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Background: Protein complex identification from protein-protein interaction (PPI) networks is crucial for
understanding cellular organization principles and functional mechanisms. In recent decades, numerous
computational methods have been proposed to identify protein complexes. However, most of the current
state-of-the-art studies still have some challenges to resolve, including their high false-positives rates, incapability of
identifying overlapping complexes, lack of consideration for the inherent organization within protein complexes, and

Results: In this paper, to overcome these limitations, we present a protein complex identification method based on
an edge weight method and core-attachment structure (EWCA) which consists of a complex core and some sparse
attachment proteins. First, we propose a new weighting method to assess the reliability of interactions. Second, we
identify protein complex cores by using the structural similarity between a seed and its direct neighbors. Third, we
introduce a new method to detect attachment proteins that is able to distinguish and identify peripheral proteins and
overlapping proteins. Finally, we bind attachment proteins to their corresponding complex cores to form protein
complexes and discard redundant protein complexes. The experimental results indicate that EWCA outperforms
existing state-of-the-art methods in terms of both accuracy and p-value. Furthermore, EWCA could identify many
more protein complexes with statistical significance. Additionally, EWCA could have better balance accuracy and
efficiency than some state-of-the-art methods with high accuracy.

Conclusions: In summary, EWCA has better performance for protein complex identification by a comprehensive
comparison with twelve algorithms in terms of different evaluation metrics. The datasets and software are freely
available for academic research at https://github.com/RonggquanWang/EWCA.
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Background

A significant task of system biology is to explore cellular
function and organization by studying the PPI networks.
Most of the functional processes within a cell are executed
by protein complexes [1]. Therefore, the identification of
protein complexes is an important research problem in
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systems biology. In addition, understanding the biologi-
cal functions is a fundamental task for different cellular
systems and is beneficial for treating complex diseases.
Due to the development of advanced high-throughput
techniques, a large number of PPI networks have been
generated [2], which makes discovering protein com-
plexes more convenient. However, how to accurately iden-
tify biological protein complexes has been an important
research topic in the post-genomic era [3]. The accurate
identification of protein complexes in PPI networks is sig-
nificant for understanding the principles of cellular orga-
nization and function [4]. As a result, a large number of
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methods including laboratory-based and computational-
based methods have been proposed to address this issue.

So far, some biologically experimental methods have
been proposed to detect protein complexes from the PPI
networks. However, these methods require high level of
expensive cost and time-consuming. Thus, many efficient
alternative computational methods are proposed to iden-
tify protein complexes in PPI networks. Moreover, a num-
ber of high-quality and large-scale PPI networks provide
possible for computational methods to identify protein
complexes. Generally, a PPI network can be modeled as
an undirected graph (also called a network), where ver-
tices represent proteins and edges represent interactions
between proteins. Various state-of-the-art computational
methods have been developed to identify protein com-
plexes in the last few years. According to the use of
information in identifying process, these computational
methods are classified into two categories. One category
only uses the topological information of PPI networks to
identify protein complexes, and we call them topology-
based methods. The other category is to combine the
biological and topological information to identify pro-
tein complexes, such as IPC-BSS [5], GMFTP [6] and
DPC [7], etc.

A large amount of topology-based methods have been
proposed to identify protein complexes by employing dif-
ferent topological structures. For instance, CFinder [8]
and CMC [9] are based on cliques or k-cliques; MCL [10],
DPClus [11] and SPICi [12] use dense subgraph;
ClusterONE [13] and CALM [14] depend on modular-
ity concept; Core [15] and COACH [16] employ core-
attachment structure. Moreover, ProRank+ [17] uses a
ranking algorithm and spoke model for identifying protein
complexes. All above methods are typical topology-based
methods. Up to now, there is no clear and appropriate
definition states that a group of proteins should be in the
same complex in a PPI network.

