
SOFTWARE Open Access

MiPepid: MicroPeptide identification tool
using machine learning
Mengmeng Zhu1,2 and Michael Gribskov2*

Abstract

Background: Micropeptides are small proteins with length < = 100 amino acids. Short open reading frames that
could produces micropeptides were traditionally ignored due to technical difficulties, as few small peptides had
been experimentally confirmed. In the past decade, a growing number of micropeptides have been shown to play
significant roles in vital biological activities. Despite the increased amount of data, we still lack bioinformatics tools
for specifically identifying micropeptides from DNA sequences. Indeed, most existing tools for classifying coding
and noncoding ORFs were built on datasets in which “normal-sized” proteins were considered to be positives and
short ORFs were generally considered to be noncoding. Since the functional and biophysical constraints on small
peptides are likely to be different from those on “normal” proteins, methods for predicting short translated ORFs
must be trained independently from those for longer proteins.

Results: In this study, we have developed MiPepid, a machine-learning tool specifically for the identification of
micropeptides. We trained MiPepid using carefully cleaned data from existing databases and used logistic
regression with 4-mer features. With only the sequence information of an ORF, MiPepid is able to predict whether it
encodes a micropeptide with 96% accuracy on a blind dataset of high-confidence micropeptides, and to correctly
classify newly discovered micropeptides not included in either the training or the blind test data. Compared with
state-of-the-art coding potential prediction methods, MiPepid performs exceptionally well, as other methods
incorrectly classify most bona fide micropeptides as noncoding. MiPepid is alignment-free and runs sufficiently fast
for genome-scale analyses. It is easy to use and is available at https://github.com/MindAI/MiPepid.

Conclusions: MiPepid was developed to specifically predict micropeptides, a category of proteins with increasing
significance, from DNA sequences. It shows evident advantages over existing coding potential prediction methods
on micropeptide identification. It is ready to use and runs fast.
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Background
Micropeptides are generally defined as small proteins of
<= 100 amino acid residues [1–3]. Their existence was
traditionally ignored because few micropeptides had been
shown to be functionally important, mostly due to techno-
logical limitations in isolating small proteins [4]. Conse-
quently, small open reading frames (sORFs or smORFs,
<= 303 bp) that encode micropeptides are generally ig-
nored in gene annotation and have been considered to be
noise (occurring by chance) and to be unlikely to be trans-
lated into proteins [2, 4, 5].

With improved technology, an increasing number of
micropeptides have been discovered, and have been
shown to play important roles in muscle performance
[6], calcium signaling [7], heart contraction [8], insulin
regulation [9], immune surveillance [10, 11], etc. In par-
ticular, many micropeptides were shown to be translated
from transcripts that were previously annotated as puta-
tive long noncoding RNAs (lncRNAs) [12, 13]. This fact
challenges the “noncoding” definition and raises ques-
tions about the functional mechanisms of lncRNAs, i.e.,
whether they function through their 3D RNA structure,
or via the micropeptides translated from encoded sORFs,
or both.
With the increasing recognition of the importance of

the “once well forgotten” field of micropeptides, it is
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increasingly important to develop a large-scale method
for identifying them in a cost-effective way. Ribosome
profiling [14, 15] (Ribo-Seq) is a recent high-throughput
technique for identifying potentially coding sORFs by se-
quencing mRNA fragments captured with translating ri-
bosomes. Despite its advantages, there currently is no
community consensus on how Ribo-Seq data should be
used for gene annotation [16], as some investigators
have questioned whether capture of RNAs by ribosomes
necessarily implies translation; some capture could be
transient or non-specific rather than truly functional [17,
18]. Ribo-Seq requires the use of next generation se-
quencing and thus has significant costs. In addition, de-
pending on the sequencing depth and quality, it may
suffer from false positives, and may not reveal all coding
sORFs due to differences in sORF expression in different
tissues, developmental stages, and conditions. Therefore,
the sORFs discovered from Ribo-Seq still require experi-
mental verification of their coding potentials.
It is much less expensive to predict coding sORFs

from DNA sequences using bioinformatic tools. Al-
though experimental verification is still required for pre-
dicted sORFs, a bioinformatic prediction of the coding
potential of any sORFs before experimental verification
is valuable since bioinformatics analysis costs almost
nothing and could potentially provide useful insights.
There are currently few bioinformatic tools specifically

