11 1665/1575/1494/1071/375/16

Test 1313/1292/1182/770/245/8 1313/1241/1177/821/275/16

Valid 860/840/760/495/162/10 860/808/759/536/192/13

Mean Train 1510/1486/1361/903/280/10 1510/1433/1361/979/343/14

Test 1196/1181/1082/710/226/7 1196/1135/1077/756/253/14

Valid 783/768/696/453/150/9 783/740/695/490/177/11

When examining the number of annotations that are
added or removed per level (Table 10), we can perceive
once again an overall increment in all datasets. Naturally,
no labels were removed on the fourteenth and fifteenth
level as they were not present in the 2007 versions.

Results
Initially, we present a standard evaluation among the
HMC methods. Next, we also present an alternative eval-
uation where the HMC methods are compared w.r.t. their
ability to discover new or wrong annotations.
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Table 5 Comparison between the number of annotations per level in FunCat 2007 and FunCat 2018

Dataset Annotations per Level - 2007 Annotations per Level - 2018

Cellcycle Train 3915/4629/3553/1727/363/11 4720/6219/4917/2266/536/16

Test 3162/3744/2865/1351/291/8 3756/4949/3936/1734/399/15

Valid 2029/2373/1813/865/194/10 2497/3286/2585/1169/283/13

Church Train 3913/4628/3554/1726/362/11 4723/6225/4923/2269/538/16

Test 3156/3735/2858/1347/289/8 3754/4948/3928/1729/397/16

Valid 2021/2362/1805/862/194/10 2486/3267/2572/1164/283/13

Derisi Train 3883/4586/3537/1716/361/11 4677/6159/4876/2248/529/16

Test 3157/3741/2849/1343/289/8 3755/4963/3934/1728/399/15

Valid 2021/2364/1805/858/194/10 2486/3271/2579/1162/283/13

Expr Train 3931/4646/3568/1732/363/11 4741/6246/4937/2274/538/16

Test 3179/3762/2879/1354/291/8 3779/4980/3953/1739/400/16

Valid 2030/2375/1815/866/194/10 2501/3291/2588/1170/283/13

Eisen Train 2627/3157/2489/1199/259/8 3216/4345/3457/1578/386/11

Test 2130/2537/1977/929/195/4 2561/3428/2721/1179/269/9

Valid 1311/1554/1209/584/126/7 1593/2107/1645/732/161/7

Gasch1 Train 3921/4636/3560/1728/363/11 4730/6232/4928/2270/538/16

Test 3164/3745/2863/1347/289/8 3764/4965/3938/1732/398/16

Valid 2025/2367/1807/863/194/10 2491/3273/2576/1166/283/13

Gasch2 Train 3931/4646/3568/1732/363/11 4741/6246/4937/2274/538/16

Test 3179/3762/2879/1354/291/8 3779/4980/3953/1739/400/16

Valid 2030/2375/1815/866/194/10 2501/3291/2588/1170/283/13

Hom Train 3971/4649/3566/1733/362/11 4772/6238/4936/2272/538/16

Test 3196/3742/2866/1355/291/8 3808/4981/3957/1742/400/16

Valid 2051/2366/1810/864/194/10 2516/3271/2577/1168/284/13

Pheno Train 1668/1977/1508/709/154/6 2008/2644/2095/939/234/8

Test 1506/1764/1308/618/129/3 1750/2308/1814/803/177/8

Valid 881/1014/753/362/81/6 1087/1423/1131/511/133/5

Spo Train 3854/4551/3512/1705/359/11 4645/6116/4842/2231/527/16

Test 3133/3709/2831/1339/289/8 3727/4914/3904/1722/397/15

Valid 2006/2346/1794/855/193/10 2464/3237/2552/1153/281/13

Seq Train 4037/4731/3626/1754/365/11 4847/6337/5006/2298/544/16

Test 3242/3800/2914/1368/294/8 3856/5043/4003/1755/403/16

Valid 2068/2390/1828/872/194/10 2546/3317/2608/1179/285/13

Struc Train 3994/4718/3615/1750/364/11 4806/6329/4997/2295/543/16

Test 3207/3779/2890/1360/290/8 3819/5016/3978/1746/399/16

Valid 2037/2373/1816/865/191/10 2515/3300/2596/1170/282/13

Mean Train 3637/4296/3304/1600/336/10 4385/5778/4570/2101/499/14

Test 2950/3485/2664/1255/269/7 3509/4622/3668/1612/369/14

Valid 1927/2250/1718/819/182/9 2306/3027/2383/1076/260/11

Standard evaluation
In Table 11, we present a comparison of the
PooledAUPRC obtained using the standard evaluation
procedure. Since HMC-LMLP, HMC-GA and AWX are