As we all known, a clique is a complete subgraph and its
all vertices are connected to each other. Some researchers
believe that cliques or k-cliques are protein complexes.
For example, CFinder [8] is based on clique percolation
method (CPM) [18] which identifies the k-cliques. How-
ever, it is too strict to require a protein complex being
a clique or k-clique, and it is computationally infeasible
in the larger PPI networks, because it is NP-Complete
[19]. Furthermore, many studies assume that dense sub-
graph corresponds to protein complex. The reason is that
proteins in the same protein complex interact frequently
among themselves [20, 21]. MCL [10] is highly scalable
clustering algorithm based on simulating random walk
in biological networks. Another example is a fast heuris-
tic graph clustering method, which is called SPICi [12],
which selects the highest weighted node as a seed, and
it is expanded according to local density and support
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measure. SPICi is efficiency methods for identifying pro-
tein complexes. However, it has low accuracy and can
not identify overlapping protein complexes. In fact, some
protein complexes are usually overlapping and many
multi-functional proteins are involved in different protein
complexes.

Consequently, some new computational methods have
been proposed to identify overlapping protein complexes.
For example, DPClus [11] is a seed-growth method based
on different graph topological characteristics such as
degree, diameter, density and so on. The main differences
among them are density threshold and cluster expand-
ing strategy [22]. More importantly, they may miss some
low dense protein complexes [14]. Moreover, there are
408 known yeast protein complexes which are provided
by Pu et al. in [23], 21% complexes’ density is lower than
0.5. Additionally, there exists high false-positive interac-
tions in the PPI networks. Therefore, some methods try
to assess the reliability of existing PPIs and filter out the
unreliable interactions [24] such as PEWCC [25] and Pro-
Rank+ [17]. All of these methods are based on the single
topological structure of protein complexes and do not
utilize the information of known protein complexes.

Furthermore, some researchers find that many protein
complexes have modularity structure, which means these
protein complexes are densely connected within them-
selves but sparsely connected with the rest of the PPI
networks [21, 26—28]. Motivated by this issue, a number
of new clustering methods based on modularity structure
have been proposed, including ClusterONE [13], CALM
[14], EPOF [29] and PCR-ER [30], etc. One of most widely
known is ClusterONE [13]. ClusterONE can identify over-
lapping protein complexes from the PPI networks, and
authors introduce the maximum matching ratio (MMR) to
evaluate predicted overlapping protein complexes. How-
ever, ClusterONE may neglect the effect of overlapping
proteins in the process of identifying seeds [14] and some
attachment proteins may be missed [28].

Recently, some research results have shown that the
characteristics of detected protein complexes indicate
that protein complexes generally have a core-attachment
structure [31-34]. Gavin et al. [31] have revealed that
proteins within a protein complex are organized as core
proteins and attachment proteins. Although there is no
detailed statement for this structure, some researchers
think that a protein complex core is often a dense sub-
graph and that some attachment proteins are closely asso-
ciated with its core proteins and assist these core proteins
to perform subordinate functions [16]; then, together they
form a biologically meaningful protein complex. Ahmed
et al’s studies also demonstrate a similar architecture and
inherent organization in protein complexes [15, 33, 35].

Up to now, several methods based on core-attachment
structure have been explored for identifying protein
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complexes, such as COACH [16], Core [15] and Ma et al’s
method [22]. These methods have a good performance
dramatically, and demonstrate the significance of this
structure [22]. Methods based on core-attachment struc-
ture are generally divided into two stages. In identifying
complex cores phase, they are mainly to identify dense
subgraph or maximal clique as protein complex core. In
fact, some protein complex cores are dense subgraph or
maximal clique, but other are not high-density [23]. Ma
et al. [22] have argued that the density of a subgraph is
not appropriate to characterize a protein complex core.
In identifying attachment proteins phase, most of meth-
ods based on core-attachment structure follow Wu et al’
criterion [16] that is to select the proteins whose neigh-
bors interact with more than half of the proteins in its
protein complex core. As we know the PPI networks are
sparse and have proved that the size of protein complex
cores varies from 1 to 23 [31]. Obviously, it could be suf-
ficient to describe the relation between a protein complex
core and their attachment proteins. However, the cur-
rently available PPI networks contain many false-positives
interactions which greatly affect protein complexes detec-
tion accurately.