designed for predicting the coding potential of small
ORFs. uPEPperoni [19] is a web server designed to de-
tect sORFs in the 5′ untranslated regions (5′-UTR) of
mRNAs. It detects conserved sORFs without explicitly
predicting their coding potential. Although 5′-UTR
sORFs are an important component of the sORF popula-
tion, many sORFs are located elsewhere, such as within
the coding region of an mRNA, in lncRNAs, etc. The
sORF finder [20] program specifically identifies sORFs
using the nucleotide frequency conditional probabilities
of the sequence, however it was developed nearly a dec-
ade ago, and the server is no longer accessible. In
addition, because many micropeptides have been discov-
ered in the last decade, a much larger training dataset
can now be assembled, and this should greatly improve
the prediction quality. Data pipelines have been de-
scribed [21–23] that calculate the coding abilities of
sORFs, especially those identified from Ribo-Seq data;
however, these pipelines are not standalone packages
readily available for other users. Other well-known cod-
ing potential prediction tools such as CPC [24], CPC2
[25], CPAT [26], CNCI [27], PhyloCSF [28], etc. which
were trained on datasets consisting primarily of normal-
sized proteins. Because of the differences between sORF
peptides and globular proteins, and because these
methods were not trained on large sORF datasets, it is
likely they do not perform well in sORF prediction (as

shown in the Results section below). In general, most
coding potential predictors penalize short ORFs and
those that lack significant similarity to known proteins;
both of these factors compromise the ability of existing
tools to correctly predict sORFs.
With the ongoing development of techniques such as

Ribo-Seq and mass spectrometry (MS), an increasing
number of micropeptides have been experimentally
identified and verified. We have a reasonable amount of
data that can be leveraged for the development of bio-
informatics tools specifically for micropeptide prediction.
sORFs.org [4, 5] is a repository of small ORFs identified
specifically from Ribo-Seq and MS data. And SmProt
[29] is a database of micropeptides collected from
literature mining, known databases, ribosome profiling,
and MS.
Machine learning (ML) is a set of algorithms for learn-

ing hidden patterns within a set of data in order to clas-
sify, cluster, etc. The development of a successful ML-
based method for a particular problem depends on a
good dataset (clean, with sufficient data, etc.), and a
good choice of specific ML algorithm. ML has been used
in developing numerous bioinformatics tools, and has
been used, for instance, in ORF coding potential predic-
tion [24–27].
In this study, we present MiPepid, a ML-based tool

specifically for identifying micropeptides directly from
DNA sequences. It was trained using the well-studied lo-
gistic regression model on a high-quality dataset, which
was carefully collected and cleaned by ourselves. MiPe-
pid achieves impressive performance on several blind
test datasets. Compared with several existing state-of-
the-art coding potential prediction tools, MiPepid per-
forms exceptionally well on bona fide micropeptide data-
sets, indicating its superiority in identifying small-sized
proteins. It is also a lightweight and alignment-free
method that runs sufficiently fast for genome-scale ana-
lyses and scales well.

Implementation
Datasets
To collect positive as well as negative datasets for micro-
peptides that are representative yet concise, we selected
2 data sources: SmProt [29] and traditional noncoding
RNAs.

The positive dataset
SmProt [29] is a database of small proteins / micropep-
tides which includes data from literature mining, known
databases (UniProt [30], NCBI CCDS [31–33]), Ribo-
Seq, and MS. In particular, SmProt contains a high-
confidence dataset consisting of micropeptide data that
were collected from low-throughput literature mining,
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known databases, and high-throughput literature mining
data or Ribo-Seq data with supporting MS evidence.
The SmProt high-confidence dataset (containing 12,

602 human micropeptides in total) is a reliable data
source for positive data since many of the peptides have
been experimentally verified, and the rest are supported
by multiple evidence. Based on this dataset, we cleaned
our own positive dataset using the following pipeline:

(1) Obtain the nucleotide sequences of the data. In
SmProt, only the amino acid sequences rather than
the DNA sequences are provided, although for the
majority of data points their corresponding
transcript IDs (primarily in Ensembl [34], with
others in RefSeq [34] or NONCODE [34]) are
provided. Since the DNA sequence of a
micropeptide contains essential information that
the translated sequence cannot provide (such as
nucleotide frequency, etc.), we therefore obtained
the corresponding DNA sequences by mapping the
protein sequences back to their corresponding
transcripts using GeneWise [34]. To ensure the
quality of the dataset, only micropeptides that gave
a perfect match (no substitutions or indels) were
retained.

