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Abstract

Background: Protein pulldown using Methyl-CpG binding domain (MBD) proteins followed by high-throughput
sequencing is a common method to determine DNA methylation. Algorithms have been developed to estimate
absolute methylation level from read coverage generated by affinity enrichment-based techniques, but the most
accurate one for MBD-seq data requires additional data from an SssI-treated Control experiment.

Results: Using our previous characterizations of Methyl-CpG/MBD2 binding in the context of an MBD pulldown
experiment, we build a model of expected MBD pulldown reads as drawn from SssI-treated DNA. We use the program
BayMeth to evaluate the effectiveness of this model by substituting calculated SssI Control data for the observed SssI
Control data. By comparing methylation predictions against those from an RRBS data set, we find that BayMeth run
with our modeled SssI Control data performs better than BayMeth run with observed SssI Control data, on both 100
bp and 10 bp windows. Adapting the model to an external data set solely by changing the average fragment length,
our calculated data still informs the BayMeth program to a similar level as observed data in predicting methylation
state on a pulldown data set with matching WGBS estimates.

Conclusion: In both internal and external MBD pulldown data sets tested in this study, BayMeth used with our
modeled pulldown coverage performs better than BayMeth run without the inclusion of any estimate of SssI Control
pulldown, and is comparable to – and in some cases better than – using observed SssI Control data with the BayMeth
program. Thus, our MBD pulldown alignment model can improve methylation predictions without the need to
perform additional control experiments.
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Background
Affinity enrichment-based techniques for methylated
DNA capture remain a cost-effective method for achiev-
ing genome-wide coverage of the CpG methylome
[1–3]. Antibodies may be used to bind specifically to
denatured methylated DNA (methylated DNA immuno-
precipitation, MeDIP-seq [4]), or the binding domain
of Methyl-CpG-binding domain (MBD) proteins may be
used to bind specifically to double-stranded methylated
CpGs (MBD-seq [5]). Through incubation and pulldown
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with one of these types of agents, DNA enriched for
methylation is captured and then sequenced in a high-
throughput manner, reducing sequencing costs while still
mapping ∼ 70% and ∼ 80% of all mCpGs in the human
genome for MeDIP-seq and MBD-seq, respectively [1, 6].
These methods have been used to identify patterns of
methylation associated with gene expression and cell phe-
notypes, for instanceMBD-seq in themethylome profiling
of cancer [7–10].
Since pulldown reads are sequenced and aligned with-

out knowing which of the CpGs on the DNA fragment
were methylated, MBD-seq data are often processed
around the resolution of the DNA fragment length, typ-
ically in 100-500 bp windows. The interpretation of
MBD pulldown reads is also affected by the density
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and arrangement of mCpGs on the fragment, which is
known to influence the efficiency of capture by MBD
pulldown [11–13]. Thus, statistical approaches must be
used to quantify methylation levels from MBD pulldown
alignments and to increase its resolution to make it
competitive with bisulfite sequencing techniques. These
bisulfite sequencing techniques — whole genome bisulfite
sequencing (WGBS) and reduced representation bisul-
fite sequencing (RRBS) — remain the gold standard of
methylation prediction. However, they are still held back
by sequencing and data processing costs (in the case of
WGBS) and restrictions in genome coverage (in the case
of RRBS). Hence the optimization of MBD pulldown anal-
ysis is still important to methylome epigenetics, especially
for exploratory studies with large numbers of samples.
Various algorithms have been used to quantify absolute

methylation levels, or determine differentially methylated
regions directly from read counts, for bothMBD-seq [14–
16] and MeDIP-seq [17–20] data. The program BayMeth
has shown the highest accuracy in predicting methylation
from MBD pulldown coverage, as determined by com-
parison to methylation levels calculated by WGBS [14].
Specifically, BayMeth performs best when control data
from MBD pulldown run on a fully-methylated control
sample are available (Fig. 1). To generate such a sample,

DNA is treated with SssI CpG methyltransferase, which
methylates Cs in the CpG dinucleotide context [21], and
thus pulldown from this sample can inform the expected
number of reads from that genomic region at 100%methy-
lation. BayMeth then uses an empirical Bayes approach
to model expected MBD pulldown read densities condi-
tioned on the level of methylation and the CpG density of
the region.
Given our previous characterizations of methylated

DNA and MBD2 interactions [13], we built a model of
MBD pulldown alignments from SssI-treated DNA that
we tested the efficacy of through substitution for the
SssI control data set utilized by the BayMeth model.
Our model incorporates the fragment length distribution
in the MBD pulldown library, the minimum separation
between neighboring mCpGs needed for optimal pull-
down efficiency, and the relative representation of DNA
fragments with n mCpGs to those with 0 mCpGs, and
generates an expected MBD pulldown for every site in
the human genome from SssI-treated DNA (Fig. 1). We
find high correlation between the calculated pulldown
coverage, generated from our model of MBD pulldown
alignments, and observed pulldown coverage from an
SssI-treated control. Using our modeled pulldown cover-
age in conjunction with the BayMeth program produces

Fig. 1 Inputs for running BayMeth. On the left, obtaining read coverage of a genomic window i with some CpG pattern (circles) where the CpG is
either methylated (red) or unmethylated (empty). For the experimentally-derived inputs this is done by counting the number of aligned reads that
overlap the window from an MBD pulldown experiment done on a sample of interest (yiS = 5 for the window depicted on the bottom) or on an
SssI-treated sample (yiC = 5, for the window depicted in the middle). With our implementation of a calculated SssI Control proxy, we incorporate
the range of fragment lengths (�, where P(�) is the probability a fragment of length � is in the library) and the amount of SssI pulldown expected
(Cn) for a fragment given the number of accessible mCpGs (n) on the fragment. For a given site, x, within our window i, we calculate a term �x that
sums over P(�)Cn terms for all fragments that begin in the window (on the forward or reverse strands), and then sum over all these �x values in the
window to calculate yi� . On the right, arrows indicate which quantities are used as inputs into each BayMeth mode considered



Moreland et al. BMC Bioinformatics          (2019) 20:431 Page 3 of 15

methylation predictions that are comparable to those pro-
duced by BayMeth using observed control data, and in
some cases predictions using our model are better. Addi-
tionally, in all cases tested in this study, BayMeth used
with our modeled pulldown coverage performs better
than BayMeth run without the inclusion of any estima-
tion of SssI control pulldown. This shows that our MBD
pulldown alignment model can improve methylation pre-
dictions without the need to perform additional control
experiments. Source code implementing ourmodel can be
found at http://bioserv.mps.ohio-state.edu/SssICalc.