In this paper, we try to overcome these limitations and
employ a protein complex internal structure to identify
biologically and accurately meaningful protein complexes.
Inspired by some reserachers’s [14, 32, 36—38] experimen-
tal works and the distinctive properties of core and attach-
ment proteins. We further study the core-attachment
structure. However, these previous studies only illustrate
some concepts of this structure but do not give a method
for how to identify various types of proteins including
core proteins, peripheral proteins and overlapping pro-
teins [14]. In real PPI networks, the overlapping protein
complexes are universal [14]. Therefore, the overlapping
proteins often play an important role in the identifica-
tion of protein complexes. Generally, overlapping proteins
are regard as member of two or more protein complexes
at the same time. The overlapping proteins promote the
interaction between protein complexes. In addition, in
many real complex networks, the identification of over-
lapping nodes is useful in the social network, cited net-
work, world wide web and so on. Most of the algorithms
we mentioned before do not have the ability to differ-
entiate and identify overlapping proteins and peripheral
proteins while we extend the ability of EWCA. Thus, in
this paper, we provide some definitions to distinguish and
identify local overlapping proteins and locally peripheral
proteins, which has not been done by other researchers.
We take a simple example to show core-attachment struc-
ture in Fig. 1. We propose a method which is named
EWCA, to identify protein complexes. Most existing pro-
tein complex identification approaches search for protein
complexes based on ‘density graph’ assumptions. Unlike
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some of them, EWCA provides a new direction to use
a Core-attachment structure to identify protein com-
plexes. First, EWCA defines a new edge weight measure
to weight and filter out interactions in PPI networks. Sec-
ond, EWCA could generate some preliminary overlapping
complex cores based on structural similarity rather than
density. This approach is more reasonable because the
core proteins in the same complex core have relatively
more structural similarity. Third, EWCA designs a new
method to discover attachment proteins for correspond-
ing to the complex core. Finally, the experimental results
show that EWCA performs better than existing state-of-
the-art methods in terms of some evaluation metrics (e.g.,
F-measure and MMR) and functional enrichment.

Preliminary

Generally, a PPI network can be typically modeled as an
undirected graph G,y = (Vppi, Eppi), where V,,; rep-
resents as the set of vertices corresponding to proteins
and Ey; stands for the set of edges which represent the
interactions between proteins from V},;. A PPI network
is undirected and may be unweighted or weighted, with
weight on an edge representing the confidence score (usu-
ally between 0 and 1) for an interaction. For a vertex v,
N (v) stands for the set of all vertex v'neighbors.

Methods

Construction of a reliable weighted PPl network
Generally speaking, the PPI networks obtained from dif-
ferent experimental methods are quite noisy (many inter-
actions are believed to be false positives) [39]. Hence
we should reduce the false positives. To address this
challenge, some researchers have proposed preprocessing
strategies to assess and eliminate potential false positives
by using the topological properties of the PPI networks
[40-43]. Meanwhile, some experimental results [44, 45]
have shown that the PPIs with high confidence scores
are assessed by the neighbor information-based methods,
and these methods tend to be more reliable than others.
Thus, we introduce a Jaccard’s coefficient similarity (JCS)
measure proposed by Jaccard et al. [46]. The Jaccard’s
coefficient similarity between two neighbor proteins v and
u is defined by Eq. (1):
oG INO) ON@)| > 1,
0

CS(v,u) =
JES,u) , otherwise,

1)

where N(v) and N (1) stand for the set of neighbor nodes
of nodes v and u, respectively. N(v) N N(u) is the set
of all common neighbors between nodes v and u, and is
denoted by CN (v, u). IN(v) N N(u)| stands for the num-
ber of all common neighbors of v and u. [N(v) U N ()|
represents the union set of all distinct neighbors of v and
u. Obviously, the more common neighbors two proteins
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o core proteins ° peripheral proteins<:> overlapping proteins n interspersed proteins

Fig. 1 A network with two protein complexes and three overlapping proteins. Each protein complex consists of core proteins, peripheral proteins

and three overlapping proteins which are shared by two protein complexes in overlapping yellow area. Additionally, these core proteins inside the
red dotted circle constitute their protein complex cores. Note that diamond nodes present core proteins, circle nodes present peripheral proteins,
hexagonal nodes present overlapping proteins, parall elogram nodes present interspersed proteins

l{d.k} [{bse}|

share, the higher similarity between two adjacent nodes. Tabedea] = %, JCS(c,d) = m = %. Accord-

Here, to better quantify the connectivity between two
adjacent nodes v and u, then we define a new high-order
common neighbor (HOCN) similarity measure based on
the Jaccard’s coefficient between node v and node u,
and we introduce HOCN as follows. The main idea is
to estimate each edge according to the common neigh-
bors of the common neighbors of the two adjacent nodes.
HOCN (v, u) is defined as Eq. (2):
(JCS(v,u) + CNS(v, u))