(2) Obtain a nonredundant positive dataset. Proteins
with similar sequences may share similar functions,
and families of related sequences create a bias
towards certain sequence features. To ensure that
our positive dataset is not biased by subgroups of
micropeptides with similar sequences, we selected a
nonredundant set with protein sequence identity
≤0.6. This serves as our positive dataset and it
contains 4017 data points.

The negative dataset
It is hard to define a truly negative dataset for micropep-
tides as more and more sequences that were formerly
considered noncoding have been shown to encode trans-
lated proteins, such as 5′-UTRs of mRNAs, lncRNAs,
etc. Despite the limitations of our current knowledge, we
are still able to collect ORFs that are highly likely to be
noncoding.
Traditional noncoding RNAs, such as microRNA

(miRNA), ribosomal RNA (rRNA), small nuclear RNA
(snRNA), etc. are highly likely to be truly noncoding.
While there is growing evidence that lncRNAs [35, 36]
may sometimes encode translated sORFs, the possibility
of sORFs in traditional noncoding RNAs has seldom
been mentioned or discussed in literature. In addition,
some pipelines for predicting coding regions from Ribo-
Seq data utilized those ncRNAs to construct their nega-
tive datasets [21, 37]. While there are examples of
lncRNAs and “noncoding” regions of mRNAs that

encode micropeptides in the SmProt high-confidence
dataset, there are no examples of micropeptides encoded
by traditional ncRNAs.
We therefore chose human miRNA, rRNA, snRNA,

snoRNA (small nucleolar RNA), tRNA (transfer RNA),
and scaRNA (small Cajal body RNA, a nucleolar RNA)
as the data source for our negative dataset. We selected
all human transcripts in the Ensembl database [34] an-
notated with these 6 biotypes and extracted all possible
ORFs from those transcripts, i.e., ORFs with valid start
and stop codons from all 3 translation frames. Although
there is evidence that non-ATG codons sometimes serve
as sORF start codons [5], to ensure the validity of our
dataset, we consider only ATG start codons in con-
structing the negative dataset; in the positive dataset,
nearly 99% of sORFs begin with ATG start codons.
We finally gathered 5616 negative sORFs. In the same

way as for the positive data, we selected a nonredundant
negative dataset of size 2936 with pairwise predicted
protein sequence identity ≤0.6.

The training set and the blind test set
We randomly selected 80% of the examples in the posi-
tive and negative datasets to build our training set for
the machine learning model training; the remaining 20%
were used as a blind test set which was only used for
model evaluation (Table 1).

The synthetic_negative dataset
To further test the performance of our method, we gen-
erated a synthetic dataset that preserves the length dis-
tribution as well as the dinucleotide frequencies [38] of
the negative dataset. Since this dataset mimics the nega-
tive data, our method is expected to predict negative on
this dataset. This synthetic_negative dataset is of the
same size as the negative dataset (2936), and it was gen-
erated using the ushuffle software [39] in the MEME
suite [40].

Methods
Feature generation
In machine learning, identifying a set of relevant features
is the next important step toward constructing a classi-
fier. A set of well-chosen features greatly facilitates dif-
ferentiating between different classes.

Table 1 Training and test data sets

Dataset #Positive #Negative #Total

Training 3194 2369 5563

Test 823 567 1390

#positive: number of positive data points
#negative: number of negative data points
#total: total number of data points
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In our study, we believe the key to determining whether
a small ORF is translated lies in the nucleotide patterns in
the sequence. A translated sORF should have a DNA se-
quence that is constrained by the physicochemical proper-
ties of the translated peptide, the preference of ribosome
occupancy, the codon bias of the organism, etc.
k-mer features have been widely used to effectively

capture nucleotide patterns. A k-mer is a subsequence of
length k, where k is an integer ranging from 1 to as high
as hundreds depending on the requirements of specific
questions. For DNA k-mers, there are only 4 types of
nucleotides (A, T, C, and G), so the number of distinct
k-mers for a specific k is 4k. The k-mer features are sim-
ply encoded as a vector of size 4k (denoted as v), with
each value in the vector denoting the frequency of one
unique k-mer in the sequence. If we slide a window of
length k across the sequence from beginning to end with