stochastic, we report the mean result of 5 runs, together
with the standard deviation. Mind that, since we reran all
methods on our datasets, variations may occur compared
to the originally reported results in the respective papers.
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Table 6 Comparison between added and removed annotations in FunCat 2007 and FunCat 2018 per level

Dataset Number of annotations added Number of annotations removed

Cellcycle Train 1083/1875/1585/654/199/6 278/285/221/115/26/1

Test 794/1414/1231/475/137/8 200/209/160/92/29/1

Valid 585/1031/873/359/104/4 117/118/101/55/15/1

Church Train 1087/1881/1589/657/201/6 277/284/220/114/25/1

Test 802/1431/1234/475/137/9 204/218/164/93/29/1

Valid 581/1022/867/357/104/4 116/117/100/55/15/1

Derisi Train 1060/1841/1552/644/192/6 266/268/213/112/24/1

Test 799/1431/1246/477/139/8 201/209/161/92/29/1

Valid 581/1024/874/359/104/4 116/117/100/55/15/1

Expr Train 1088/1885/1590/657/201/6 278/285/221/115/26/1

Test 801/1428/1235/477/138/9 201/210/161/92/29/1

Valid 588/1034/874/359/104/4 117/118/101/55/15/1

Eisen Train 756/1369/1108/458/144/4 167/181/140/79/17/1

Test 562/1028/856/318/97/6 131/137/112/68/23/1

Valid 353/632/503/190/47/1 71/79/67/42/12/1

Gasch1 Train 1087/1881/1589/657/201/6 278/285/221/115/26/1

Test 799/1428/1235/477/138/9 199/208/160/92/29/1

Valid 582/1023/869/358/104/4 116/117/100/55/15/1

Gasch2 Train 1088/1885/1590/657/201/6 278/285/221/115/26/1

Test 801/1428/1235/477/138/9 201/210/161/92/29/1

Valid 588/1034/874/359/104/4 117/118/101/55/15/1

Hom Train 1130/1885/1600/656/201/6 329/296/230/117/25/1

Test 842/1447/1251/479/138/9 230/208/160/92/29/1

Valid 230/208/160/92/29/1 142/117/100/55/15/1

Pheno Train 450/780/680/274/90/3 110/113/93/44/10/1

Test 345/642/572/215/54/5 101/98/66/30/6/0

Valid 253/448/419/171/56/0 47/39/41/22/4/1

Spo Train 1056/1833/1543/638/192/6 265/268/213/112/24/1

Test 793/1413/1233/475/137/8 199/208/160/92/29/1

Valid 573/1008/858/353/103/4 115/117/100/55/15/1

Seq Train 1145/1909/1616/664/205/6 335/303/236/120/26/1

Test 849/1456/1252/479/138/9 235/213/163/92/29/1

Valid 621/1045/881/362/106/4 143/118/101/55/15/1

Struc Train 1112/1909/1614/664/205/6 300/298/232/119/26/1

Test 826/1449/1250/478/138/9 214/212/162/92/29/1

Valid 604/1045/881/360/106/4 126/118/101/55/15/1

Mean Train 1011/1744/1471/606/186/5 263/262/205/106/23/1

Test 751/1332/1152/441/127/8 193/195/149/84/26/0

Valid 511/879/744/306/89/3 111/107/92/51/13/1

Even though Clus-Ensemble is the oldest of the
compared methods, it still provided better results
in most of the experiments. This is best seen in
the FunCat 2018 datasets where Clus-Ensemble

