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Abstract

Background: Gene and protein interaction data are often represented as interaction networks, where nodes stand
for genes or gene products and each edge stands for a relationship between a pair of gene nodes. Commonly, that
relationship within a pair is specified by high similarity between profiles (vectors) of experimentally defined interactions
of each of the two genes with all other genes in the genome; only gene pairs that interact with similar sets of genes
are linked by an edge in the network. The tight groups of genes/gene products that work together in a cell can be
discovered by the analysis of those complex networks.

Results: We show that the choice of the similarity measure between pairs of gene vectors impacts the properties of
networks and of gene modules detected within them. We re-analyzed well-studied data on yeast genetic interactions,
constructed four genetic networks using four different similarity measures, and detected gene modules in each network
using the same algorithm. The four networks induced different numbers of putative functional gene modules, and each
similarity measure induced some unique modules. In an example of a putative functional connection suggested by
comparing genetic interaction vectors, we predict a link between SUN-domain proteins and protein glycosylation in the
endoplasmic reticulum.

Conclusions: The discovery of molecular modules in genetic networks is sensitive to the way of measuring similarity
between profiles of gene interactions in a cell. In the absence of a formal way to choose the “best” measure, it is
advisable to explore the measures with different mathematical properties, which may identify different sets of
connections between genes.
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Background
The results of genome-scale experiments often can be
presented in the form of a matrix that describes quanti-
tative behavior of genes in a specific measurement space.
Frequently, the matrix is set up so that the rows repre-
sent genes or their products, the columns represent vari-
ous conditions under which the properties of genes/gene
products are assayed, and each matrix element is a
numeric measurement associated with a gene in a par-
ticular condition. For instance, a matrix can characterize
the gene expression space, where each column stands
for the amount of specific mRNA present in a sample at

a given time point, or under a specific drug treatment,
or in a particular tissue in a multicellular organism. In
all these cases, a matrix row consists of ordered mea-
surements describing the transcript accumulation under
the set of conditions, i.e., it can be viewed as a gene
expression vector.
Other measurement spaces include, for example, pro-

tein-protein interaction space, where the data matrix
consists of rows that may represent protein baits, and
columns may represent, for example, purification sam-
ples; then, each matrix element is an event of product
detection, or a measurement of its abundance, in a sam-
ple baited by a given protein, and the row corresponding
to each gene product can be viewed as a protein inter-
action vector. A measurement space summarizing pro-
tein localization data may also be envisaged, where the
columns are the defined locales in a cell, the matrix ele-
ments are the presences or intensities of protein reporter
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readouts at these locales, and each row is a protein
localization vector.
In this study, we are concerned with the genome-wide

vectors of yet another kind, i.e., genetic interaction
vectors, which describe synthetic interactions of a null
allele of a given gene with the null alleles of other genes
in the same genome. In a genetic interaction matrix,
both rows and columns correspond to genes (typically,
those that are non-essential when deleted individually),
and the matrix elements represent measurements of
viability or fitness of the strain in which both genes are
deleted.
Many research problems in genome sciences and in

systems biology can be cast as the analysis of relation-
ships between gene vectors, and a standard way to
analyze these relationships is to find groups of gene vec-
tors that are close to each other in a given measurement
space. Many problems inherent in finding groups in a
multidimensional measurement space has been explored
(see the overviews of general issues, e.g. in [1–3]), and
the need for defining tight groups of genes on the basis
of their properties assessed at the genome scale have led
to (re)invention of many cluster analysis methods by
biologists [4–10].
The representation of genomic data as complex net-

works is also popular (comprehensive discussion in
[11]). In gene and protein networks, nodes typically rep-
resent genes or their products, and edges may link the
pairs of genes that have a “biologically interesting” rela-
tionship. Sometimes such a relationship is a direct phys-
ical connection or interaction between two genes or
their products, but, at least as often, the relationship is
defined as similarity between the patterns of interaction
of each gene with other molecules in the cell. For ex-
ample, in many derivations of gene expression networks,
an edge stands for a similarity in mRNA levels of two
genes across many tested conditions, and not necessarily
for a direct effect of one gene on the expression of the
other. In protein interaction networks, an edge between
two protein nodes may represent the similarity between
the sets of purification partners for both proteins, rather
than a direct contact between the two proteins. And in
gene interaction networks, the edges may connect genes
that have similar profiles of synthetic interactions, such
as sickness or lethality, with other genes, regardless of
the direct evidence of genetic interaction between a
given pair (Fig. 1). The ability to use the genome-wide
data to infer such links between genes, including the
cases when one or both of the linked genes are other-
wise uncharacterized, is one of the strengths of the sys-
tems approach.
Thus, a close connection exists between gene vectors

and genome-wide networks: in many networks, an edge,
by definition, is a link between a pair of genes whose