Methods
MBD pulldown experiment andmethylation reference
Pulldown data for a Sample of Interest were taken
from [22] to evaluate methods of methylation quantifica-
tion. These pulldown experiments were done using the
MethylMiner kit, which uses a biotinylated form of the
protein MBD2 to capture highly methylated fragments. In
addition, single CpG methylation fraction derived from
RRBS is used from that study to verify predictions. Bisul-
fite treatment converts an unmethylated C to a U, thus
a sequenced T/A aligning to an encoded C/G (depend-
ing on the strand) in the CpG context indicates absence of
methylation. To calculate RRBS methylation fraction for a
genomic window i that contains CpGs indexed by j, let rj
represent the number of RRBS reads that overlap CpG j,
andmj the number of those reads that overlap and read as
not bisulfite converted at the position of CpG j (i.e. CpG
j is methylated). Then μRRBS

i , the RRBS methylation level,
is

∑
j∈i mj

∑
j∈i rj

.

Modeled pulldown from SssI-treated DNA
Pulldown data is analyzed per genomic window i. We use
the construction x ∈ i to refer to all genomic positions x
that fall within genomic window i. Our model for �x, the
expected pulldown at position x, can be used to calculate
MBD pulldown signal from window i by summing over all
�x terms in the window and rounding down to the near-
est integer, yi� = ⌊∑

x∈i �x
⌋
, so that yi� can represent a

physical read count like the window coverage inputs that
BayMeth takes (see Fig. 1 and “BayMeth implementation”
subsection).
Three ingredients are used to calculate the expected

pulldown of a particular fragment of length � to a location
x: (i) The number of accessible mCpGs on the fragment,
(ii) the relative enrichment of that fragment due to this
number of mCpGs, and (iii) the probability of a fragment
of length � being sequenced in the pulldown library. Ingre-
dient (i) depends on theminimumseparationof consecutive
mCpGs in order for the two to be bound by two sepa-
rate MBD2 domains, set here to be 3 bp [13]. Ingredient
(ii) depends on the pulldown efficiencies as a function of

accessible CpGs. These pulldown efficiencies were calcu-
lated in [13] from the same MethylMiner kit as used here,
and we thus use the pulldown efficiencies E(nmCpGs) for
n well-separated CpGs from [13]. Then, the coefficients
for (ii) are derived as Cn = E(nmCpGs)/E(0 mCpGs)
(Table 1).We set themaximumnumber of mCpGs consid-
ered here to 7, which aligns with theMethylMiner Kit esti-
mate. To derive a sample-to-sample standard deviation,
sss, we sub-sampled the fragments by chromosome, and
calculated Cn on each sub-sample (Table 1 and Additional
file 1: Table S1). These standard deviations are under 5%
except for C6 and C7 due to the relative rarity of frag-
ments with 6 or more CpGs that satisfy our criteria for
analysis. While the standard deviation for C7 is particu-
larly large, given the overall depth of the input data, we
were previously able to show that for n ≤ 7,E(nmCpGs)
differs to a statistically significant degree when one cal-
culates it with the subset of fragments containing only
“well-separated” CpGs versus allowing any separation. As
the alternative would be to set C7 to C6, we propagate the
modest increase allowed by setting C7 ≈ 260. The frag-
ment length distribution required for (iii) has not been
derived before and will be discussed in more detail in a
later section. Source code for calculating yi� and example
data files from hg18 and hg19 reference genomes can be
found at http://bioserv.mps.ohio-state.edu/SssICalc.

BayMeth implementation
The BayMeth algorithm [14] was run using pulldown read
coverage calculated per genomic window i from just a
Sample of interest (yiS), with additional pulldown read
coverage data from an SssI-treated Control sample (yiC),
or with calculated control data generated from our model
of pulldown from SssI-treated DNA, yi�, used in place
of yiC . These inputs define the three implementations of
BayMeth that we consider, which we call BayMeth-noSssI,
BayMeth-SssI, and BayMeth-calcSssI respectively (Fig. 1).
We use the default parameters and recommended prior
distributions for calculating the normalization offset f and
hyperparameters α and β . For calculating a local CpG
density for each genomic window, we include bases within
an average fragment length of the window range (to set the
window parameter for the cpgDensityCalc function
in the Repitools package). To calculate read counts yiS

Table 1 MBD Pulldown scale factors

nmCpGs 0 1 2 3 4 5 6 ≥ 7

Cn 1 1.489 5.468 32.31 124.7 207.3 233.2 259.7

%sss - 1.7% 2.3% 2.2% 3.3% 4.8% 19% 81%

These scale factors are ratios of pulldown efficiencies comparing the SssI Control
and Input Control libraries, and represent the probability that a fragment with n
mCpGs will be pulled-down, sequenced, and aligned relative to a fragment with 0
mCpGs. A sample-to-sample standard deviation, sss, was calculated by
sub-sampling by chromosome, and is given as a percentage of the Cn value
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and yiC , the length of each fragment is approximated by
the average fragment length, and then for each genomic
window the number of reads that overlap the window is
counted.

Methylation quantification evaluation
Methylation fraction estimates on our Sample of inter-
est were calculated on non-overlapping, fixed-width win-
dows covering hg18. We use windows of 100 bp (as in
the original BayMeth paper) and 10 bp. BayMeth-SssI,
BayMeth-noSssI, and BayMeth-calcSssI were evaluated
on genomic windows with RRBS coverage of 10 or more
and at least 75% mappable bases. To determine mappa-
bility, we use project ENCODE’s mappability calculation
for each 36mer in the hg18 genome [23], which allows
for no more than 2 mismatches. Then the mappability
of the window is the fraction of bases with scores of 1.
We also compare methylation quantifications on the Sam-
ple of interest in the original BayMeth publication [14]
using their selection criteria of 100 bp windows on chro-
mosome 7 with at least 33 WGBS read coverage and at
least 75%mappable bases as determined by unique Bowtie
alignment.
To quantify performance of each methylation estimate

method, we calculate Receiver Operator Characteristic
(ROC) curves. For the ROC curve, the true methyla-
tion state of each considered window is determined to be
“methylated” if the BS methylation estimate on that win-
dow μRRBS

i > 0.50 and “unmethylated” if μRRBS
i ≤ 0.50.