consistently presented results close to 0.4, and the
second best method, HMC-LMLP, achieves at most
0.24 in any of the datasets. As can be seen in Fig. 6,
Clus-Ensemble was the overall best method, and
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Fig. 5 Procedure used to update each Gene Ontology dataset. The sequence IDs are extracted from the 2007 dataset, and used to query new terms
using UniProt. Obsolete and replaced terms are removed and merged into a single term, respectively. A hierarchy (subset of the Gene Ontology) is
built using the new annotations. Finally, the old annotations are removed, and the new dataset is created by concatenating the new annotations
with the feature vector and IDs

performs statistically significantly better than HMC-GA
and AWX.
The second method evaluated, HMC-GA, yielded a

lower performance overall. In most of the cases, HMC-
GA was superior to AWX, but still inferior to Clus and
HMC-LMLP. The method HMC-LMLP provided decent
results. When compared to AWX, HMC-LMLP man-
aged to significantly outperform it. Furthermore, HMC-
LMLP was ranked as the second best method overall,
providing superior results in all of the Gene Ontology
2007 datasets.
An unusual behaviour was noticed in the AWX

method as it yielded very undesired results in many
occasions. Even though the parameter values were
extracted from the original paper, its results were fairly
different. For instance, in the Derisi, Seq and Spo
datasets from all versions, AWX was severely underfit-
ted with results inferior to 0.1. It also presented simi-
lar cases in the FunCat and Gene Ontology 2007 Expr
datasets.
When comparing the performance between different

versions of the datasets, we noticed an overall improve-
ment in the methods when moving from 2007 to 2018.
Even though their label sets are bigger now, the addition of

annotations to the instances compensate such difference,
which resulted in better performances.

2007 vs 2018
Here we evaluate how the HMC methods perform when
trained using data from 2007, but evaluated using datasets
from 2018. For the methods HMC-LMLP, HMC-GA and
AWX, for each (instance,label) pair we have used themean
prediction probability of 5 runs.
For all figures presented here, we also include a box-

plot for the (instance,label) pairs that did not change
between the two dataset versions. This allows to see to
what extent the methods can detect annotations that were
falsely negative or falsely positive in the data of 2007. The
number between parentheses corresponds to the number
of (instance,label) pairs evaluated for a particular setting
and dataset. Note that the number of unchanged pairs is
much higher than the number of changed pairs, hence
the outliers (prediction probabilities outside the whisker)
should not be regarded.
Furthermore, we have also employed the Friedman-

Nemenyi test to provide statistical validation. In this case,
we have used the difference between the median of the
prediction probabilities for the annotations that changed
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Table 7 Comparison between the number of labels per level in Gene Ontology 2007 and Gene Ontology 2018

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15

Cellcycle
33 155 394 597 929 779 631 335 171 63 21 5 9

42 223 482 826 1454 1267 1153 870 654 451 324 216 86 13 1

Church
33 155 394 597 929 779 631 335 171 63 21 5 9

42 223 481 825 1454 1265 1153 870 654 451 324 216 86 13 1

Derisi
33 155 394 596 927 778 630 334 171 63 21 5 9

42 223 481 823 1449 1262 1151 866 651 449 323 216 86 13 1

Expr
33 155 394 599 932 780 631 335 171 63 21 5 9

42 223 482 827 1454 1267 1154 870 654 451 324 216 86 13 1

Eisen
33 149 360 524 786 679 539 271 141 55 19 5 9

42 217 452 732 1215 1088 975 754 567 388 283 186 78 12 1

Gasch1
33 155 394 597 929 779 631 335 171 63 21 5 9

42 223 482 826 1454 1266 1153 870 654 451 324 216 86 13 1

Gasch2
33 155 394 599 932 780 631 335 171 63 21 5 9

42 223 482 827 1454 1267 1154 870 654 451 324 216 86 13 1

Hom
33 155 394 597 929 778 633 335 171 63 21 5 9

42 223 482 826 1450 1264 1152 868 655 452 323 214 86 13 1

Pheno
33 145 332 489 670 568 460 236 114 49 18 4 6

42 192 423 684 1103 999 878 671 494 346 247 150 69 11 1

Spo
33 155 394 596 927 778 630 334 171 63 21 5 9

42 223 481 823 1449 1262 1151 867 651 449 323 216 86 13 1

Seq
33 155 394 599 932 780 633 335 171 63 21 5 9

42 223 482 828 1456 1269 1154 870 656 452 324 216 86 13 1

Struc
33 155 394 599 932 779 633 335 171 63 21 5 9

42 223 482 828 1456 1267 1154 868 655 452 324 216 86 13 1

Mean
33 153 386 582 896 753 609 321 163 61 20 4 8

42 219 474 806 1399 1228 1115 834 633 436 314 207 83 12 1

and those that did not change between the two dataset
versions.