HOCN (v, u) = (NG LD (2)

where

CNS,uw) = ) (CS@,w) xJCSw,w)), ~ (3)

weCN (v,w)

The weight of the edge (v,u) between protein v and pro-
tein u is determined by not only the Jaccard’s coefficient
between proteins v and u but also the probability that
their common neighbors do support the edge (v, u). All
common neighbors support (CNS) the edge (v, u) are cal-
culated by Eq. (3). Finally, the weight of the edge (v, u) is
determined by Eq. (2).

To assess the reliability of protein interactions pro-
cess, we give an example as shown in Fig. 2. Sup-
pose we assess the weight of edge el between b and
d. According to Eq. (1), we can obtain JCS(b,d)

el %’ JCS(b,a) = |{a,h,c|,gfl}<‘,h,r,s}| =

Hab.cdef.gks)|
) _ \(b)] _ 1
§ICS@d) = g = §J/C5(k0)

ing to Eq. (3), the common proteins 4 and ¢ support the
edge el is JCS(a,b) * JCS(a,d) = & * 3 = 2 and
JCS(b,c) *x JCS(c,d) = % * % = 5%, respectively. There-
fore, the common proteins a and ¢ support the edge el are

Fig. 2 A simple hypothetical network of 11 proteins and 15
interactions which is used for illustrating how to determine the
weight of the edge e
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JCS(v,a)¥JCS(a, u) + JCS(v, 0)xJCS(c, u) = 75+ 2. What's
more, the probability of edge el between proteins d and
b is JCS(d,b) = 2 based on Eq. (1). Finally, the weight of

edge el is %Jri%% ~ 0.102 according to Eq. (2).

Here, we use HOCN (v,u) to calculate the weight of
each pair of edge (v,u) so that EWCA improves the
quality of the identified protein complexes. Obviously,
HOCN (v, u) considers more widely about the connectiv-
ity of the entire neighborhood of two adjacent nodes and
may well determine whether two interactional proteins
belong to the same protein complex. If [N, N\N,,| > 1, then
HOCN (v, u) is the weight of edge (v, u). Otherwise, edge
(v, u) is considered unreliable and it has to be discarded.
The more details pseudo-codes of this phase is shown in
Algorithm 1.

Algorithm 1 Construction of a reliable weighted PPI
network.
Input: The PPI network, Gupi = (Vppir Eppi)-
Output: The weighted PPI network
(Vppis Eppir Wppi)-
1: for each edge (v, u) in Epp; do
2 calculate the JCS of each edge according to
equation (1);
3: N (v) includes all neighbors of node v, and [N (v)]
is the size of N (v). N (u) is similar to N (v);
4 if  N(v) N N(u)| > 1 then
: calculate the weight of edge
HOCN(v,u) = JCS,u)+CNS(v,u))

G =

(v,u) is

ICNGIIED according to
equation (2);
6: else
7: remove edge (v, u) from Ej;;
8 end if
9: end for
10: return The weighted PPI network G =

(Vppi; Eppi; pri) .

Preliminary complex core identification

According to the latest research [31, 36, 47-50], a pro-
tein complex consists of core and periphery (also called
attachment) proteins. A complex core is a small group
of proteins that show high co-expression similarity and
share high functional similarity , which is a key cellular
role and the essential function for a protein complex [31,
35]. Unfortunately, due to the limitations of experimen-
tal methods, the functional information (gene ontology)
of many proteins may be infeasible for the identification
of protein complex cores [51]. However, the core proteins
in the same complex core show a high level of functional
similarity and have relatively more common neighbors
among themselves than among other proteins in the PPI
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networks [15, 36, 51]. The biological functions of proteins
are determined by their neighbors from the view of topo-
logical characteristics. This strategy is a good alternative
in the absence of functional information. Thus, two pro-
teins are assigned to the same protein complex core if
they share many common neighbors. Because two pro-
teins share many interaction neighbors, they are likely to
carry out similar biological functions and be in the same
complex core. Moreover, structural similarity could fur-
ther assess the functional similarity between two proteins
based on common neighbors and neighbourhood size
(36,47, 51].