Each estimate method produces a set of predicted methy-
lation levels {μi}. By sorting this list and varying the cutoff
that splits the “methylated” and “unmethylated” groups,
each point on the ROC curves represents a split that is
evaluated by calculating the resulting True positive rate
and False positive rate. The area under the ROC curve
(AUC) is thus a measure of how well the method’s pre-
dictions serve as an indicator of methylation state, the
maximum value being 1.

Results
Amodel of pulldown data from SssI-treated DNA
AnMBD enrichment-capture experiment produces a pool
of DNA fragments enriched for DNA methylation. Those
fragments are sequenced and the reads are aligned to
a reference genome to form the “pulldown” data set. In
order to generate a control sample that approximates the
pulldown of a genomic window at full methylation, the
experiment can be done on DNA treated with M.SssI to
methylate all cytosines in the CpG dinucleotide context. In
this study, we formulate a model of the expected pulldown
data from such an SssI Control sample to use in place of
an experimental SssI Control pulldown data set. Let �x
represent the average number of pulldown reads that align
to the genome starting at location x. For our purposes, we

assume that a fragment that aligns to location x, on the
forward or reverse strand, with a length � possesses the
corresponding sequence that is encoded in the genome.
From our previous results [13], the parameters that most
determine the probability that such a fragment starting at
xwould be pulled down are the number and spacing of the
CpGs on the DNA fragment. We summarize the number
and spacing of the CpGs by our term “accessible CpGs”.
This refers to the number of CpGs on the fragment that
can be simultaneously bound by MDB2 protein domains
after taking into account that MBD2 domains are steri-
cally excluded from binding if the CpGs are too close to
each other along the DNAmolecule. Thus, for�x, we con-
sider every fragment that could align starting at x and sum
over the expected amount of pulldown of that fragment,
weighted by the probability that a fragment of that length
would appear in the sample to begin with:

�x ∝
�max∑

�=�min

P(�)[Cn(x→x+�−1) + Cn(x−�+1→x)] , (1)

where the sum is over the range of possible pulldown frag-
ment lengths �. In Eq. (1), P(�) represents the probability
that a fragment sequenced from the pulldown data set is
of length �, n(a → b) the number of accessible CpGs
that would be on a fragment that starts at genomic loca-
tion a and ends at b (inclusive), and Cn the scale factor
for the representation of sequenced fragments that have
n accessible mCpGs. The two terms correspond to align-
ments on the forward strand and reverse strand that could
both align to location x. These Cn factors scale the prob-
ability of observing a fragment with n accessible mCpGs
to that of observing a fragment with 0 mCpGs. The other
normalization to consider is that which scales �x to the
sequencing depth of the modeled experiment. We choose
a pre-factor of 1 and later show that the overall results are
not affected by this choice over a large range of values.
To evaluate Eq. (1) for each site in a reference genome,

parameters n(a → b),Cn, and P(�) were derived as
detailed next from the experiments performed in [13].
These experiments resulted in two data sets. For both
data sets the DNA was first treated with SssI and then
fragmented. For the Input Control (I) data set, the DNA
fragments were simply sequenced. The SssI Control (C)
data set, on the other hand, represents the library of DNA
fragments that were submitted to the enrichment-capture
experiment, pulled down, and then sequenced. Compar-
ing SssI Control and Input Control data sets yields the
parameters of our model as follows:

Number of accessible CpGs
In [13], we deduced that the physical size of the binding
protein used for the pulldown experiment (in this case
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MBD2) can limit the accessibility of an mCpG to a bind-
ing protein if another nearby mCpG has already bound
a protein. Specifically, we found that pulldown efficiency
was suppressed for fragments with two mCpGs separated
by 2 bp or less, relative to those with separations ≥ 3
bp. We want the number of “accessible CpGs” to refer
to the largest number of CpGs that can be simultane-
ously bound by protein. To approximate this, we calculate
n(x → x + � − 1) for the DNA sequence represented by
[ x, x + � − 1], by finding the largest subset of CpGs on
the sequence such that each pair of CpGs in the subset
are separated by at least 3 bp. This is equivalent to allow-
ing an MBD protein to be bound at the first CpG, where
the location of the CpG is identified with the position of
the Cytosine and labeled c1. Then, going through the rest
of the downstream CpGs, the number of bound CpGs is
only increased, and the location of the last bound CpG is
updated from ci to ci+j, if (ci + 1) + 3 < ci+j.

Coefficients of relative enrichment
In [13] we also, as a corollary, introduced the pulldown
efficiency, E(n CpGs), for DNA fragments with n accessi-
ble mCpGs as the ratio between the fraction of the SssI
Control data with n CpGs and the fraction of the Input
Control data with n CpGs. Then Cn = E(n)/E(0) repre-
sents howmuchmore likely a fragment with nmCpGs will
be sequenced in the SssI Control data set than a fragment
with 0 mCpGs. Hence, as we sum over the fragments that
could align to location x, this factor accounts for relatively
how often we should expect to see a fragment with that
many mCpGs. See “Modeled pulldown from SssI-treated
DNA” subsection of the Methods for the specific values
calculated.

Length distribution of DNA fragments
The length distribution of DNA fragments that are aligned
to the reference genome can be approximated by Bioana-
lyzer analysis on the pulldown library after fragmentation.
To get a more precise description of the fragment length
distribution, we compared the distribution of alignments
from the SssI Control to the distribution in the Input Con-
trol. Let the fragment length probability distribution be
approximated by a Gaussian, P(�) ∼ N(L, S), where L is
the average fragment length and S is the standard devia-
tion. To determine its parameters L and S, we take all reads
that have been aligned to the reference genome and then
extend them to a segment of length �max = 250 (larger
than the expected actual fragment length) and then con-
sider only those segments where the genomic sequence
contains only a single CpG. To avoid edge effects we in
addition require that the C of this CpG must be located
at, or downstream of, the 11th nucleotide from the 5’ end
of the fragment. Let then p(1 CpG, t nt) be the fraction
of segments observed in the SssI Control data set with

one CpG, which starts at the tth nucleotide (with respect
to the 5’-end). Similarly, we define q(1 CpG, t nt) for the
Input Control data set. Then the predicted pulldown effi-
ciency for reads that are sequenced and align to a position
with one CpG located at the tth nucleotide downstream
with respect to that position is:

p(1 CpG, t nt)
q(1 CpG, t nt)

=
t∑

�=�min

R0P(�) +
�max∑

�=t+1
R1P(�) (2)