FunCat
Figure 7 demonstrates that all methods are capable to
detect missing annotations from the FunCat taxonomy,
i.e., the distribution of prediction probabilities for the
changed annotations is consistently higher than for the
annotations that remained negative, since there is a visi-
ble difference between the location (median) and spread
in the boxplots of the changed and unchanged annotations
of the evaluated methods.
Clus-Ensemble and HMC-GA provided similar results,

however Clus-Ensemble was slightly superior since its
prediction probabilities tended to be higher. Moreover,
when evaluating the labels that did not change (remained
absent), Clus-Ensemble provided very low prediction
probabilities. In Fig. 8, Clus-Ensemble was ranked first,

however not statistically different from HMC-GA and
HMC-LMLP.
Similarly, the AWX method managed to be superior in

the Hom dataset. However, it underperformed in other
datasets, specially in Derisi, Expr, Seq and Spo. In these
datasets, AWX predicted almost all annotations to be
absent, except for very few outliers, which received a very
high prediction probability.
HMC-LMLP presented decent results in almost all

datasets. Nonetheless, for labels that did not change,
HMC-LMLP tended to provide higher prediction proba-
bilities, whereas Clus-Ensemble yielded lower ones, giving
Clus-Ensemble an advantage over HMC-LMLP.
Hence, in the context of discovering new anno-

tations, we can assume that Clus-Ensemble is the
safer choice as it performed better on almost all
datasets, nonetheless its advantage was close to
minimal.
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Fig. 6 Friedmann-Nemenyi test evaluating the four HMC methods using the standard evaluation procedure

When addressing labels that were removed, see Fig. 9,
we had very similar results. As seen in Fig. 10, HMC-
GA provided superior results, but it still was not sta-
tistically different from Clus-Ensemble and HMC-LMLP.
AWX yielded lower prediction probabilities in most of
the datasets with exception to the Hom dataset. Since its
prediction probabilities were also low for labels that were
present in both versions of the datasets, it performs the
worst among the compared methods.

Gene ontology
As can be seen in Fig. 11, Clus-Ensemble and HMC-
GA were superior in most of the datasets. Additionally,
the AWX method also presented desirable results, spe-
cially in the Derisi and Seq datasets where it output very
high probabilities for added annotations and very low
ones for labels that did not change. These three methods
were not statistically different from each other, as shown
in Fig. 12.
The HMC-LMLPmethod also presented overall visually

comparable results, nonetheless it yielded higher predic-
tions for annotations that did not change in some datasets,
such as Expr, Gasch1 and Gasch2.
When examining the labels that were removed in Fig. 13,

we noticed a different outcome. In this case, all meth-
ods presented very similar results, making performance
almost indistinguishable in most of the datasets. Addi-
tionally, there was no statistical difference among these
methods, as shown in Fig. 14.

Discussion
In this section, we present a discussion about the results
presented in the previous section. Following the same
order, we first address the standard evaluation, followed
by the comparison between the versions of the datasets.

Standard evaluation
As shown in Fig. 6, Clus-Ensemble’s superior pre-
dictive performance, in combination with an efficient

learning method (random forest), the ability to han-
dle datasets with many features (as seen in the Struc
and Hom datasets), and the interpretabilty aspect (e.g.
variable ranking and proximity measure associated to
random forests), confirm the state-of-the-art status of
Clus-Ensemble.
We believe that the ensemble method, random forest,

contributes substantially to the performance. By consid-
ering many models, Clus-Ensemble is able to generalize
more, and consequently provide superior results. The
other methods evaluated do not make use of any ensemble
method. Even though HMC-LMLP contains many neu-
ral networks, they are trained as a single model, and they
distinguish between different classes.
HMC-GA provided inferior results in many cases,

nonetheless it has the highest interpretability since it
generates classification rules. Similarly, Clus-Ensemble
presents many trees, which are readable by themselves,
however their interpretability decreases as the number of
trees increases. Differently, the neural networks, HMC-
LMLP and AWX, are black-box models, and thus not
readable in a straightforward way.
When comparing the neural network methods, HMC-