As mentioned in “Preliminary” section, given a vertex
v € Vi, N(v) stands for the set of all direct neigh-
bors. Thus, the structural neighborhood of v is defined by

Eq. (4):
SN(v) = (¥} UN(®), (4)

where SN (v) contains the node v and its immediate
neighbors.

In the PPI networks, if two proteins have common
neighbors, they may be functionally related. Furthermore,
the structural similarity is used for normalizing common
neighbors between two vertices in information retrieval
[47]. This measure could be indirect functional similarity
[36, 45]. As a result, structural similarity SS can be calcu-
lated by using the number of common neighbors which
are normalized by the geometric mean of the neighbour-
hood size of vertex v and w. Therefore, the structural
similarity SS between two neighbor proteins v and u is
defined by Eq. (5):

|[SN(v) N SN (w)|

VISNW)[-ISNw)[”
when a vertex has a similar structure as that of one of its
neighbors, their structural similarity is large. In additional,
structural similarity is symmetric, i.e., SS(v, w) = SS(w, v).
Obviously, the value of structural similarity is between
(0, 1]. Additionally, although the PPI networks have noise
which will affect the clustering results, this scheme is not
sensitive.

Based on these statements, we mine a subgraph in the
neighborhood graph G, based on structural similarity,
which is used as a preliminary complex core and is written
as Core(PC,). Core(PC,) consists of seed vertex v as the
center and neighbors that should have high significance
structural similarity with seed v. In addition, some bio-
logical experiments analyses, such as three-dimensional
structure and yeast two-hybrid, have showed that the core
proteins (vertices) in the same complex core are likely
to be in direct physical contact with each other [31, 52].
Therefore, for each neighbor u € N(v), if the value of
structural similarity between it and seed v is larger than
a prefixed threshold (e.g., 0.4), we select protein u as a

SS(v,w) = (5)
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core protein. The detail of this prefixed threshold selec-
tion will be introduced in Parameter selection section.
The Core(PC,) of an identified complex PC, is defined as
the subgraph which is made of all the core proteins and
their corresponding edges.

According to some relevant analysis results [15, 16, 31,
35, 36, 51], we try to summarize some possible conditions.

1. If the subgraph is small dense and reliable, its core
proteins within the same protein complex core have
relatively more interactions among themselves.

2. The core proteins in the same complex core are
likely to be directly physical contact with each other.

3. The core proteins in the same complex core should
have relatively more common neighbors than other
non-core proteins.

According to these possible conditions and our studies,
we take account of a preliminary complex core, named
Core(PC,). It should satisfy the following three conditions.

(1) The size of the preliminary complex core is larger
than 2 and consists of core proteins, where all its core
proteins directly connect with each other.

(2) The core proteins of a complex core should have
more reliable and heavier weights among themselves.

(3) A complex core should have higher functional
similarity.

(4) The core proteins of a protein complex core could be
shared with multiple protein complexes.

More specifically, we consider that each vertex v € Vj;
is a seed to mine protein complex cores, and we com-
pute SS(v, w) between v and each adjacent vertex w, when
SS(v,w) is larger than or equal to a user-defined thresh-
old (ss); then we take w as a core vertex to the preliminary
complex core Core(PC,). Moreover, vertex w should be
included into Core(PC,), because they are connected and
share a similar structure. Each preliminary complex core
Core(PC,) consists of seed vertex v and core vertices, and
the value of SS(v, w) between seed vertex v and its direct
neighbors is larger than or equal to a previously set thresh-
old ss. Finally, we discard some redundancy preliminary
complex cores and only retain preliminary complex cores
whose size is greater than or equal to 2. The pseudo-code
of this phase is shown in algorithm 2.

Attachment protein detection

EWCA is used to detect the protein complex cores in
the previous section. Next, we should identify the attach-
ment proteins for each complex core to form the protein
complex. The research of Gavin et al. [31] shows that
attachment proteins are closely associated with core pro-
teins within protein complexes and that a great degree
of heterogeneity in expression levels and attachment
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Algorithm 2 Preliminary complex core identification.
Input: The PPI network, Gppi = (Vppis Eppi); The struc-
tural similarity threshold, ss.
Output: The set of preliminary complex core, PCC.
1: initialize preliminary complex core, PCC, variate i =
1
2 forall vin V,,; do
initialize a preliminary complex core CC; = ¢;

: get the structural neighborhood of vertex v as
SN (v) according to equation (4); // SN (v) includes v
and all the neighbors of v.