a step size of s, we obtain bjSj−kþ1
s c k-mers in total,

where ∣ S∣ denotes the length of the sequence. There-

fore, jvj1 ¼ bjSj−kþ1
s c, where |v|1 is the L1 norm of v. To

exclude the sequence length effects in v, we can use the
normalized k-mer features, i.e., the fractional frequency
of each k-mer rather than the frequency itself. In this
case, |v|1 = 1.
Regarding the choice of k, a hexamer (i.e., 6-mer) is

often used in bioinformatics tools for various bio-
logical questions [20, 41]. Yet hexamers would give a
feature vector of size 46 = 4,096. Compared to 5,563,
the size of our training data, a model with as many
as 4,096 parameters could potentially overfit the
dataset although 5,563 is larger than 4,096. To ensure
the generalizability as well as the efficiency of our
method, we chose to use 4-mer features. A 4-mer,
while short, still captures information about codons,
and any dependencies between adjacent amino acid
residues since every 4-mer covers parts of 2 adjacent
codons / amino acids. A 4-mer feature vector has a
reasonable size of 256, much less than 4096, therefore
should produce less model overfitting and have
shorter running time. To eliminate the length infor-
mation of a sORF, we chose to use normalized k-mer
features. And to better capture the codon information
of the translation frame, we chose a step size of 3 for
k-mer extraction.

Logistic regression
From many possible supervised machine learning algo-
rithms, we chose logistic regression for our study. Logistic
regression is well-studied and provides easy-to-interpret
models that have been shown to be successful in numer-
ous cases and scenarios. The model can be tuned to
minimize overfitting by, for instance, including
regularization penalties. When used for prediction, the

model returns the probability of an instance being in the
positive category rather than just a label, which gives more
insight into the prediction.
The loss function for logistic regression is:

min
w;b

Xn

i¼1

log 1þ e−ðyi Xi
Twþbð Þ� �

þ λwTw

, where {X1,…, Xn} are the set of the data points and
for each Xi , yi ∈ {−1, +1} is the label. w is the weight vec-

tor and b is the bias term.
Pn

i¼1 logð1þ e−ðyiðXi
TwþbÞÞ is

the negative log likelihood. λwTw is the regularization
term which helps constrain the parameter space of w to
reduce overfitting, and λ is a hyperparameter controlling
the regularization strength. For a set of w and b, the
classifier assigns the label to data point Xi based on the
following:

f Xið Þ ¼ 1

1þ e− wTXiþbð Þ
≥ t; ŷi ¼ þ1
< t; ŷi ¼ −1

�

, where ŷi is the predicted label from the classifier
and t is the threshold between the positive (+1) and the
negative (−1) classes. Although t = 0.5 is generally used,
0 ≤ t ≤ 1 is also a tunable hyperparameter.

Performance evaluation
To evaluate the performance of MiPepid and existing
methods, we used the following metrics.

(1) accuracy

For a dataset S, denote the number of correctly classi-
fied cases by a method as c, then the accuracy is c

jSj ,
where ∣S∣ is the size of the dataset. This definition ap-
plies to any dataset used in this paper.

(2) F1 score

For a dataset that contains both positive and negative
data, the F1 score of the performance of a method on
this dataset is:

F1 ¼ 2
pr � rc
pr þ rc

, where pr is the precision and rc is the recall, and

pr ¼ TP
TP þ FP

; rc ¼ TP
TP þ FN

, where TP is the number of true positives, i.e., the
number of correctly classified cases in the positive sub-
set; FP is the number of false positives, i.e., the number
of misclassified cases in the negative subset; FN is the
number of false negatives, i.e., the number of
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misclassified cases in the positive subset. The F1 score
ranges from 0 to 1, with a higher value implying better
performance. In this study, the F1 score is used for the
training and the test sets, as both of them consist of both
positive and negative data.