= R0 + (R1 − R0)P(� ≥ t + 1),

where R0 and R1 represent the pulldown efficiency for
fragments with 0 and 1 CpGs, as a ratio of fractions of the
pool of reads with only 1 CpG between 11 bp and 250 bp
from the 5′-end. This expression captures how, as we look
at fragments with a single CpG further and further down-
stream of the 5′-end, we will find the length past which the
CpG is not likely to actually be on the fragment and not
contribute to that fragment’s pulldown probability, and
therefore it marks the typical length of the sequenced frag-
ments. For a Gaussian P(�), we can approximate P(� ≥
t) ≈ Erf

(
t−L
S
√
2

)
− Erf

(
1−L
S
√
2

)
. We fit the experimental data

to Eq. (2) using the Python SciPy function curve_fit to
perform least-squares optimization, obtaining parameters
(R0 = 0.889,R1 = 1.187, L = 100.7, S = 12.98) from an
initial guess of (1.0, 1.0, 200, 50), (Fig. 2). This completely
characterizes the length distribution P(�) and from this
we set �min = 3 and �max = 200.
When comparing the fit to the data, we notice an

increase over the expected pulldown efficiency at � =
10 ∼ 30. It is not clear what the source of this trend is,
though there is another similar increase for � > 200. We
found the latter to be an artifact of our maximum � cutoff;
when we shifted �max from 250 to 300, the increase at the
largest � shifted with it and the parameter fits for L and S
were not significantly changed. We also note that the val-
ues for R0 and R1 do not match those for E(0 CpGs) and
E(1 CpG) because the latter are normalized to the larger
pool of all fragments with no CpGs contained in the first
10 bases versus the subset with just one CpG within 250
bp downstream of the alignment start.

Fragment length andmCpG number are sufficient to
model pulldown alignment to a genomic window
To begin thinking about using our model of �x as a
substitute for experimentally observed MBD pulldown
alignments, we wish to see how well SssI Control win-
dow coverage correlates with modeled window coverage.
We calculated expected SssI Control alignments, �x, for
every site in chromosome 7 and summed it over 100 bp
non-overlapping windows to generate modeled SssI Con-
trol window coverage, yi� = ⌊∑

x∈i �x
⌋
. Using the same

mappability cutoff as in [14], we compare this quantity to
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Fig. 2 Determining the pulldown fragment length distribution. Pulldown efficiency among read alignments with only 1 CpG within 250 bp
downstream as a function of CpG position (with respect to the 5′-end). Pulldown efficiency decreases around the CpG position corresponding to
the average sequenced fragment length since the CpG represented in the genome is no longer likely to be contained on the read that aligned
upstream. Fit to error function (red) is shown on empirical data (blue)

the observed SssI Control window coverage, yiC , at every
genomic window i that has at least 75% mappable bases.
In Fig. 3a, there is a general increase in the SssI Control
coverage as the modeled SssI Control coverage increases
(Pearson correlation between yi� and yiC is 0.78). Won-
dering at the reason for the slight turnover in SssI Control

coverage formodeled coverage values log10(yi�) > 4.5, we
suspect these regions are more likely to have high GC con-
tent and were therefore less likely to be sequenced in these
experiments [24]. We can control for which windows are
likely to be sequenced by dividing the SssI Control cov-
erage by the Input Control Coverage, yiI , to essentially

a b

Fig. 3Modeled SssI pulldown coverage,
∑

x∈i �x , correlates with observed SssI pulldown coverage. Among 100 bp windows on chromosome 7
with at least 75% mappable bases, we calculate expected SssI Control window coverage, yi� = ∑

x∈i �x , from our model of pulldown alignments
derived from previous MBD pulldown experiments. a A density plot shows that yi� correlates with observed SssI pulldown coverage, yiC ,
represented with offset 0.5 to allow for log-log plotting. b To account for parts of the genome that are less likely to be sequenced, we compare yi� to
yiC/yiI – wherever yiI , the read coverage from the Input Control sample, is nonzero – which scales with the pulldown efficiency of genomic window i
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obtain an unnormalized pulldown efficiency of reads that
overlap the window. Comparing that to the modeled SssI
Control coverage, we see a positive correlation between a
window’s SssI Control coverage and pulldown efficiency
at these larger values of yi� (Fig. 3b).

Model of pulldown alignment improves estimates of
methylation
Methylation prediction
To predict methylation level from MBD pulldown and
assess our model of predicted SssI Control coverage,
we use the previously published program BayMeth [14].
BayMeth uses a Bayesian framework to quantify methy-
lation fraction on genomic windows from data from pull-
down experiments – done on both a Sample of interest
(S) that has undergone MBD pulldown but not SssI treat-
ment and an SssI Control (C) version of that sample. For
each genomic window i, the probability of the observed
read counts from the Sample of Interest (yiS) and the SssI
Control sample (yiC) update the prior distribution for the
methylation fraction μ. The read counts are assumed to
be Poisson-distributed with average read density scaled by
parameter λi, which represents the expected read density
for a window of the same CpG density at full methylation.
There are two main modes of BayMeth that we compare
and modify in this study. The first uses pulldown read
coverage from both the Sample of interest and the SssI
Control sample (what we call BayMeth-SssI); this is the
mode recommended by the authors of BayMeth. The sec-
ond only uses pulldown data from the Sample of interest
(BayMeth-noSssI), which is of use if a matching SssI Con-
trol sample is not available. The new implementation that
we test here is to run BayMeth with expected read cover-
age, yi� = ⌊∑

x∈i �x
⌋
, calculated by our model developed

above, as a proxy for the SssI-treated Control read cov-
erage yiC ; we call this mode BayMeth-calcSssI, which can
be used even in the absence of a real SssI-treated Control
sample. While this formulation of yi� only explicitly mod-
els reads that start or end in window i – in contrast to
the window coverage described by yiC – we will find that
including modeled reads spanning, but not starting in,
a window does not meaningfully improve predictions by
BayMeth-calcSssI, even when the window width is much
smaller than the average fragment length.