genome-wide interaction vectors are highly similar. To
reiterate, a gene interaction vector directly encodes ex-
perimentally detected interactions of a gene, whereas a
gene network encodes gene relationships, which also
may be called “gene interactions” in the literature. How-
ever, unlike the interactions directly recorded in a gene
vector, the interactions in the latter sense are inferred
from the properties of gene vectors. It may be useful to
call the former “experimental interactions” and the latter
“inferred interactions” to maintain awareness of the dif-
ference between the two.
The inferred interactions are the basis of many gene

network representations, and they are often used for de-
tecting modules in gene networks. Intuitively, a module
is a set of genes that tend to have more experimental
and/or inferred interaction events with each other, or
perhaps stronger interactions, than is predicted by a par-
ticular random-interaction model; genes within a mod-
ule also tend to have fewer or weaker interactions with
genes outside the group than what is predicted by the
model [12]. Thus, both definition and practical detection
of a gene module are dependent, first, on the measure of
closeness between genes and, second, on the choice of
statistic comparing gene closeness to some expectation
of closeness of random pairs of genes (Fig. 1).
This study focuses on one aspect of the analysis of the

genetic interaction networks, namely the ways to meas-
ure the closeness between vectors of experimental inter-
actions. The dataset that we have chosen for analysis has
been produced using the Synthetic Genetic Array (SGA)
family of approaches, which is based on the systematic
screening of viability of double mutants [13–16]. In the
best-studied setting, a viable strain of baker’s yeast
Saccharomyces cerevisiae with a deleted non-essential
query gene is crossed to an array of all other viable
strains with single gene deletions. By comparing the
fitness defect of a double mutant to the fitness defects in
each of the two parents with single-gene deletions, one
can measure the strength of interaction between these
two genes [16–18].
In the foundational study (ref. [14]), genetic inter-

action networks were established from the interaction
scores through a multistage algorithm that included sev-
eral heuristic steps. Our study revisits the primary
matrix of genetic interaction scores, applies different
measures of closeness between the pairs of row vectors,
and derives a secondary matrix, where the elements rep-
resent the degree of similarity between pairs of vectors
(Fig. 1). We constructed similarity matrices using differ-
ent measures of closeness between genetic interaction
vectors and built the networks of genetic interactions on
the basis of pairwise similarities of vectors rows in each
matrix. We analyzed the properties of the resulting net-
works, their modular structure and the utility of induced
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modules for making biological inferences about gene
function. Our main conclusion is that different similarity
measures produce genetic interaction networks with dif-
ferent global properties and induce different gene mod-
ules in these networks.

Results
Clustered graphs and modules within them: different
similarity measures result in different summary statistics
for networks and modules
The SGA analysis defined gene interaction modules by a
heuristic algorithm that employed a pairwise similarity
measure between gene interaction vectors. The measure
is based on Pearson correlation coefficient, but the algo-
rithm uses many computational steps and employs extra
information about gene function from the databases

[14, 16, 18, 19]. We were interested in comparing this
de facto standard with the performance of other mea-
sures of closeness, in particular those that may have
mathematical properties distinct from Pearson correl-
ation. To that end, we selected three other similarity
measures, all of which operate on vectors with binary
coordinates. The first reason for such relatively im-
pressionistic choice was that the similarity measures
of that type have mathematical properties different
from the correlation-based measures. The second rea-
son was that binary vectors and measures defined for
them have been advocated for analysis of the gen-
ome-wide datasets in the literature, in part because
continuous measurements are not always possible or
may have to be discretized because of the technical
concerns. The third reason was that some of the

Fig. 1 General outline of genetic interaction assays and schematics of the data transformations used in the process of their analysis
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measures that we employed have been developed to
correct certain undesirable properties of the measures
applied to the analysis of genomic data previously
(see also the Methods section).
The descriptive statistics for each distance measure

after one kind of the data transformations that we used,
i.e., the “one-square” transformation (see Methods) is
presented in Table 1, with distance distributions for the
vectors shown in Fig. 2. The summary statistics and
distance distributions for the “two-squares” method
(Additional file 1: Table S1 and Additional file 2: Figure
S1, respectively) are deposited at the Zenodo data re-
pository under the accession number 3361844, as indi-
cated in the Availability of data and materials Section.
Additional supporting information placed in the reposi-
tory includes original interaction score matrices for the
dataset, the eight distance matrices representing the four
distances calculated for both the “one-square” and “two-
squares” methods, and the lists of genes included in the
matrices.
The measure of similarity between vectors appears

to have considerable effect on the shape of the distri-
bution curves for the similarities between vectors.
The Maryland, Ochiai, and Braun-Blanquet spaces are
dominated by low similarity values; 99% of all dis-
tances are less than 0.2. In contrast, the curve for
Pearson-based distances has the inflexion point near
the 50th percentile of the data (Fig. 2). Thus, the
choice of similarity measure may have an impact on
the proportion of similarities that are registered as
relatively high.
For each interaction matrix obtained with a particular