10-fold cross validation
N-fold cross validation is commonly used to select good
hyperparameters. Here n is an integer ranging from 2 to as
high as dozens. In cross validation, the dataset is randomly
and evenly divided into n folds. For every set of hyperpara-
meter candidates, and for each fold, a model is trained
using the other n − 1 fold(s) and is evaluated on the left-out
fold. The (weighted) average of the n evaluations is taken as
the overall evaluation for that set of hyperparameter candi-
dates. This cross validation is done for every set of hyper-
parameter candidates in order to select a set that gives the
best performance.
As stated in 3.3, there are 2 hyperparameters in logistic

regression: the regularization strength λ and the threshold
t. We performed 10-fold cross validation to tune these 2
hyperparameters. For λ∈f1E−5; 1E−4; 1E−3;…; 1Eþ 5; 1
Eþ 6g and t ∈ {0, 0.05, 0.1,…, 0.95, 1.0}, we selected the
combination of λ and t that gave the best performance.

Hyperparameters tuning using 10-fold cross validation
As stated above, in the logistic regression model, the
regularization strength λ and the threshold t are tunable
hyperparameters. Therefore, before training the model
on the training dataset, we first determined the best
combination of λ and t using 10-fold cross validation. As
shown in Fig. 1, when λ = 10−4 and t = 0.60, both the
average F1 (0.9639) and accuracy (0.9585) on the 10 val-
idation sets are the highest.

Training using the tuned hyperparameters
We therefore chose λ = 10−4 and t = 0.60, and re-trained
on the complete training dataset to obtain the MiPepid
model. This model achieved an F1 score of 0.9845 and

an overall accuracy of 0.9822 on the training set (Table
2).

Results
MiPepid generalizes well on the hold-out blind test set
The blind test set contains 1390 sequences and was not
used during the training stage. As shown in table 3,
MiPepid achieved an F1 score of 0.9640 and an overall
accuracy of 0.9576 on this test set. Compared with table
2, although the results are slightly lower, they are still
comparably good. In addition, MiPepid performed al-
most equally well on the positive and negative subsets of
the test set as indicated by the corresponding accuracies
(0.9587 vs. 09559). Therefore, MiPepid generalizes well
and has a balanced performance on both positive and
negative data.

MiPepid performs well on the synthetic_negative dataset
The synthetic_negative dataset mimics the negative data-
set by preserving the dinucleotide frequency as well as
the length distribution of the real negative data, but be-
cause it has been randomized, should have no true
sORFs. MiPepid achieved an accuracy of 0.9659 on the
synthetic_negative dataset, a very close result to the one
on the negative subset of either the training or test set,
indicating the robustness of MiPepid.

MiPepid correctly classifies newly published
micropeptides
In the positive dataset, part of the data were collected by
low-throughput literature mining in SmProt [29], i.e.,
they were biologically/ experimentally verified on the
level of protein, cell, phenotype, etc. SmProt [29], which
was released in 2016, is based on literature published by
Dec 2015. We searched for new examples of verified
micropeptides, supported by extensive experimental evi-
dence, published after Dec 2015, and found 5 new
micropeptides in the literature (Table 4). Among these 5
cases, 3 are actually already recorded in SmProt [34],
however they were in the non-high-confidence subset,

Fig. 1 Parameter Optimization. The avg. F1 and accuracy are shown at the best t for the indicated values of λ. 10-fold cross validation results with
different 휆 and 푡 combinations on the training set. λ: the hyperparameter for regularization strength in logistic regression; t: the hyperparameter for
threshold in logistic regression; best t: when λ is fixed, the t from t ∈ {0, 0.05, 0.1,…, 0.95, 1.0} that gives the best performance; avg. F1 val: the average F1
score on the 10 validation sets when both λ and t are fixed; avg. accu val: the average accuracy on the 10 validation sets when both λ and t are fixed
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i.e., there was only indirect evidence on the presence of
those micropeptides.
These 5 cases were taken as the new_positive dataset.

They are analogous to “the future cases” if the time
boundary were Dec 2015. One of the major purposes of
MiPepid is for future prediction. Therefore, its perform-
ance on “future cases” matters.
We applied MiPepid on this new_positive dataset, and

MiPepid correctly classified all of the 5 micropeptides.
And this is another result showing the good generalization
of MiPepid.