Methylation predictions on 100 bpwindows
The methylation predictions generated by BayMeth-SssI,
BayMeth-noSssI, and BayMeth-calcSssI are each assessed
against the methylation predictions measured by RRBS,
μRRBS
i , for a Sample of interest from [22]. We set a win-

dow’s methylation state to be methylated if its RRBS
methylation is > 0.50 and unmethylated if it is ≤ 0.50.
Then ROC curves are generated and we ultimately evalu-
ate each method’s performance in separating methylated

from unmethylated windows through its corresponding
AUC.
We first compare the performance of BayMeth-calcSssI

on all 100 bp windows on hg18 that pass the minimum
RRBS coverage and mappable base percentage (212,252
windows out of 14,506,245 total windows with at least one
annotated CpG). In Fig. 4, the ROC curves for BayMeth-
SssI, BayMeth-noSssI, and BayMeth-calcSssI are plot-
ted, showing that BayMeth-calcSssI has the largest AUC
(0.948) followed by BayMeth-SssI (0.936) and BayMeth-
noSssI (0.925).
For each method’s most efficient ordering (the cut-

off corresponding to the point on the ROC curve fur-
thest from the y = x line), 94.5% of methylated win-
dows are correctly categorized by BayMeth-calcSssI, a
∼ 5% improvement over BayMeth-noSssI, and ∼ 1%
improvement over BayMeth-SssI. On the reverse, 14.3%
of unmethylated windows are incorrectly categorized by
BayMeth-calcSssI, a ∼ 5% improvement over BayMeth-
noSssI, and ∼3% improvement over BayMeth-SssI.
To get a sense of what methylation states eachmethod is

better at predicting, smoothed density plots in Fig. 5 com-
pare predicted methylation levels to their RRBS methy-
lation. First, methylation level among 100 bp windows
with RRBS coverage is highly bimodal, similar to the
mean methylation levels observed at individual CpGs.
There are 55% more unmethylated windows than methy-
lated windows, but as both methylated and unmethy-
lated states are well-represented in this RRBS sample,
an indicator of methylation state has to achieve high
accuracy in both regimes. About 81% of plotted win-
dows have an RRBS methylation level that is ≤ 0.10 or
≥ 0.90. From Fig. 5a-c, we see that BayMeth-SssI and
BayMeth-calcSssI give less precise predictions to win-
dows with medium levels of methylation than those given
by BayMeth-noSssI. For windows with RRBS methylation
level ≤ 0.10 (Fig. 5d), more windows are predicted by
BayMeth-noSssI to still have a methylation level ≤ 0.10
than by BayMeth-SssI, and BayMeth-noSssI also miscat-
egorizes fewer windows overall (4.80% versus 5.50%, of
windows with μRRBS

i ≤ 0.10). Among windows with an
RRBSmethylation level of at least 0.90 (Fig. 5e), more win-
dows are predicted by BayMeth-noSssI than by BayMeth-
SssI to have a methylation level ≥ 0.90. However, overall
BayMeth-noSssI ends up miscategorizing more of these
high-methylation windows than BayMeth-SssI because of
how many more windows it predicts with a methyla-
tion level ≤ 0.50 (23.3% versus 15.9%, of windows with
μRRBS
i ≥ 0.90). Interestingly, the methylation prediction

profile of BayMeth-calcSssI is most similar to BayMeth-
SssI in the high-methylation regime (and miscategorizes
the lowest percentage of these windows at 15.5%) and
most similar to BayMeth-noSssI in the low-methylation
regime (and again miscategorizes the lowest percentage
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Fig. 4 Assessing methylation predictions genome-wide on 100 bp windows. For all 100 bp windows on hg18 with at least 75%mappable bases and
with at least 10 reads of RRBS coverage, the ROC curve is plotted to assess the methylation predictions from three configurations of BayMeth. The
y = x line is marked in dotted black. The larger the area under the curve (AUC), the better the method serves as an indicator of a window’s
methylated/unmethylated state: BayMeth-calcSssI (0.948) > BayMeth-SssI (0.936) > BayMeth-noSssI (0.925)

at 4.07%). Thus, BayMeth-calcSssI appears to capture the
strengths of the other two BayMeth configurations and,
on this scale, perform better than both of them.

Methylation predictions on 10 bpwindows
Since one of the advantages of RRBS is single CpG
resolution in methylation predictions, we explore the
accuracy of methylation predictions informed by MBD
pulldown on 10 bp windows. Of the 25,858,448 win-
dows of width 10 bp on hg18 with at least one anno-
tated CpG, 457,335 pass the minimum mappable base
percentage (75%) and RRBS coverage (10). Of these win-
dows, 63% contain only one CpG, 29% contain two CpGs,
and the remaining 8% have three or more. Evaluating
the three methylation prediction methods on these win-
dows, the ROC curves for BayMeth-SssI, BayMeth-noSssI,
and BayMeth-calcSssI are plotted in Fig. 6. Again, the
AUC for BayMeth-calcSssI (0.955) is highest followed
by BayMeth-SssI (0.936) and BayMeth-noSssI (0.930).
These AUCs are even higher than they were for the
100 bp windows in the case of BayMeth-calcSssI and
BayMeth-noSssI.
Smoothed density plots of the predicted methylations

versus the RRBS methylation are shown in Fig. 7a-c. The

percentage of windows with extremal RRBS methylation
levels (≤ 0.10 or ≥ 0.90) increases to 88%. As with the
methylation predictions on 100 bp windows, BayMeth-
calcSssI and BayMeth-noSssI provide similar distribu-
tions of methylation predictions for windows in the
low methylation regime, while BayMeth-calcSssI and
BayMeth-SssI provide similar distributions of predictions
for windows in the high methylation regime (Fig. 7d-e).
Though, on this window size, BayMeth-calcSssI miscate-
gorizes the most windows in the high methylation regime
(20.6%), followed by BayMeth-SssI (16.1%), and BayMeth-
noSssI (15.9%). However, in the low methylation regime,
BayMeth-calcSssI performs best, categorizing 96.9% of
windows correctly, followed by BayMeth-SssI (95.1%), and
then BayMeth-noSssI (94.3%).

Testing parameter robustness on chromosome 7
With these results, wemust alsomake sure that the quality
of BayMeth-calcSssI predictions is robust to variation of
the input parameters involved in calculating the modeled
SssI Control coverage, yi�. We use chromosome 7 to test
the sensitivity of the AUC measure since it was the chro-
mosome reported on in [14]. On chromosome 7, 11,158
windows of width 100 bp meet the minimum mappable
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Fig. 5 Profile of methylation predictions on 100 bp windows. For the same subset of windows as analyzed in Fig. 4, smoothed density plots
compare the window methylation as calculated by RRBS to the methylation predicted by (a) BayMeth-SssI, (b) BayMeth-noSssI, and (c)
BayMeth-calcSssI. The y = x line is plotted in dashed green and divisions at RRBS = 0.1 and RRBS = 0.90 are plotted in bolded white. The
distribution of methylation predictions given by each configuration is plotted for windows with an RRBS methylation (d) ≤ 0.10 and (e) ≥ 0.90, the
methylation regimes (blocked in gray) where most windows lie