5: for each vertex u € SN(v) do

6: calculate the value of structural similarity,
denoted SS(v, u) between vertices v and u according
to equation (5);

7: if SS(v, u) > ss then

8: CC; = CC;U{u}; // update CC; by adding u.
9: end if

10: end for

11: if the size of CC; > 2 then

12: PCC =PCCU CCy; // insert CC; into PCC.

13: i =i+ 1;// variate i plus one.

14 end if

15: end for;

16: discard the same preliminary complex core in PCC;
17: return The set of preliminary complex core, PCC.

proteins might represent nonstoichiometric components
[31]. Also, attachment proteins are shared by two or more
complexes and some overlapping proteins may participate
in multiple complexes [53, 54]. According to Gavin et al’s
research [31] and our previous CALM algorithm [14], we
know that a protein complex consists of a protein complex
core and attachment proteins. Additionally, attachment
proteins have two parts. One is peripheral proteins and
the other is overlapping proteins. If the readers want to
understand these concepts, please refer to ref [14, 31].
Based on the concepts of attachment proteins, attach-
ment proteins contain could be grouped into two cat-
egories. The first category is peripheral proteins, and
its main feature is that they only belong to one pro-
tein complex. In other words, they closely connect to the
protein complex and belong to the most favored protein
complexes. The second category is overlapping proteins,
which, in contrast, belong to multiple protein complexes.
According to our previous CALM algorithm statistics,
the number of overlapping proteins in the known pro-
tein complexes [14] shows that a large fraction of pro-
teins (called overlapping proteins) participate in multiple
protein complexes. Here, we summarize the features of
overlapping proteins. Overlapping proteins are proteins
that belong to several protein complexes at the same time.
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Overlapping proteins connect to each protein complex
with a different connection strength. We believe that
dense protein-protein interaction in a protein complex is
a key feature of protein complexes. Therefore, we adopt
the average weighted degree of protein complexes which
is based on the concept of density, to judge whether a
protein is an overlapping protein or not.

Next, let us assume an identified complex, written as
PC,. Here, we use a given a preliminary complex core
Core(PC,)) = (Viores Ecore) and a candidate attachment
subset CAP to construct the identified complex PC,. We
need to complete two tasks: one is to set up a subset
CAP C Vpp; in which each protein p € CAP is a candidate
attachment protein for the identified protein complex PC,
and the other one is to decide which category each protein
in CAP belongs to.

At first, for attachment proteins, we give two basic con-
ditions: (1) attachment proteins should directly interact
with the corresponding complex cores. (2) attachment
proteins should connect with at least two or more core
proteins with its complex core. If a protein p satisfies these
conditions, it is selected as a candidate attachment pro-
tein, where protein p belongs to the neighbourhood of the
preliminary complex core Core(PCy) and N (p)N\V¢ore = 2.
As a result, we have constructed a candidate attachment
subset CAP. Next, we will discuss how to specifically iden-
tify the two categories. First of all, we consider a protein
belong to that an overlapping protein should satisfy the
following:

(1) Overlapping proteins interact directly and closely
with the corresponding complex cores.

(2) The weighted out-connectivity of the complex core
of the overlapping protein is greater than the
weighted in-connectivity of the complex core.

(3) Overlapping proteins weakly interact with the
corresponding complex core relative to the internal
interactions within the corresponding complex core.

(4) Overlapping proteins are not unique to a protein
complex; instead, they may be present in more than
one complex.

According to these conditions, we let a candidate attach-
ment protein p of an identified complex PC, be an over-
lapping protein in a candidate attachment set CAP, that is,
p € Overlapping(PC,):

(1) The weighted out-connectivity of p with respect to
Core(PC,) is greater than or equal to the weighted in-
interactions of p with respect to Core(PC,), given by:
weight o, (p, Core(PC,)) > weight;,(p, Core(PC,)).