Comparison with existing methods
Comparison with current ORF coding potential prediction
methods
There are several state-of-the-art bioinformatics methods
built to predict the coding/noncoding capability of a DNA
sequence, including CPC [24], CPC2 [25], CPAT [26],
CNIT [27], PhyloCSF [28], etc. However, all of them were
designed to work on “average” transcript datasets, i.e.,
datasets that consist primarily of transcripts of regular-
sized proteins and noncoding RNAs. In these methods,
sORFs present in either an mRNA encoding a regular pro-
tein, or in a noncoding RNA, are generally penalized and
are likely to be classified as noncoding; in the former case
there is already a longer ORF present so shorter ones are
treated as noncoding, and in the latter case the ORFs are
automatically considered to be noncoding because they
are found in “noncoding” RNAs. Therefore, despite the
good performance of these methods in predicting regular-
sized proteins, they may not be able to identify micropep-
tides, which also play critical biological roles.
In contrast, MiPepid is specifically designed to clas-

sify small ORFs in order to identify micropeptides.
Here we chose CPC [24], CPC2 [25], and CPAT [26]
as representatives of current methods and evaluated
their performances on the hold-out blind test set as

well as on the new_positive dataset, both of which
the positive data are composed of high-confidence
micropeptides.
As shown in table 5, while the 3 methods (CPC [24],

CPC2 [25], CPAT [26]) performed exceptionally well on
negative cases (100% accuracy), they indeed struggled to
classify the positive cases.
The positive cases in the blind test set are sORFs of

high-confidence micropeptides supported by at least 2
different types of experimental evidence. CPC [24] and
CPC2 [25] considered over 90% of them as noncoding,
while CPAT [26] did better with 32% accuracy but is still
below half. In contrast, while MiPepid performed slightly
worse on the negative cases (96%), it correctly classified
96% of the high confidence micropeptides. And regard-
ing sORFs of the newly-published micropeptides, all of
which are supported by protein-level and phenotypic
evidence, CPC [24] and CPC2 [25] did not consider any
of them to be coding, and CPAT [26] correctly classified
only 3 out of 5. These results are not surprising as all
three existing methods were trained on datasets primar-
ily consisting of regular-sized proteins. It is clear from
those results that sORFs are a special subpopulation of
ORFs and predictions on which entail specially designed
methods.

Comparison with sORFfinder
As mentioned in the Introduction section, sORFfinder
predicts sORFs by calculating nucleotide frequency con-
ditional probabilities of hexamers; however, the server is
no longer accessible. We located a downloadable version
at http://hanadb01.bio.kyutech.ac.jp/sORFfinder/ and
ran it locally. sORFfinder does not provide a trained
model for human sORFs, nor is there any human
dataset included in this software. To conduct the
comparison, we therefore used sORFfinder to train a
model using our own training dataset and then eval-
uated on our test set. It took hours to train the
model using sORFfinder, as compared to seconds
needed for MiPepid.
As shown in table 6, sORFfinder correctly predicts

around 87% of the examples in the test set, which is fairly
good. However, it is clear that MiPepid performs signifi-
cantly better. It is not surprising that sORFfinder achieved
a similar performance to MiPepid. sORFfinder utilizes
hexamer information and a naïve Bayes approach to cal-
culate the posterior coding probability of a sORF given its
hexamer composition. MiPepid uses 4-mer information,
but rather than naïve Bayes, uses logistic regression to
learn patterns from the data automatically. Notably, MiPe-
pid achieves better classification using a much smaller fea-
ture vector, and much less computational time for
training the model.

Table 2 MiPepid results on the training set

F1 Accuracy

Positive Negative Overall

0.9845 0.9818 0.9827 0.9822

“positive” and “negative” refer to the accuracies of MiPepid on the positive
and negative subsets, respectively;
“overall” refers to the accuracy on the whole training set (positive + negative)

Table 3 MiPepid results on the blind test set

F1 Accuracy

Positive Negative Overall

0.9640 0.9587 0.9559 0.9576

“positive” and “negative” refer to the accuracies of MiPepid on the positive
and negative subsets, respectively;
“overall” refers to the accuracy on the whole test set (positive + negative)
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Discussion
MiPepid’s predictions on non-high-confidence
Mircopeptides
The SmProt database has a high-confidence subset, ex-
amples of micropeptides that are supported by multiple
kinds of evidence; the rest of the data are non-high-
confidence. We collected those data and obtained their
corresponding DNA sequences using the same pipeline
used for the positive dataset (see Methods). We then
used MiPepid to predict the coding capabilities of those
data. Overall, MiPepid predicted 74% of them as posi-
tive. Table 7 shows detailed results based on different
data sources.
As can be seen in table 7, among the over 25 k sORFs