similarity measure, we produced a network in which
genes are represented as nodes and the weight of an
edge represents the similarity score between the two
genes it connects. In order to make the networks rela-
tively sparse and more amenable to module analysis, we
applied a weight threshold to each matrix, so that the
20,000 edges with the highest weight were retained, and
the rest were removed. The selection of the network size
at this step is arbitrary; there were typically around 2.107

non-zero interactions in the square matrix, so 20,000

edges represented only a small fraction of all interac-
tions, and the sets of nodes retained after this filtering
may not be the same in all networks. The filtered net-
works sometimes contained small unconnected parts
along with the main component. These sections were
discarded, even though some of them may contain
groups of functionally linked genes.
Some properties of the filtered networks are shown in

Table 2 and Fig. 3. Unlike what was seen with the distri-
bution of pairwise similarities between gene interaction
vectors, there is no sharp difference between the net-
works induced by the binary vector-based similarities
(Maryland bridge, Ochiai and Braun-Blanquet, referred
to as M, O and B in the rest of the article) and the net-
work built using Pearson correlation-based similarity
(“P”). The latter has the largest number of nodes and the
largest central connected component, but the difference
in the number of nodes between the networks is not
dramatic: the intermediate-sized network M contains ~
10% fewer nodes than P, and O and B each contain 10%
fewer nodes than M.
To find groups of genes with similar properties within

these complex networks, we partitioned each of the
clustering solutions with the aid of the widely used Gir-
van-Newman module-finding algorithm (ref. [12]). The
algorithm has no intrinsic stopping rule and iterates
until every edge is removed. We assumed that many
functional gene modules are likely to contain between 5
and 50 nodes, and recorded all modules that fell within
this range at any step of the recursive edge removal. A
union of all such modules found in each network is
called a “clustering” or a “clustering solution” below. A
clustering is not a proper partition of the gene set, as
some genes do not belong to any cluster, and the mod-
ules within a clustering may be nested.
Table 2 also shows the number of individual clusters

and the number of genes appearing in at least one clus-
ter for each clustering solution. As can be seen, different
similarity measures between interaction vectors gener-
ated a different number of network modules. All cluster-
ing solutions included only a subset of all genes from
the data, but, interestingly, the fraction of genes included
in clusters differed between the clustering solutions in a
way not readily predictable from the initial network size
(Table 2 and Fig. 3). For the largest network P, 69% of
proteins remained in clusters after stopping the algo-
rithm; for the intermediate-sized M, only 16% of pro-
teins remained in clusters; and the smallest networks O
and B produced clusters comprising larger proportion,
as well as larger absolute number of genes, than in the
case of M.
Given the difference in the number of nodes in each

of clustering solutions, we asked how the clusterings ob-
tained from each network differed from each other. To

Table 1 Statistics of similarity scores between yeast genetic
interaction vectors under different similarity measures for the
one-square matrix

Braun-
Blanquet

Maryland
Bridge

Ochiai Pearson

Mean 0.04 0.06 0.06 < 0.01

Variance 0.01 < 0.01 < 0.01 < 0.01

Median 0.03 0.06 0.05 < 0.01

Minimum 0 0 0 −0.36

Maximum 0.53 0.60 0.57 0.81
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that end, we computed the Clustering Error (CE) index
for each pair of clusterings (see Methods). The values
for the pair M and B, and well as pairs of P with each of
the three other clustering, were between 0.91 and 0.93,
whereas CE index for the B and O was 0.75, and for M
and O it was 0.87, suggesting that some amount of non-
redundant information may be present in different clus-
tering solutions. Direct comparison of the shared and
unique genes between the clustering solutions is shown
in Fig. 4. The high number of shared genes in the
Braun-Blanquet and Ochiai clusterings is particularly
notable.

All similarity measures induce modules with considerable
functional information
The original analysis of the SGA data (ref. [14]) used a
multistage, knowledge-based algorithm to divide their
network into eight subnetworks, further splitting them
into functional modules of various sizes. The approach

was validated by the recovery of many known functional
modules and definition of novel components of these
modules. We were interested in whether our much sim-
pler, parameter-poor approach could nevertheless ap-
proximate these results. We call a module from one of
our clustering solutions consistent if it fulfills two separ-
ate conditions: i. 80% of the genes in the module have
been assigned to one and the same cluster in [14], and ii.
the proportion of the genes shared the same database
annotation was at least 80% for clusters with 10 genes or
more, or at least 50% for clusters with less than 10
genes. The clustering solution P is the closest to the ori-
ginal findings in [14], with about 26% of our modules
mapping to at least one of the clusters characterized in
that study (see Additional file 4: Table S3 in the Zenodo
repository accession number 3361844, as indicated in
the “Availability of data and materials” section, for the
percentage of mapped modules for the four distance
measures for both the “one-square” and “two-squares”