base percentage and RRBS coverage (which represents
1.4% of windows on chromosome 7 with at least one
CpG). Running our three configurations of BayMeth with
the previously stated parameters, we find that methyla-
tion predictions from the BayMeth-calcSssI method pro-
duced the largest AUC (0.946), followed by BayMeth-SssI
(0.938) and BayMeth-noSssI (0.925). If we, instead, reduce
the minimum separation between consecutive CpGs to
2 bp (from 3 bp) to potentially count additional CpGs
as “accessible” (0.946); scale the overall depth normal-
ization, i.e. the prefactor in Eq. (1), by 10 (0.946), or by
0.10 (0.946); or collapse the fragment length distribution
to the determined average fragment length (0.945), i.e.
P(�) ∼ δ(�−�avg); the AUCs calculated after each of these
individual modifications all remain within 0.001 of the
initial model. Additionally, we considered whether infor-
mation is effectively lost by only summing the �x terms
for sites, x, in window i, and thus only modeling contri-
butions from reads that start in window i (on either the
forward or reverse strand). To instead model a sum over
all reads that likely overlap window i, we tested using a
fixed fragment length (P(�) ∼ δ(� − �avg)) and, for the
proxy SssI Control measure, summing over all sites and
strands where a fragment of length �avg would overlap
window i:

yi� =

⎢
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⎢
⎢
⎣

⎛

⎜
⎝

∑

[x,x+(�avg−1)]
overlapping window i
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⎞

⎟
⎠ +

⎛

⎜
⎝

∑

[x−(�avg−1),x]
overlapping window i

�x,−

⎞

⎟
⎠

⎥
⎥
⎥
⎥
⎦ ,

(3)

where we use �x,+ to refer to the expected pulldown to
position x from the forward strand, and similarly for �x,−
for the reverse strand. This formulation also produces an
AUC of 0.945. Additionally, this formulation and each of
the other modifications to the BayMeth-calcSssI method
applied to analysis of chromosome 7 on 10 bp windows
also produced methylation prediction profiles that all had
an AUC within 0.001 of the AUC produced by the original
method.

Model of pulldown alignment can be applied to
methylation predictions on external experiments done
with the sameMBD protein
For our model of expected pulldown alignments, �x, to
be of general use in predicting methylation level from
MBD pulldown experiments, we must show that it may
be applied to pulldown experiments that it has not been
trained on. To that end, we adapted our model to be used
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Fig. 6 Assessing methylation predictions genome-wide on 10 bp windows. For all 10 bp windows on hg18 with at least 75% mappable bases and
with at least 10 reads of RRBS coverage, the ROC curve is plotted to assess the methylation predictions from three configurations of BayMeth. The
y = x line is marked in dotted black. These AUCs are as least as large as those for 100 bp windows, and again BayMeth-calcSssI produces the largest
AUC: BayMeth-calcSssI (0.955) > BayMeth-SssI (0.936) > BayMeth-noSssI (0.930)

in place of the SssI Control data from the human fibrob-
last (IMR-90) sample analyzed in Riebler et al. [14]. We
used the average fragment length of 300 bp given in that
study to set the fragment length probability distribution
to P(�) = δ(� − 300 bp), since the width of that distri-
bution was not described, and kept all other parameters
the same. On chromosome 7, 426,366 windows of width
100 bp pass both the 75% minimum mappable base per-
centage and the minimum WGBS coverage, set in that
study to 33. Applying the three configurations of methy-
lation prediction on these windows, the ROC curves
for BayMeth-SssI, BayMeth-calcSssI, and BayMeth-noSssI
are plotted in the top leftmost panel of Fig. 8 (“All”
windows). The BayMeth-SssI mode performs best with
an AUC of 0.763, followed by BayMeth-calcSssI (0.715)
and BayMeth-noSssI (0.681). Since the AUC produced by
BayMeth-calcSssI on this set of windows is not as high
as we have seen in the previous sections, it would be
convenient to have a quantity that indicates for each win-
dow whether BayMeth-calcSssI is likely to provide a good
methylation prediction. A suitable choice is the calculated
SssI Control window coverage, yi�, itself. We had devel-
oped our model for SssI Control pulldown alignments
by considering what DNA fragment features significantly
change the pulldown efficiency, and the calculated SssI

Control coverage approximates how efficiently, relatively,
anMBD pulldown experiment should be expected to sam-
ple reads from that window. In the Bayesian framework
used in BayMeth, the windows that it samples the most
information from should be predicted onmore accurately.
To test the usefulness of calculated SssI Control cover-
age as an indicator of BayMeth-calcSssI performance, we
range through different minimum cutoffs on yi� (in steps
of 5 percentile) and calculate ROC curves on all windows
above that threshold. We see in the main body of Fig. 8
that the AUCs for the three methods increase monotoni-
cally with the minimumwindow yi�. For cutoffs above the
85th percentile in SssI Control coverage, the AUCs from
all three methods are above 0.90.
Considering this framework for assessment, then, we

see that the quality of methylation predictions produced
by BayMeth-SssI and BayMeth-calcSssI follow each other
closely and their AUC values stay within 0.05 of each
other at all cutoffs. The AUCs for BayMeth-noSssI get
within 0.05 only for a minimum modeled SssI Control
coverage ≥ 75th percentile, and at all cutoffs, BayMeth-
calcSssI performs better than BayMeth-noSssI. Thus, in
the absence of SssI Control data, our model improves
methylation predictions. While additional comparisons
to external data sets would be beneficial in showing our
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Fig. 7 Profile of methylation predictions on 10 bp windows. For the same subset of windows as analyzed in Fig. 6, smoothed density plots compare
the window methylation as calculated by RRBS to the methylation predicted by (a) BayMeth-SssI, (b) BayMeth-noSssI, and (c) BayMeth-calcSssI. The
y = x line is plotted in dashed green and divisions at RRBS = 0.1 and RRBS = 0.90 are plotted in bolded white. The distribution of methylation
predictions given by each configuration is plotted for windows with an RRBS methylation (d) ≤ 0.10 and (e) ≥ 0.90, the methylation regimes
(blocked in gray) where most windows lie

model’s broad applicability, MBD-seq data sets are not
often generated with an SssI Control, which happens to
be something our method attempts to rectify. More press-
ingly, genome-wide bisulfite sequencing data (either RRBS
orWGBS) that can act as a truth data set against anMBD-
seq data set is not usually available simultaneously for the
same samples. Thus, to our knowledge there are no other
MBD-seq/BS samples that use the same protein domain
for enrichment, are of sufficient sequencing quality, and
whose results would not be potentially confounded by
copy number variation.