(2) The weighted in-interactions of p with respect to
Core(PC,) is at least half of the average weighted
in-interactions of all core vertices in Core(PC,), given
by: dyeigns (p, Core(PC,)) > %weightmg(Core(PCV)).
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Here, dyeign:(p, Core(PC,)) is the total weight
interactions of p with core proteins in Core(PC,), given
by dyeign:(p, Core(PC,)) = Zp¢vcore)tevcore weight(p, t).
weight,e(Core(PC,)) is the average of the weighted
interactions of all core proteins within the complex
core Core(PC,), calculated by weight,,e(Core(PC,)) =

2*2(”{)650”6 weight (v,u)
. |V€07€| .
proteins in the Core(PC,) and ), , g weight(v,u)

represents the total weight of interactions in the protein
complex core Core(PC,). If a protein satisfies these condi-
tions, we suppose that it belongs to protein complex PC,
at the same time and make it an overlapping protein.

Second, when we have obtained all overlapping pro-
teins from candidate attachment set CAP, we next obtain
a candidate peripheral protein subset, CP(PC,), which
is a difference set, given by CAP — Overlapping(PC,).
We consider that a peripheral protein should satisfy the
following:

, where |V el is the number of

(1) Peripheral proteins are not overlapping proteins.

(2) The weighted in-connectivity of the complex core of
the peripheral proteins is greater than the weighted
out-connectivity of the complex core.

(3) Peripheral proteins closely interact with
corresponding complex core relative to the
interaction of other non-member proteins with the
corresponding complex core.

(4) Peripheral proteins only belong to a protein complex.

Considering these criteria, we let a candidate attach-
ment protein p of an identified complex PC, be a periph-
eral protein in a candidate peripheral protein subset
CP(PC,), that is, p € Periphery(PC,):

(1) The weighted in-interactions of p with respect to
Core(PC,) is greater than the weighted
out-connectivity of p with respect to Core(PC,) and
is written by:
weight;, (p, Core(PC,)) > weight,,:(p, Core(PC,)).

(2) The weighted in-interactions of p with respect to
Core(PC,) is greater than the average weight of
interactions of all all candidate peripheral proteins
with Core(PC,) and is given by:
weight, (p, Core(PC,)) > weighta,,(CP(PC))).

) e 3 weight;, (c,Core(PCy)) .
Here, weight,,;(CP(PC,)) = Leecrpc) CP(PC,)]

the average weight of interactions of the entire candidate
peripheral protein subset CP(PC,) with Core(PC,).

Combining the peripheral proteins and overlapping pro-
teins, we form the final set of attachment proteins of
protein complex core Core(PC,), that is:

Attachment(PC,) ={Periphery(PC,)UOverlapping(PC,)}.
(6)

The more detailed pseudo-codes of this phase is shown in
Algorithm 3.
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Algorithm 3 The attachment protein detection.

Input: The weighted PPI network G = (Vpi, Eppi» Wppi)sthe W,,p,; is computed based on equation (2) (HOCN (v, u)),

the set of identified preliminary complex cores, PCC.

Output: The set of identified candidate attachment proteins, AP.

1: for each preliminary complex core Core(PC,) € PCC do

2 obtain a candidate attachment protein subset CAP, for each p € CAP, where it is the direct neighbor proteins
around the Core(PC,) and p connects with at least two or more core proteins with complex core Core(PC,), given

by: N(p) N Veore 2 2;

2 Z(I;)eEwre Weight(ij)

3: calculate weight,,;(Core(PC,)) =

4 initialize Attachment protein subset, Atmchment(PCV), Periphery protein subset, Periphery(PC,), Overlapping

protein subset, Overlapping(PC,);

5 forp € CAPdo

6 calculate weight;, (p, Core(PC,)) = Zpgévcm,tevme weight (p, t);

7: calculate weight,,; (p, Core(PC,)) = Zp¢vcore:t¢ Veore weight(p, t);

8 if weight;,(p, Core(PC,)) < weightoy(p, Core(PC,)) and dyeign: (p, Core(PCy)) = %weightavg(COre(PCV))
then

9: Overlapping(PC,) = p U Overlapping(PC,); // add p to Overlapping(PC,).

10: end if

11: end for

12 obtain a candidate peripheral protein subset,CP(PC,), given by CP(PC,) = CAP — Overlapping(PC,); //

CP(PC,) is a difference set.