Fig. 2 Cumulative similarity distributions between genetic interaction vectors under different similarity measures for the
“one-square” transformation

Table 2 Properties of gene interaction networks and modules derived from the networks under different similarity measures. All
values are for the one-square matrix transformation method. See Methods and Discussion for detailed discussion, Figs. 3 and 4 for
visual representation of the data, and supplementary online materials for generally similar results obtained under the two-square
transformation

Similarity measure Braun-Blanquet Maryland Bridge Ochiai Pearson

Similarity threshold applied to retain ~ 20,000
edges in the network

0.16 0.18 0.20 0.15

Nodes (genes) in the network / nodes (genes)
in the giant connected component

3427 / 3303 3610 / 3587 3385 / 3321 4038 / 3956

Edges in the network / edges in the giant
connected component

20,020 / 19,943 20,065 / 20,052 20,067 / 20,032 20,016 / 19,967

Unique genes in modules / percentage of all
genes in respective giant connected component

2072 / 62.7 725 / 20.2 1519 / 45.7 3072 / 77.6

Number of modules / unique genes per module 682 / 3.04 408 / 1.78 516 / 2.94 1446 / 2.12

Biological Homogeneity Index 0.12 0.27 0.16 0.33

Percentage of uncharacterized genes / p-value /
clusters with uncharacterized genes

36 / 10−38 / 38 17 / 10−11 / 2 36 / 10− 22 / 30 26 / 10− 3 / 35

Annotated modules of Type 1 / Type 2 36 / 409 64 / 119 48 / 309 279 / 568
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methods. Descriptive summaries of the “two-squares”
modules and networks, equivalent to the “one-square”
Table 2, can also be found in Additional file 3: Table
S2).
This result is of course expected, because the original

module definition algorithm had used Pearson correl-
ation for assessing similarity between interaction

profiles. Other clusterings generated fewer consistent
modules, but, as will be shown below, they may contain
useful information not found in solution P.
We found that the proportion of uncharacterized

genes included into modules is also different among
clustering solutions (Table 2 and Fig. 4). The propor-
tions of unknown genes in different clustering solutions

Fig. 3 Select statistics of clustering and module annotation. The data are taken from Table 2

Fig. 4 Genes shared between clustering solutions and the number of uncharacterized genes in each clustering solution. Line thicknesses
represent genes shared by each pair of solutions, with the width proportional to their number, also shown next to each line. The band color
represents the p-value of the number of shared genes between each pair of clusterings. The area of each circle is proportional to the number of
genes shown next to the circle, and the size of each inner circle indicates the number of uncharacterized genes, shown in parentheses
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were between 17 and 36% (average 27%). Statistical ana-
lysis, using Fisher’s exact test, indicates strong statistical
overrepresentation of uncharacterized genes in cluster-
ing solutions B and O, and strong underrepresentation
of uncharacterized genes in M (Table 2; see additional
online information for the details of the calculation).
This and other tests, discussed in the additional online
information, suggest again that different distance mea-
sures induce modules that are not randomly drawn from
the population, but may contain information about gene
function not recovered by other measures.
We then examined all modules that contained between

5 and 11 genes. We called them Type 1 or Type 2 de-
pending on whether, respectively, more or less than 50%
of the genes in the cluster were already known to be
functionally linked. Obviously, any such number is the
lower bound, because some of the genes not known to
have a connection to the rest of the module may in fact
be so connected. The results, shown in Table 2 and Fig.
3, suggest that the clustering P produced the dramatic-
ally largest number of biologically characterized mod-
ules, with the largest number of genes included into
them. The clustering B, in contrast, has eight times
fewer biologically characterized modules.
Taken together, the data discussed in this as well as

the previous section and visualized in Figs. 3 and 4
suggest that there are many similarities between cluster-
ing solutions B and O, and also considerable differences
between those two solutions, as well as between them
and solutions P and M. Our data statistics, as well as
many specific examples, one of which is discussed in the
following section, also suggests that modules from large
and small networks overlap incompletely, i.e., clustering
solutions from smaller networks are not all subsets of
those from the larger networks.

Novel putative connections between genes: SUN domains
may be associated with protein glycosylation
The SUN (Sad1-UNC-84 homology) domains are
present in all eukaryotes, typically in proteins that are
associated with the nuclear envelope and play roles in
nuclear migration, meiotic telomere tethering, and other
processes related to nuclear dynamics; the role of SUN
domains is incompletely defined but may involve medi-
ation of protein-protein interactions in the perinuclear
space (reviewed in [20]). The all-beta fold for the SUN
domain family has been predicted, and distant sequence
similarity of SUN domains to the carbohydrate-binding
discoidin domain has been pointed out [21]. The subse-
quently determined three-dimensional structure of a
human SUN2 protein confirmed the all-beta structure of
the protein but did not address the carbohydrate
connection [22]. A direct comparison of a SUN2 struc-
ture (pdb 3UNP) with a database of protein three-