Discussion
We developed a model for the number of reads aligned
to genomic location x from an MBD pulldown exper-
iment done on SssI-treated DNA. The model is based
on the expected number of mCpGs to be captured on
fragments taken from that location and the relative repre-
sentation of reads in a pulldown library given the number
of accessible mCpGs. Summed along all positions in a
genomic window, it correlates with observed SssI data.
MBD pulldown coverage from a fully-methylated sample
can be used to calibrate the expectation of MBD pulldown
read density from a Sample of interest. Thus, we tested

our model insofar as it improves statistical methods that
convert MBD pulldown coverage on a genomic window
to an estimate of absolute methylation level. The algo-
rithm BayMeth is one approach for obtaining methylation
estimates from MBD pulldown data that improves upon
previous algorithms, as well as the MEDIPS algorithm
that incorporates methylated DNA immunoprecipitation
sequencing (MeDIP-seq) data instead of protein pulldown
data. BayMeth fits parameters to the distribution of mean
read coverage at full methylation by sampling within each
CpG density class, and has two main configurations that
we call BayMeth-SssI (simultaneously models pulldown
from the Sample of interest and the SssI Control, to be
used if such a control sample is available) and BayMeth-
noSssI (only models pulldown from the Sample of interest
and thus applicable if no control sample is available). Here,
we added the configuration BayMeth-calcSssI by calcu-
lating SssI Control coverage for each genomic window,
yi�, using our model and substituting it for the observed
SssI Control input, yiC (applicable in the absence, but still
providing the benefits, of a control sample).
Comparing methylation predictions for a sample

of interest from BayMeth-SssI, BayMeth-noSssI, and
BayMeth-calcSssI against RRBS estimates for the same
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Fig. 8Methylation predictions for an external MBD/WGBS data set. To act as an external data set to test the effectiveness of our MBD pulldown
model, we use the WGBS and MBD pulldown data from [14]. We consider all 100 bp windows on chromosome 7 with at least 75% mappable bases
and at least 33 reads in WGBS coverage, the same specifications as considered by Riebler et al.. Each plot point in the main graph corresponds to a 5
percentile increment in the minimummodeled SssI Control coverage, yi� , from the 0th percentile to the 95th percentile, and the AUC is calculated
for each BayMeth configuration on all windows that meet the minimum threshold. ROC curves analyzing the windows with the top quartiles in yi�
are plotted above, corresponding to the cutoff identified in the gray boxes on the main graph

sample, we find that the profile of estimates from
BayMeth-calcSssI produces the largest AUC for both 100
bp and 10 bp windows. One possible interpretation of this
finding is that our model is overfitting the data. There are
two reasons why this is highly unlikely. First, and most
importantly, fitting the model to measured SssI data is
completely independent of the AUC calculations used to
evaluate the performance of the model in the context of
the BayMeth framework. Thus, the model fit cannot be
influenced by optimization of the AUC, thereby not even
allowing the possibility of overfitting. Second, in the case
of overfitting, small changes to the model should remove
the overfitting advantage and lead to a clear decrease
in performance. On the contrary, our robustness studies
on chromosome 7 indicate that the AUC is very stable
under various modeling choices. That leaves the question
of how else one could explain that the model performs
better than the actual experimental SssI data. Performing

better than the BayMeth-noSssI indicates that the mod-
eled SssI Control data in BayMeth-calcSssI adds more
information than what can be inferred from the distribu-
tion of pulldown coverage, yiS, in each CpG density class.
While our model of MBD pulldown is necessarily a sim-
plification of the true SssI Control experiment, it does
model an SssI Control experiment with very high depth
of coverage, one on the order of 6 × 1010 reads. As a
result, windows with high modeled SssI Control cover-
age, yi�, with low coverage from the Sample of interest,
yiS, are more easily predicted to have lower methylations,
with lower variance, in the BayMeth-calcSssI configura-
tion. The increased scale also allows for finer distinction
between windows of similar CpG densities. In summary,
in contrast to the experiment, the modeled SssI control
does not suffer from sampling uncertainties, which might
explain how BayMeth-calcSssI is able to outperform
BayMeth-SssI.
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At the same time, compared on our RRBS data
set, each method produces an AUC greater than 0.90,
suggesting each can act as a reliable indicator of
methylated/unmethylated state. The differences among
the three methylation prediction configurations are more
pronounced in the external MBD pulldown and WGBS
data sets from the IMR-90 sample analyzed in [14]. Over
all the 100 bp windows on chromosome 7 meeting the
minimum WGBS coverage and mappable base percent-
age, no configuration produces an AUC greater than 0.80.
Considering the weaker performance of BayMeth-calcSssI
on this data set relative to BayMeth-SssI, there is the ques-
tion of whether the parameters calibrated from our earlier
experiments do not carry over to this one. First, we ask if
BayMeth-calcSssI applied to the external data set at least
does well when compared on a set of windows represen-
tative of an RRBS data set. To that end, if we look at
the windows that were analyzed in both the WGBS and
RRBS data sets (8998 windows on chromosome 7 that also
matched the minimum mappability), the AUCs achieved
by all three methods are greater than 0.95 with BayMeth-
SssI (0.975) being the highest, though it differs from
BayMeth-calcSssI (0.973) less than BayMeth-calcSssI does
from BayMeth-noSssI (0.957). The improvement should
be expected because RRBS biases the resulting data set
toward regions of higher CpG density, whereas WGBS
attempts to represent all parts of the genome, and at least
those parts with high mappability. Of course, a window
with higher CpG density would correlate with a higher cal-
culated SssI Control coverage, yi�. As a result, windows
in the RRBS data set are on the highest end of mod-
eled SssI Control coverage: The 10th percentile value of
yi�, among mappable windows with RRBS coverage, is the
93rd percentile value among all mappable windows with at
least 1 CpG. Second, we ask how predictions by BayMeth-
calcSssI relate to those by BayMeth-SssI over the range of
cutoffs in yi�. Given that in Fig. 8, the strength of pre-
dictions produced by BayMeth-calcSssI tracks those by
BayMeth-SssI very closely, it further suggests that the �x
model has not drastically broken down when used for this
experiment. More likely, the inclusion of lower CpG den-
sity windows (and hence, generally lower yi� values) in
the analysis of this external data set, is what weakens each
method as an indicator of methylated/unmethylated state
as to be expected from the relatively low gain in pull-
down from a single isolated CpG (compare C1 ∼ 1.49 to
C3 ∼ 32). Thus, this is likely a shortcoming of the MBD
pulldown method in general in quantifying low CpG den-
sity regions. In applying our method to data sets enriched
for low-CpG dense regions, an easy choice of yi� for a cut-
off may not be clear at the outset. We recommend using
a 2D-density plot of the variance on the posterior proba-
bility calculation (an automatic output of BayMeth) versus
yi� to identify a threshold in yi� above which the variance