LMLP and AWX, HMC-LMLP clearly had the upper
hand. We believe that this is due to HMC-LMLP being
a local approach, whereas AWX is a global one. Since
one neural network is trained for each level of the hierar-
chy, the neural networks are trained to distinguish among
fewer classes, making the classification task easier, and,
thus, providing better results. The computational com-
plexity of HMC-LMLP, however, is considerably higher
than the other methods due to many neural networks
being built during its training.
Despite some undesirable results, AWX is the only

method that explicitly exploits the hierarchy constraint by
propagating gradients from neurons associated to leaves
to neurons associated to their parents.Mind that the other
methods also respect the constraint, but they exploit it to
a smaller extent during their training.
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Fig. 7 Evaluation on annotations that were added (0 to 1) and on annotations that did not change (0 in both versions) for FunCat. a Cellcycle, Derisi
and Eisen datasets. b Expr, Gasch1 and Gasch 2 datasets. c Seq, Spo, Hom and Struc datasets

Moreover, we believe that AWX’s early stopping crite-
rion has negatively affected the results. in order to prevent
overfitting, AWX interrupts the training right after the
performance in the validation set decreases. However,

these datasets contain noise in their label set, thus a
small oscillation might be noticed. Considering more
iterations, as performed by HMC-LMLP, could possibly
increase AWX’s performance. Moreover, neural networks



Nakano et al. BMC Bioinformatics          (2019) 20:485 Page 23 of 32

Fig. 8 Friedman-Nemenyi test evaluating annotations that were added (FunCat)

are very parameter dependent, and despite using the rec-
ommended parameters for all methods on the version
from 2007, their performance might increase if they are
tuned again on the 2018 datasets.

2007 vs 2018
FunCat
As described previously, when analyzing labels that
changed from absent to present (0 to 1), Clus-Ensemble
had the overall best results, whereas HMC-GA was the
best for present to absent (1 to 0). We believe that this
finding is highly correlated to how the evaluated methods
yield their prediction probabilities.
Clus-Ensemble outputs the mean prediction probabil-

ity of the instances associated to the leaf node predicted.
According to the parameters used, the minimum number
of such instances is 5, making the lowest positive predic-
tion probability to be 0.2 per tree. Even though fairly low,
it still is reasonably high in HMC due to label sparsity,
resulting in high prediction probabilities in many cases,
and thus better performance.
Likewise, the HMC-GA method yielded high predic-

tion probabilities in some cases, resulting in similar
results to Clus. Moreover, their heuristic (variance reduc-
tion) is the same. The main difference between HMC-
GA and Clus-GA relies on the fact that HMC-GA uses
a mean rule (prediction of the mean label set of the
training dataset) whenever a test instance is not clas-
sified by any of the rules. This possibly results in out-
putting a sparse prediction with very low prediction
probabilities.
Despite having decent results, HMC-LMLP presented

high very prediction probabilities for labels that did
not change between versions. We believe that this is

related to how neural networks learn the distribu-
tion of the data. Since neural networks are very pow-
erful models, they can learn more complex bound-
aries when compared to Clus-Ensemble and HMC-GA,
resulting in the neural networks adjusting themselves
strictly to the training dataset. HMC-LMLP is not over-
fitted though, as shown in Table 11, nonetheless its
usage is not recommended if label noise is likely to
be present.
Lastly, AWX had the best performance in the Hom

dataset. However, it underperformed in several other
cases. Once again, the early stopping criterion might have
forced the neural network to a sub-optimal configuration,
resulting in very biased predictions, i.e. AWX assumes
most of the labels to be either positive or negative.
When evaluating labels that were removed, HMC-GA

was superior. We believe that the mean rule might have
artificially contributed since very low probabilities are
predicted for most of the labels in this case.