dimensional structures, however, reports discoidin as its
best match, followed by various sugar-binding domains,
often comprising the non-catalytic moieties of the bac-
terial and eukaryotic sugar-modifying enzymes, with
convincing z-scores of 12–16 (searches performed in
July 2018 using DALI web server [23]). This is compat-
ible with a hypothesis that SUN domains interact with
carbohydrates – most likely, with glycosylated proteins.
Such interactions, however, have not been demonstrated
experimentally.
Inspection of modules detected in this work shows

that one SUN-domain protein in yeast, the product of
the Slp1 gene, is found in module 638 of clustering P,
together with several genes involved in protein glycosyla-
tion in the endoplasmic reticulum (ER). These genes are
Alg3, Alg6, Alg12 and Die2, encoding glycosyltransfer-
ases that synthesize the dolychol-linked oligosaccharide
and transfer it to the asparagine residues in the target
proteins, as well as Spc2, a subunit of signal peptidase
that cleaves a leader peptide off the proteins secreted via
ER. Also in this cluster is an uncharacterized integral
membrane protein YER140w/Emp65, which has been
shown to interact genetically with Slp1 [24]; the complex
of those two proteins in yeast apparently protects soluble
proteins from degradation as they are delivered to the
ER lumen [25]. Interestingly, in the module 347 of our
smallest clustering solution B, yeast Slp1 is found to-
gether with yet another glycosyltransferase, cytoplasmic
glycogenin Glg2, which primes glycogen synthesis by
conjugating itself to a molecule of glucose that is then
extended into a polysaccharide chain by glycogen
synthase.
Protein glycosylation is thought to be sensed by the

proteostasis machinery in ER, though it has been
noted also that yeast Slp1-Emp65 complex protects
glycosylated as well as non-glycosylated proteins [25].
On the other hand, a plant ortholog of Emp65, called
POD1 in A.thaliana, is known to facilitate pollen tube
guidance in response to micropylar female signaling
[26], a pathway in which multiple components of pro-
tein glycosylation machinery in the ER are also in-
volved [27, 28]. All things considered, it is worth
investigating whether Slp1 and other SUN-domain
proteins play a role in glycosylation of proteins deliv-
ered to the continuum of nuclear and ER lumen, in
facilitating maturation and functions of glycosylated
proteins in this compartment, or in interactions of
the protein glycosylation machinery with other lumen
components. Moreover, inferred genetic interactions
of Slp1 and Glg2 may add support to the predicted
connection of SUN domains to protein glycosylation,
and perhaps suggest that glycogenins may have add-
itional roles in yeast cell beyond priming glycogen
synthesis.
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Discussion
In this work, we investigated one step in the process by
which the units of molecular function in a eukaryotic
cell – the modules of genes and their products that
“work together” – are computationally defined. The
property of “working together” is not always determined
by a direct experimental measurement, but more often
by inference. Such inferences from the raw data are done
by a multi-stage analysis, ridden with assumptions and
sensitive to the choices of algorithms, parameters and
heuristics made along the way.
Mani et al. (ref. [17]) have highlighted the fact that a

genetic interaction itself can be defined in many ways.
For a pair of genes (x, y), given the values of the fitness
phenotypes of the single mutants, Wx, Wy, one may be
interested also in the value of the expected fitness
phenotype of a double mutant E(Wxy). The value of
E(Wxy) may be set to min(Wx, Wy), or to (Wx · Wy), or
take some other form, and interaction between the pair
of genes in each case can be defined as a significant devi-
ation from E(Wxy). That study concluded that different
definitions of interaction, when applied to the same raw
mutant-fitness data set, may give either negatively or
positively shifted distributions of the fitness values.
Moreover, interaction networks inferred using different
definitions of genetic interaction vary greatly in their
quantitative properties and in the modules of function-
ally interacting proteins discovered in them.
Our work is similar in spirit, but we studied a different

stage of network inference; our main focus was not on
the comparison of the ways to obtain or transform the
values of the elements in the interaction matrix, but
rather on the measurement of similarity between or-
dered sets of these elements. Just as there are many ways
to define genetic interaction, there are many possible
measures of (dis)similarity between interaction vectors.
There is an extensive literature on the mathematical and
statistical properties of those measures, as well as on
connections and differences between different measures
[9, 29–33], but only a limited guidance exists on how to
select a good way to assess (dis)similarity between
vectors representing genome-scale data (see discussion
in ref. [9]).
In our re-analysis of a well-studied set of yeast functional

modules produced by the SGA platform, we asked two spe-
cific questions: first, whether it is possible to recover a
significant portion of the known functional information
using a simple approach to network edge definition and
standard community detection algorithm, as long as Pear-
son-based similarity measure is employed; and second,
whether the application of other kinds of similarity mea-
sures would produce similar or very different results, and
whether some of the measures may lead to significant loss,
or perhaps to partial gain, of signal in the data.