is relatively flat (Additional file 2: Figure S1). Estimating
a cutoff in this way for the WGBS data places the yi�
threshold between the top 25% and 30% of values, with
AUCs> 0.85 on the corresponding data (Additional file 2:
Figure S1).
How generally applicable our model and its parame-

ters are is an important concern. Of course, in an ideal
world, every pulldown experiment would be paired with
an SssI experiment performed under the exact same
conditions. But in reality this is not always feasible, as
reflected in the scarcity of publicly available SssI data.
We will thus discuss here the transferability of our model
between different experiments. Our model is character-
ized by three ingredients, the pulldown coefficients Cn,
a scheme to determine accessible CpGs from the posi-
tions of genomically encoded CpGs, and the mean and
standard deviation of the fragment length distribution.
Given that most modern high throughput sequencing
protocols use paired-end protocols, the fragment length
distribution is directly obtainable from each library. For
single-end libraries, retaining the bioanalyzer traces typi-
cally obtained during quality control of library preparation
would provide the same information at somewhat lower
resolution [22]. Thus, the fragment length distribution
can be easily adapted to a new sequencing experiment,
as we have done here in our analysis of the Riebler et
al. data. The scheme to determine accessible CpGs from
the positions of genomically encoded CpGs reflects the
minimum distance between two CpGs that can be bound
simultaneously by two proteins without steric clashes
[13]. It thus represents a fundamental biophysical prop-
erty of the protein used for the pulldown. It will have
to be determined from scratch if a different protein is
used for the pulldown, but should otherwise be inde-
pendent of experimental conditions. In our robustness
analysis, we also found that the change from 3 bp minimal
distance to 2 bp minimal distance did not affect perfor-
mance measurably, indicating that at least small changes
in the bulkiness of the protein are tolerable. The pull-
down coefficients Cn are the most sensitive ingredients
of the model. They could vary with experimental con-
ditions and certainly will vary with the protein used for
the pulldown. The fact that we could successfully apply
our set of coefficients to the data sets of Riebler et al. (at
least on the high CpG density regions, where pulldown
sequencing is more successful as a whole as discussed
in the previous paragraph) shows that it is possible to
transfer the model between data sets generated under
different experimental conditions as long as the same
protein is used. In addition, as our model captures the
fundamental interactions between the protein and the
methylated DNA, we do not expect the model to be sen-
sitive to sequence features other than the locations of
the CpGs. We thus expect that our model would allow
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one to generate calculated SssI data of similar quality
for any organism based on its genome alone, even if
no experimental SssI data sets for this organism were
available.

Conclusion
We built a model of MBD pulldown alignments from
SssI-treated DNA using empirically-derived relationships
from our previous studies on MBD pulldown experi-
ments [13]. Quantifying absolute methylation level is an
important step in interpreting results from MBD pull-
down experiments and in allowing results to be com-
pared across different experiments. We used our pull-
down alignment model to calculate pulldown coverage
of SssI-treated DNA and substituted it for the use of
observed SssI Control pulldown in the implementation of
the program BayMeth [14]. As determined by its authors,
BayMeth performs best when it is run with SssI Con-
trol data. Against RRBS-determined methylation levels
calculated genome-wide, BayMeth informed by our SssI
pulldown model showed improvements as an indicator of
methylated/unmethylated state, over BayMeth informed
by observed SssI pulldown. This held even when we
looked at methylation predictions on 10 bp windows,
a scale at which a majority of windows only contain a
single CpG. Looking specifically at how well each config-
uration of BayMeth did at classifying genomic windows
with extremal methylation levels, BayMeth informed by
our model seemed to combine the particular capaci-
ties of the other two BayMeth configurations: that of
BayMeth with observed SssI data on classifying windows
with high methylation levels, and that of BayMeth with
no SssI data on classifying windows with low methyla-
tion levels. To see if our model parameters and perfor-
mance could extend to external data sets and therefore
be of general use, we generated methylation predictions
on a Sample of interest from [14], only updating the
average fragment length parameter to match the MBD
pulldown data from this sample. Against methylation esti-
mates calculated from WGBS data on this sample, all
three methods performed worse – as expected on a data
set with more low CpG density windows. On this data
set, BayMeth with SssI data performed best among the
three configurations, but BayMeth with our modeled SssI
data always did better than BayMeth run without any
SssI estimate. Furthermore, we found that the SssI Con-
trol pulldown coverage calculated by the model was itself
a good indicator of whether BayMeth supplemented by
our model would infer a good estimate on that window.
Thus, in the absense of an SssI Control pulldown data
set, our modeled data is likely to improve methylation
predictions, potentially even over predictions made with
real SssI data, especially on windows with higher CpG
density.
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Additional file 1: Standard deviation calculation on MBD pulldown scale
factors. Table S1 giving the details of the per-chromosome sub-sampling
process to calculate a sample-to-sample standard deviation on the MBD
pulldown scale factors listed in Table 1. The per-chromosome read
alignment counts, per number of well-separated CpGs, in each data set
(Pulldown and Background Control) are shown at top, with the resulting
calculation of Cn values on each chromosome, the chromosome-averaged
C∗
n values, the per-chromosome calculation of fluctuations around this

average ((Cn − C∗
n )

2), and finally the standard deviation sss on each Cn .
(XLSX 26 kb)

Additional file 2: Selecting a cutoff in yi� . Figure S1. Among windows in
the Riebler et al. pulldown data set passing mappability and WGBS
thresholds, we plot (a) the variance on the posterior probability of
methylation from BayMeth-SssI against the measured SssI, which shows a
similar decay profile but a difference in distribution from the plot of the (b)
variance from BayMeth-calcSssI against yi� , our calculated SssI. In isolating
a subset on which the methylation predictions can be more trusted when
running BayMeth-calcSssI, we select a cutoff in yi� (dashed line) based on a
region of stable variance on the prediction itself. The (c) ROC curves
resulting from the methods being run on this subset with the AUC printed
in the corresponding color. (PDF 245 kb)
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