Gene ontology
In the GO datasets, we noticed a similar behaviour. In
most of the situations, Clus-Ensemble performed better
when evaluating labels that were added, whereas HMC-
GA was superior for removed labels.
When it comes to removed labels, HMC-GA performed

better. Consequently, we recommend the usage of HMC-
GA to predict which annotations are likely to be removed
in future versions of the datasets (noise) since it presented
better results in both FunCat and GO.
Similarly to the FunCat experiments, HMC-LMLP had

an average performance being statistically significantly
inferior to other methods, but equivalent to them for
removed labels.
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Fig. 9 Evaluation on annotations that were removed (1 to 0) and on annotations that did not change (1 in both versions) for FunCat. a Cellcycle,
Derisi and Eisen datasets. b Expr, Gasch1 and Gasch2 datasets. c Seq, Spo, Hom and Struc datasets
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Fig. 10 Friedman-Nemenyi test evaluating annotations that were removed (FunCat)

When compared to its performance on FunCat, AWX
performed better here. For labels that were added, even
though ranked in lower positions, AWX managed to not
be statistically significantly different from Clus-Ensemble
and Clus-HMC. Likewise, for removed labels, AWX also
performed reasonably. This is very surprising since GO
datasets have even more labels to be distinguished, and
the same parameters were used.

Conclusion
In this work, we have presented updated benchmark
datasets for hierarchical multi-Label classification (HMC)
in the area of protein function prediction. We have also
performed a comparison among four HMC methods to
provide baselines results on these datasets. Finally, we
have proposed an alternative evaluation procedure to
evaluate the ability of HMC methods to detect missing or
wrong annotations. For this purpose we make use of both
old and new versions of the datasets.
In all datasets, we have noticed a significant increase

in the hierarchy size, and in the number of annota-
tions associated to instances. As a consequence of that,
when performing a standard evaluation, HMC methods
performed better using the updated versions. Despite
having more labels to distinguish, the instances have
now more annotations associated to them, resulting
in better predictions. The overall best method in this
task was Clus-Ensemble, a random forest of decision
trees adapted to HMC, nonetheless the results remained
fairly low overall. Thus, protein function prediction is
still a very challenging task for the machine learning
community.
In this direction, further studies in this area are neces-

sary. In particular, we instigate the use of Deep Learning

methods, since the amount of data available is on a con-
stant increase, and recent deep neural networks are capa-
ble of learning straight from DNA sequences (without the
need of extracting features) [46] .
When it comes to detect missing or wrong annota-

tions, in the FunCat datasets, Clus-Ensemble was the best
in detecting missing annotations, whereas HMC-GA did
better for annotations that were removed. In the Gene
Ontology datasets, Clus-Ensemble performed better for
detecting missing annotations, and competitive results
were obtained for wrong annotations.
To conclude, we recommend to use the updated datasets

in future studies on this topic. However, the previous ver-
sion of these datasets should not be disregarded, since
having two versions can be of interest to perform an
evaluation similar to ours on new HMC methods, or to
other fields inmachine learning such as weakly supervised
classification, noise detection and incremental learning
[47, 48].

Methods
In this section, we provide details about our experimental
setup. First, we present the methods used for compari-
son. Then we describe two evaluation strategies. Finally,
we explain which datasets were included in the evaluation.

Comparedmethods
We have compared 4 methods from the literature: Clus-
Ensemble [2, 21], hierarchical multi-label classification
with genetic algorithm (HMC-GA) [4, 19], hierarchical
multi-label classification with local multi-layer percep-
trons (HMC-LMLP) [3], and AdjacencyWrapping matriX
(AWX) [6]. The methods were chosen due to the follow-
ing reasons: 1) Apart from Clus-Ensemble, they are recent
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Fig. 11 Evaluation on annotations that were added (0 to 1) and on annotations that did not change (0 in both versions) for GO. a Cellcycle, Derisi
and Eisen datasets. b Expr, Gasch1 and Gasch2 datasets. c Seq, Spo, Hom and Struc datasets

methods. Clus-Ensemble is included because it is used as
the state-of-art benchmark in many studies; 2) They are
based on different machine learning methods and HMC

strategies, ranging from global to local approaches and
from interpretable tree or rule based methods to more
powerful, but black box techniques; 3) They are publicly
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Fig. 12 Friedman-Nemenyi test evaluating annotations that were added (GO)

available. Next, we provide a brief description of these
methods, and details about their parameters. We have set
the parameters to the values originally recommended by
the authors.