The results of some of our analyses were as expected,
while others were more surprising. Expectedly, in nearly
all tests, P-clustering and P-modules were the most in-
formative, with the majority of the P-modules mapping
to the already inferred functional units in the yeast cells,
which were in the first place discovered by a multistep
procedure based on a Pearson correlation-based similar-
ity measure, verified against the known biology. Interest-
ingly, if perhaps also not too surprisingly, the fraction of
our P-modules mapped to the modules from the original
study was substantial, despite the simplicity of our infer-
ence procedure. Thus, the answer to our first question is
“Yes”: the bulk of state-of-the-art information on the
functional modules can be obtained by employing a par-
ameter-poor model and a generic algorithm to find com-
munities in the network.
Less expected is the fact that the answer to our second

question is also a qualified “Yes”: similarity measures ap-
plicable to the vectors with binary coordinates also re-
cover considerable functional information, including
non-redundant evidence of functional links between
genes. It is also worth mentioning that at different steps
of the analysis, the statistics comes out in unexpected
ways for different similarity measures: for example, the
M distance gives a much larger proportion of functional
gene modules than O and B distances, whereas the latter
two are the ones most enriched with functional links
that were scored as novel in the manual re-annotation
(Table 1, Figs. 3 and 4).
Our study is far from comprehensive; we have not dis-

cussed many similarity measures that have been pro-
posed in the literature for the analysis of genomic data.
It should be noted that the P similarity measure is de-
fined for binary coordinates and interval coordinates
alike, and that generalizations for the case of interval
coordinates are available for M, O, B and many other
similarity measures. Furthermore, the thresholding steps
to limit the number of edges in a complex network, as
well as converting weighted edges to unweighted ones,
lead to post hoc data discretization, potentially with loss
of sensitivity, and systematic analysis of these elements
of the inference procedure should also be of interest.
In the recent years, several thorough comparisons of

similarity measures for analysis of multidimensional data
sets have been published. For example, Deshpande et al.
[34] focused specifically on the effect of similarity mea-
sures on the properties of genetic interaction networks
from different model systems, whereas Shirkhorshidi et
al. [35] examined the effect of the choice of dissimilarity
measure on the analysis of continuous data in several
‘big data’ sets, mostly from outside of biology. Extensive
benchmarking in these studies revealed that the per-
formance of a measure in recovering the known signal
in the data is not always easy to explain on the basis of
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its mathematical properties, and that measures for vec-
tors with binary and interval coordinates may recover
non-identical subsets of the known relationships from
the same data. Similar observations have been reported
recently in the analysis of population structures that
relied on genome-wide vectors with the coordinates rep-
resented by genetic markers, where the choice of presen-
tation of the variables (categorical, transformed binary,
or interval) and of different dissimilarity metrics affected
the results in a significant way [36].
In an earlier work, it has been hypothesized that the

shape of the distribution of the (dis)similarity measures
for a particular dataset may be indicative of the perform-
ance of a measure in finding signals of interest in that
dataset; at least in some cases, “good” measures are
those for which the higher momenta of the distribution
reach their extremes [9]. If this turns out to be a general
rule, then it is possible that the optimal (dis)similarity
measure depends on the structure and the idiosyncrasies
of the dataset under study as much as on the mathemat-
ical properties of any specific measure.

Conclusions
We re-analyzed well-studied data on yeast genetic inter-
actions, asking whether the choice of the similarity
measure between pairs of gene vectors may impacts the
properties of gene interaction networks and of putative
functional gene modules detected within them. The four
networks and four sets of modules obtained in our study
induced different numbers of putative functional gene
modules, and each similarity measure induced some
unique modules. It appears that different similarity
measures, even those resulting in a small and relatively
fragmented clustering solutions, may nevertheless pro-
vide missing or complementary information helpful for
generation of biological hypotheses.

Methods
The dataset
The results of analysis of S. cerevisiae SGA [14] have
been obtained from DRYGIN, the Data Repository for
Yeast Genetic Interactions [37, 38]. The implementa-
tion of the SGA procedure used 1711 query genes,
each of which was crossed with an array of 3885 de-
letion mutants. Some genes were tested under mul-
tiple conditions, such as different temperatures; in
that case, each occurrence of a gene was treated as a
separate gene. Let Nquery represent the number of
query genes (1711), Narray represent the number of
array genes (3885), and Nall represent the number of
distinct genes encountered among the query and
array genes. Let the set of query genes be denoted by
Gquery, the set of array genes be denoted by Garray,

and the union of two sets be denoted by Gall. Some

genes are in both Gquery and Garray, such that the
total number Nall of unique genes in Gall is 4457.
The initial matrix of interaction scores X is a rect-

angular matrix with dimensions 1711 by 3885, where
rows are represented by Gquery and columns by Garray.
In this matrix each element xij is the interaction score
between query gene i and array gene j, so that the
vector vi = (vi1, …, vi3885) is the genetic interaction
vector of query gene i. The element vij can be posi-
tive or negative or zero, depending on the kind of
interaction between genes. One can also define the
column vectors of array genes: ci = (v1j, …, v1711j).
Our goal is to score the similarity of interaction pro-

files of each pair of genes with all their interaction part-
ners. We calculated similarity scores in two ways. The
first approach, the “two squares” method, was essentially
the same as in ref. [14]. In this method, two similarity
matrices Q and A were created from the original inter-
action matrix X.
Matrix Q was created by calculating similarity

scores (distances) between every pair of the query
vectors. Q was thus a symmetric matrix of size 1711
by 1711. That is,