collected by high-throughput literature mining, MiPepid
predicted 80% of them as positive, which is a fairly high
proportion. There are only 324 sORFs derived from MS
data, and MiPepid labeled 72% of them as positive. Note
that, on average, MS sORFs are significantly shorter than
those from other sources. In contrast, among the over
13 k Ribo-Seq derived sORFs, MiPepid only predicted
63% of them as positive. This is not very surprising
as there has been debate on the reliability of
predicting peptides from Ribo-Seq data; some inves-
tigators have argued that the capture of an RNA
transcript by the ribosome does not always lead to
translation [16], and that some of the ribosome asso-
ciated RNAs found in Ribo-Seq may be regulatory or
non-specifically associated.

We are interested in looking at the relationship be-
tween the length of a sORF and its coding probability
predicted by MiPepid.
Figure 2 shows a moderately positive trend between

the length of a sORF and its coding probability predicted
by MiPepid. This is reasonable considering the follow-
ing: (1) the longer a sORF, the less likely it occurs by
chance; (2) the longer a sORF, the more 4-mer informa-
tion it contains, which helps MiPepid to better classify
it. Yet, we do see that for many very short sORFs (< 20
aa), MiPepid was able to identify the positives, and for
long sORFs (> 50 aa), MiPepid was not misled by the
length, and was still able to identify some as negatives.
In Fig. 2, one can also see that sORFs derived from the
MS data are very short (< 30 aa).

MiPepid’s prediction on uORFs of protein-coding
transcripts
A uORF (upstream open reading frame) is an ORF (usu-
ally short) located in the 5′-UTR (untranslated region)
of a protein-coding transcript. A number of uORFs have
been discovered to encode micropeptides and to play
important roles in biological activities [47], and Ribo-
Seq evidence suggests that many uORFs are translated
[19]. uORFs have drawn increasing attention, and there
is a great interest in determining the coding potentials of
uORFs.
We extracted all possible small uORFs (from all 3

translation frames) of all annotated protein-coding

Table 4 List of micropeptides published after Dec 2015

Micropeptide name Protein sequence length in SmProt non-highConf Reference

MOXI 56 yes [42]

DWORF 35 yes [43]

Myomixer / Minion 84 yes [44]

SPAR 90 no [45]

HOXB-AS3 53 no [46]

in SmProt non-highConf: If this micropeptide was already included in the SmProt [34] non-high-confidence subset, then the value is “yes”, otherwise “no”

Table 5 Comparison with existing methods on the blind test set and the new_positive dataset

Method Blind test set New_positive

Positive Negative Overall

#Correct Accuracy #Correct Accuracy F1 Accuracy #Correct Accuracy

CPC [24] 17 0.02 567 1.00 0.04 0.42 0 0.00

CPC2 [25] 61 0.07 567 1.00 0.14 0.45 0 0.00

CPAT [26] 261 0.32 567 1.00 0.48 0.60 3 0.60

MiPepid (our method) 789 0.96 542 0.96 0.96 0.96 5 1.00

positive: the positive subset of the blind test set;
negative: the negative subset of the blind test set;
overall: the overall performance on the blind test set;
#correct: the number of correctly classified cases by a method;
accuracy: #correct divided by the total number of cases in that dataset/subset;
F1: the F1score
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transcripts in the Ensembl [34] human database. We
then used MiPepid to determine the coding potentials of
the extracted uORFs.
From 12,221 protein-coding transcripts, we extracted

42,589 small uORFs in total. 34.24% of the uORFs were
predicted by MiPepid as coding. Among the 12,221 tran-
scripts, 55.80% of them (6820) contain at least one po-
tential micropeptide-encoding uORF. For the readers’
interest, we compiled all the small uORFs together with
their coding potential score, location in the correspond-
ing transcript, etc. into a Additional file 1. This file is
available along with the MiPepid package.