Clus-Ensemble
Clus is a method from the global approach based on pre-
dictive clustering trees where decision trees are seen as
a hierarchy of clusters whose top node corresponds to a
cluster with all the training data. Recursively, Clus min-
imizes the intra-cluster variance until a stop criterion is
met. In this work, we have used the (global) Clus-HMC
variant due to its superior results, in combination with
the ensemble method Random Forest. Hence, this pre-
dictive model consists of a Random Forest of Predictive
Clustering Trees. We are using 50 trees within the Ran-
dom Forest, at least 5 instances per leaf node and the best
F-test stopping criterion significance level selected from
{0.001, 0.005, 0.01, 0.05, 0.1, 0.125}.
HMC-GA
Using genetic algorithms and the global approach, the
method hierarchical multi-label classification with genetic
algorithm use a sequential rule covering method where
optimal classification rules are created [4, 19]. At every
iteration, one rule in the format if → then is generated
by optimizing the fitness function. Next, the examples
covered by the new rule are removed from the training
dataset, and new rules are generated until a stop criterion
is met. We have used the following parameters:

• Population size : 100 rules;
• Number of Generations: 1000;
• Stopping criterion: 1% of uncovered examples;
• Crossover rate: 90%;

• Mutation rate: 10%;

HMC-LMLP
The method proposed by Cerri [3] addresses the classi-
fication problem using the Local approach. More specif-
ically, the Local Classifier per Level strategy where one
multi-layer perceptron is trained for each level of the hier-
archy. Thus, each neural network is responsible for pre-
dicting the classes on its respective level. Moreover, this
method adds prediction probabilities from the previous
level as extra features for the next neural network, in the
sense that each neural network is trained separately and its
training dataset is augmented by the previous neural net-
work. Finally, the predictions from each neural network
are combined to perform a prediction. If the performance
in the validation dataset does not improve in 10 iterations,
the training is interrupted.
We have used the following parameters:

• Hidden Layers Size: the number of neurons per
hidden layer is obtained by multiplying the number of
inputs by the values [ 0.6, 0.5, 0.4, 0.3, 0.2, 0.1] for the
FunCat datasets and [ 0.65, 0.65, 0.6, 0.55, 0.5, 0.45,
0.4, 0.35, 0.3, 0.25, 0.2, 0.15, 0.1] for the GO datasets;

• Activation Function: Logistic (sigmoid) activation
function;

• Optimizer: Backpropagation with 200 epochs and
learning rate ∈ {0.05, 0.03} and momentum
∈ {0.03, 0.01} alternating between levels;

AWX
Using neural networks and the global approach, the
method Adjacency Wrapping matriX (AWX) employs a
single model where the underlying hierarchy is mapped
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Fig. 13 Evaluation on annotations that were removed (1 to 0) and on annotations that did not change (1 in both versions) for GO. a Cellcycle, Derisi
and Eisen datasets. b Expr, Gasch1 and Gasch2 datasets. c Seq, Spo, Hom and Struc datasets
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Fig. 14 Friedman-Nemenyi test evaluating annotations that were removed (GO)

into the loss function [6]. This mapping is performed by
an auxiliary matrix which makes the gradients updates
flow from the neurons associated to leaves to the neurons
that are associated to their parent nodes. If the perfor-
mance degrades on the validation dataset, the training
is interrupted immediately. We have used the following
parameters:

• l-norm: We have used l1, since it presented superior
results;

• Hidden layer: with 1000 neurons with the ReLu
activation function and l2 regularizer 10−3;

• Output layer: Logistic activation function and l2
regularizer 10−3;

• Optimizer: Adam with learning rate 10−5, β1 = 0.9
and β2 = 0.999 and the cross entropy loss function;

Evaluated datasets
Even though we provide 12 datasets with updated Funcat
and GO annotations, we have decided to not include all
of them in our analysis. The Church and Pheno datasets
have an unusual number of instances with identical fea-
ture vectors, mostly due to missing values. In the Church
dataset, 2352 out of 3755 instances are unique, leaving
1403 instances with the same feature vector as another
instances, but different annotations. A similar behaviour
is noticed in the Pheno dataset where only 514 instances
out of 1591 are unique [49].
We are considering the Hom and Struc datasets only

using the methods Clus-Ensemble and AWX. The other
methods, HMC-LMLP and HMC-GA, presented several
difficulties when handling these datasets. HMC-LMLP
demands much more computational power due to its
many neural networks. Similarly, HMC-GA did not con-
verge using the parameters suggested in the original paper.