Q ¼
q11 q12 ⋯ q1Nquery

q21 q22 ⋯ q2Nquery

⋮ ⋮ ⋱ ⋮
qNquery1 qNquery2 ⋯ qNqueryNquery

2
664

3
775

and

dist vi; v j
� � ¼ qij;

where vi and vj are row vectors of X and dist() is the
value of an arbitrary distance measure (see below).
Matrix A was created using the same method as

matrix Q, except that in this case, similarity scores were
calculated between every pair of the array vectors (the
columns of X). Therefore, A was a symmetric matrix of
size 3885*3885:

A ¼
a11 a12 ⋯ a1Narray

a21 a22 ⋯ a2Narray

⋮ ⋮ ⋱ ⋮
aNarray1 aNarray2 ⋯ aNarrayNarray

2
664

3
775

and

dist ci; c j
� � ¼ aij:

The similarity scores in matrices Q and A were then
placed in a 4457 by 4457 (Nall by Nall) supermatrix, S.
The rows of the supermatrix S are the elements of Gall,
and so are the columns of S.
Each element, QGqueryi;Gquery j

in Q that corresponds to

the ith and jth query genes is mapped to the element in
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S that corresponds to the positions of these genes in
Gall: SGallk ;Galll . In other words:

∀ i; j∈Gquery
� �

;QGqueryi;Gquery j
→SGallk ;Galll ; k; l∈Gallð Þ

The mapping for the elements in the A matrix, analo-
gously, is:

∀ i; j∈Garray
� �

;QGarrayi;Garray j
→SGallk ;Galll ; k; l∈Gallð Þ

For each element QGqueryi;Gquery j
mapped to S, if

neither Gqueryi nor Gqueryj were also in Garray, (or
vice versa, if neither Garrayi nor Garrayj were also in
Gquery), then the corresponding row or column is
missing S and is ignored in the following. If both
Gqueryi and Gqueryj were in Garray, (or if both Garrayi

and Garrayj were in Gquery) then the element in S
was averaged with the corresponding element in A
for those genes. Otherwise, the value was unchanged.
Because of this procedure, the resulting supermatrix
was symmetrical.
The second method used to calculate similarity scores,

the “one square” method, first places all elements from
the Nquery by Narray matrix X into their corresponding
elements of a supermatrix R (a square matrix of the size
Nall by Nall, i.e., 4457 by 4457) which only has inter-
action scores. That is,

∀ i∈Gquery; j∈Garray
� �

;XGqueryi;Garray j
→RGallk ;Galll ; k; l∈Gallð Þ

If no interaction experiment of the pair of genes in a
particular RGallk ;Galll element had been performed, then
that element in R was set to zero. If both a query-array
and array-query experiment had been performed on the
RGallk ;Galll element (that is, if both genes were both in
Gquery and Garray), then that element in R was averaged
between the two values. Otherwise, the value stayed the
same. After this process, the resulting supermatrix was
symmetrical.
(Dis)similarity scores were calculated on the pairs of

rows of the supermatrix R, creating a symmetric super-
matrix S. Denoting rows (row vectors) of R as v,

dist vi; v j
� � ¼ Sij

The data transformed by these two methods were
then analyzed as described in the rest of the
Methods section, and descriptive statistics was col-
lected at several stages. The data transformed by
these two methods were then analyzed as described
in the rest of the Methods section. The results for
both methods were similar (Table 1 and Fig. 2 show,
respectively, distance matrix summary statistics and
distance distributions for the “one-square” trans-
formation; equivalent data for the “two-squares”

transformation are available at Zenodo, accession
number 3361844).

Similarity/dissimilarity between vectors
Many measures of (dis)similarity between vectors have
been proposed in the literature. We now describe sev-
eral measures employed in this study and discuss
some of their notable properties. In the following, X ·
Y is the dot (inner) product of two vectors X and Y,
and kXk ¼ ffiffiffiffiffiffiffiffiffiffiffi

X � Xp
.