MiPepid’s prediction on lncRNAs
Long noncoding RNAs (lncRNAs) are RNA transcripts
that lack a long ORF, and therefore were initially consid-
ered to be untranslated. Yet a growing number of
lncRNAs have been discovered to be actually translated
into functional micropeptides [36, 43, 45, 48].
We extracted all possible sORFs (from all 3 translation

frames) of all human lncRNA transcripts in Ensembl [34]
(those with the following biotypes: non_coding, 3prime_
overlapping_ncRNA, antisense, lincRNA, retained_intron,
sense_intronic, sense_overlapping, macro_lncRNA, or bi-
directional_promoter_lncRNA). From the 26,711 lncRNA
transcripts, we extracted 371,123 sORFs, averaging ~ 14
sORFs per transcript. 31.28% of the sORFs were predicted
as coding. 86.63% of lncRNA transcripts were predicted to

have at least one sORF that could potentially be translated
into a micropeptide.
We present MiPepid’s prediction results on lncRNAs

not for evaluating its performance but to show that the
proportion of sORFs in lncRNAs that are “similar” to
sORFs of high-confidence micropeptides in our training
set is very high. It is impossible to evaluate MiPepid
using the lncRNA results as we have very little data on
which sORFs in lncRNAs are truly positive, and which
are not. The results serve as a reference for researchers
interested in further work on any of those lncRNAs. The
Additional file 1 containing MiPepid results on the 26,
711 annotated lncRNAs is also available in the MiPepid
software package.

MiPepid’s prediction on small protein-coding genes in
other model organisms
MiPepid was trained on human data, and we expect that
it would work well on related mammalian species, such
as mouse, rat, etc. Yet, we want to know how well it gen-
eralizes to other species, e.g., plants, bacteria, etc. We
therefore collected all annotated small protein-coding
sequences (<= 303 bp) in E. coli, yeast, arabidopsis, zeb-
rafish, and mouse from the Ensembl database [34], and
examined whether they are predicted to be coding se-
quences by MiPepid. MiPepid sucessfully predicts at
least 93% of the sequences as coding for these 5 species
(Table 8). This indicates that MiPepid has been able to

Table 6 Comparison with sORFfinder

Method Blind test set

Positive Negative Overall

#Correct Accuracy #Correct Accuracy F1 Accuracy

sORFfinder 708 0.86 506 0.89 0.89 0.87

MiPepid (our method) 789 0.96 542 0.96 0.96 0.96

positive: the positive subset of the blind test set;
negative: the negative subset of the blind test set;
overall: the overall performance on the blind test set;
#correct: the number of correctly classified cases by a method;
accuracy: #correct divided by the total number of cases in that dataset/subset;
F1: the F1 score

Table 7 MiPepid’s prediction on the non-high-confidence data in SmProt

Data source #sORFs avg sORF length (aa) #Predicted positive Proportion

high-throughput literature mining 25,663 44 20,516 0.80

ribosome profiling 13,715 36 8596 0.63

MS data 324 15 233 0.72

high-throughput literature mining: published sORFs that were identified using high-throughput experimental methods;
ribosome profiling: sORFs predicted from Ribo-Seq data;
MS data: sORFs predicted from MS data;
#sORFs: number of sORFs from a particular data source;
avg sORF length (aa): the average length of sORFs measured in number of amino acids;
#predicted positive: number of sORFs that are predicted as positive by MiPepid;

proportion: avg sORF length
#predicted positive
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successfully learn generalized sequence patterns typical
of human sORFs, and in addition, suggests that small
protein-coding gene sequences share hidden patterns
across biological kingdoms.

Conclusions
MiPepid is designed to take a DNA sequence of a sORF
and predict its micropeptide-coding capability. We suggest
using sequences with transcriptome-level evidence, i.e.,
DNA sequences that are indeed transcribed, as MiPepid
was trained to determine whether a transcript can be trans-
lated, and the training data did not include sORFs from un-
translated DNA regions. The potential for an untranslated
DNA sequence, such as an intergenic region, to be tran-
scribed and translated was not addressed. MiPepid was spe-
cifically developed to predict small ORFs and “regular-
sized” ORFs were not included in the training. Therefore,
we recommend using MiPepid only on sORFs; MiPepid is
not trained to efficiently predict long ORFs such as those
found in typical mRNAs. MiPepid was trained on human
data, but should work for related mammalian species, such

as mouse, rat, etc. Retraining the model on other species re-
quires only a set of known micropeptides and the corre-
sponding genomic sequence.

Availability and requirements
Project name: MiPepid
Project home page: https://github.com/MindAI/MiPepid
Operating system(s): Platform independent
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Any restrictions to use by non-academics: None
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