Some work, such as [5, 10, 11, 13, 17, 22], have also
decided to not include them.
Table 12 presents the datasets evaluated in this work.

Standard evaluation
In order to provide benchmark results on the new datasets,
we have first performed a standard evaluation. Thus, we
evaluated 10 feature sets with 4 possible labels sets for
each (two label hierarchies and two annotation times-
tamps), making a total of 40 datasets. We present the
evaluation measure and the statistical test that we have
used.

Pooled aUPRC
We have adopted the Pooled area under the precision-
recall curve (AUPRC) evaluation measure since it is con-
sistently used in HMC literature [2, 3, 5, 18, 19, 21, 22, 25].
Mind that, generally HMC datasets are heavily imbal-
anced, making negative predictions very likely, thus eval-
uation measures such as ROC curves are not recom-
mended.
The Pooled AUPRC corresponds to the area under the

precision-recall curve generated by taking the Pooled (i.e.,
micro-averaged) precision and recall over all classes for
different threshold values. These threshold values usually
consist of values ranging from 0 to 1 with increasing steps
of 0.02 for all datasets.
In the equations below, tp stands for true positive, fp

means false positive, fn refers to false negative and i ranges
over all classes.

Pooled_precision =
∑

tpi
∑

tpi + ∑
fpi

(1)

Pooled_recall =
∑

tpi
∑

tpi + ∑
fni

(2)
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Table 12 Evaluated datasets

Dataset #Features #Instances #Funcat2007 #FunCat2018 #GO2007 #GO2018

Cellcycle 77 3757 499 585 4122 8065

Derisi 63 3725 499 585 4116 8039

Eisen 79 2424 461 552 3570 6993

Expr 551 3779 499 585 4128 8067

Gasch1 173 3764 499 585 4122 8064

Gasch2 52 3779 499 585 4128 8067

Seq 478 3919 455 586 3124 8075

Spo 80 3703 499 585 4130 8040

Struc 19628 3851 499 586 4132 8070

Hom 47034 3867 499 585 4126 8054

Friedman-Nemenyi test
In order to provide statistical evidence, we have used the
Friedman-Nemenyi test. At first the Friedman test veri-
fies if any of the compared methods performs statistically
significantly different from others. Next, the Nemenyi test
ranks the methods where methods with superior results
are ranked in higher positions. Graphically, methods con-
nected by a horizontal bar of length equal to a critical
distance are not statistically significantly different.

Evaluation procedure to compare datasets from different
versions
We also investigated whether models that were trained
on a dataset from 2007 are able to discover new anno-
tations, i.e., annotations that were unknown (negative) in

2007, but have been added afterwards. We also check the
opposite situation: whether models are able to correct
wrong annotations, i.e., annotations that were wrongly
positive in 2007, and have been corrected to nega-
tive afterwards. For this purpose, we propose an eval-
uation strategy that compares the predicted probabili-
ties for specific (instance,label) pairs over the different
HMC methods.
In particular, for a fair comparison, first we take the

intersection of the label sets in the 2007 and 2018 dataset
versions, respectively. Then, for evaluating the discov-
ery of new annotations, in this intersection, we check
the (instance,label) pairs in the test set that were neg-
ative in 2007 and positive in 2018. For these pairs,
we plot the distribution of predictions for each HMC

Fig. 15 Prediction probabilities of labels that changed between versions (written in red inside the red box) are used to build the red box-plot. Labels
that occur only in the 2018 versions are not considered in this evaluation (black box)
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method, trained on the 2007 dataset. Note that a high
value would have yielded a false positive prediction in
2007, however, with the current knowledge in functional
genomics, this would now yield a true positive prediction.
Figure 15 illustrates the procedure. For evaluating the
correction of wrong annotations, the procedure is sim-
ilar, except that we look for positive pairs that became
negative.
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