Maryland bridge (Mb) coefficient of similarity, pro-
posed in [39], is defined for binary vectors X and Y as

Mb X;Yð Þ ¼ 1
2

X � Y
Xk k2 þ

X � Y
Yk k2

 !
; ð1Þ

Mb can take values from zero for a pair of vectors
that do not share 1 s at any position, to one for any
pair of identical non-zero vectors. Higher score means
higher similarity. For two vectors of same length that
share half of their 1 s, their Mb is 0.5; such property
is also observed with the Dice (Sørensen-Dice) coeffi-
cient, given by the eq. (2), whereas better-known Jac-
card similarity coefficient provides a counter-intuitive
value of 1/3 in such a case.

D X;Yð Þ ¼ 2
X � Y

Xk k2 Yk k2 ; ð2Þ

Ochiai (O) coefficient of similarity is defined for bin-
ary vectors X and Y as

O X;Yð Þ ¼ X � Y
Xk k Yk k ; ð3Þ

The values of O can be from zero to one.
Braun-Blanquet (BB) similarity coefficients for binary

vectors X and Y include

BBmax X;Yð Þ ¼ X � Y
max Xk k2; Yk k2� � ð4Þ

and

BBmin X;Yð Þ ¼ X � Y
min Xk k2; Yk k2� � ; ð5Þ

They correspond the number of 1s shared by two
vectors, normalized by the largest (eq. 5) or the smal-
lest (eq. 6) number of 1s in either of the two vectors.
Both coefficients of similarity range from zero to one,
and a higher score means a higher similarity. Interest-
ingly, the Dice similarity (eq. 2) equals the harmonic
mean of the two Braun-Blanquet coefficients.
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Pearson correlation (r) coefficient between two,
possibly non-binary, vectors X and Y is given by the
formula

r X;Yð Þ ¼ X � Y−n�x�yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xk k2−n�x2� �

Yk k2−n�y2� �q
¼

Pn
i¼1 xi−�xð Þ yi−�yð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 xi−�xð Þ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 yi−�yð Þ2
q ; ð6Þ

where �x ¼ 1
n

Pn
i¼1xi and �y ¼ 1

n

Pn
i¼1yi . It ranges from − 1

to 1.
For the computation of the Pearson correlation coeffi-

cient, the raw gene interaction on the interval coordi-
nates were used directly. In the case of other similarity
measures, a threshold of 0.5 was applied to the raw
interaction scores to transform them into binary data:
the scores higher than the threshold were converted into
a 1 and score lower than a threshold (including a hand-
ful of negative scores, all of which had small absolute
values – see Table 1) into a 0.

Network visualization, partitioning and cluster
assessment
To detect clusters in the networks, the algorithm of
Girvan and Newman [12] was applied, as implemented
through the BGL toolbox [40] and Matlab release
R2009b (distributed by Mathworks). The algorithm eval-
uates the centrality of each edge in the network by com-
puting the shortest paths between each possible pair of
nodes in the network; the shortest path is defined as
such path between two nodes that minimizes the num-
ber of edges for unweighted graphs, or minimizes the
sum of weights on the edges for weighted graphs. The
algorithm counts how many such shortest paths include
(“use”) each edge, and removes the most-used edge from
the graph. The shortest paths are recalculated for the
modified graph, in which the centrality of some edges
may have changed.
The Clustering Error (CE) index [41] is defined as

CE S; S0ð Þ ¼ Uj j−D
Uj j ; ð7Þ

where |U| is the total number of elements in S and S′.
CE measures the overlap between two clustering solu-
tions S = {Si} and S′ = {Sj’} from the confusion matrix M
where mi,j is the number of elements shared by Si and
Sj’. This matrix is transformed with the Hungarian algo-
rithm, which associates each cluster from S with one
cluster from S′ in order to maximize the total number
of shared elements between pairs of clusters, D. The
resulting index ranges from zero for perfect identity of
clustering solutions to one. The clustering error was

calculated using M.Buehren’s Matlab package for the
Hungarian algorithm [42].
To assess the biological plausibility of the gene mod-

ules, we used yeast gene ontology [43], focusing on the
‘biological process’ hierarchy. The biological homogen-
eity index (BHI; ref. [44]) of a cluster C is

BHI Cð Þ ¼ 1
n n−1ð Þ

X
x≠y∈C

I x; yð Þ; ð8Þ

where n is the number of annotated genes in the cluster
and I(x,y) is equal to 1 if the genes x and y share at least
one functional annotation, and 0 if not. This index rep-
resents the probability that two annotated genes found
in the same cluster are functionally linked. It ranges
from 0 to 1, with a higher score meaning a greater
homogeneity. This index can also be applied to the
entire clustering solution, and in that case is the average
of the scores of all clusters in that clustering. The clus-
ters for which a score could not be calculated are not
considered in this average.

Additional files

Additional file 1: Table S1. Statistics of similarity scores between yeast
genetic interaction vectors under different similarity measures for the
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Additional file 2: Figure S1. Cumulative similarity distributions between
genetic interaction vectors under different similarity measures for the
two-square transformation. (PDF 179 kb)
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