Y cecppcy) Weightin(c,Core(PCy)) |

13: calculate weight,,;(CP(PC,)) =

|CP(PCy)| ’
14 for p € CP(PC,) do
15: if weight;, (p, Core(PC,)) > weightyy,:(p, Core(PC,)) and weight;,(p, Core(PC,)) > weight,,;(CP(PC,)) then
16: Periphery(PCy) = p U Periphery(PC,); // add p to Periphery(PC,).
17: end if
18: end for

19: Attachment(PC,) = Periphery(PC,) U Overlapping(PC,)
20: AP = AP U Attachment(PC,); // insert Attachment(PC,) into AP.

21: end for
22: return The set of identified attachment protein, AP.

Protein complex formation

After we have obtained the set of identified preliminary
complex cores and the set of identified candidate attach-
ment protein, we combine a preliminary complex core and
its attachment proteins and form the final set of unique
complex (PC,), i.e.,

PC, = {Core(PC,) U Attachment(PC,)}, (7)

Furthermore, we discard protein complexes with a size of
less than 3 proteins. Moreover, because different protein
complex cores may produce the same identified protein
complexes, some redundant protein complexes are identi-
fied. Thus, some protein complexes are completely over-
lap with each other, which means that only one of them is
retained while the others are removed as redundant pro-
tein complexes, The detailed pseudo-code of this phase is
shown in Algorithm 4.

Algorithm 4 Protein complex formation

Input: The set of identified preliminary complex cores,
PCC; The set of identified Attachment proteins, AP.
Output: The set of identified protein complexes, PCs.
1: for each Core(PC,) € PCC and each
Attachment(PC,) € AP do
2 PC(v) = Core(PC,) U Attachment(PC,); // con-
struct a identified protein complex, PC(v).
PCs = PCs U PC(v); // insert PC(v) into PCs.
4: end for
5. discard the protein complexes with size less than 3 in
PCs;
6: remove the same (redundant) protein complex in PCs;
7. return The set of identified protein complexes, PCs.

Datasets and evaluation metrics

Experimental datasets

We do the experiment on the three PPI networks of
S.cerevisiae extracted from the PPI Networks DIP [55],
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Table 1 The details of PPl networks used in experiments

Dataset Number of node Number of edge Density

DIP 4930 17202 0.00141572191
BioGRID 5640 59748 0.00000315987
Yeast 6194 74826 0.00390130805
Human 15459 144687 0.00121094608

BioGRID [56] and Yeast [57], respectively. The general
properties of the datasets are shown in Table 1. For
human, the PPI network is constructed by combining the
data from Human [57]. For more detail about Yeast and
Human datasets, see the Ref [57].

For yeast, three reference sets of protein complexes are
used in our experiments. One set comprises of hand-
curated complexes from CYC2008 [23] and the other set
is NewMIPS which generated by MIPS [58], Aloy [59]
and the Gene Ontology (GO) annotations in the SGD
database [60]. The last Yeast complexes [57] come from
the Wodak database (CYC2008) [23], PINdb and GO com-
plexes. For human, Human complexes [57] are collected
from the Comprehensive Resource of Mammalian protein
complexes (CORUM) [61], protein complexes are anno-
tated by GO [62], Proteins Interacting in the Nucleus
database (PINdb) [63] and KEGG modules [64]. For all of
them, we only keep the complexes with size no less than 3.
The general properties of the reference complex sets are
shown in Table 2.

Evaluation metrics

There are several evaluation metrics that can be used
to perform comprehensive comparisons, such as recall,
precision, F-measure and so on. Here, we employ them
as previously suggested by study [13, 16, 65]. Overall,
there are five types of evaluation metrics used to evaluate
the quality of the identified complexes and compare the
overall performance of the identification methods. The
definitions of these evaluation measures are introduced as
follows.

Recall, precision and F-measure

Generally speaking, clustering results are evaluated in
terms of recall, precision, and F-measure. Recall [66] is
termed the true positive rate or sensitivity, and it is the
ratio of the number of proteins in both identification com-
plexes and reference complexes to the number of proteins
in the reference complexes. Precision [66] is the ratio of
the maximal number of common vertices in both iden-
tified complexes and reference complexes to the number
of vertices in identified complexes. Meanwhile, F-measure
is a harmonic measure according to recall and precision
[66] and it is used for evaluating the accuracy of the iden-
tified complexes. The F-measure could evaluate not only
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the accuracy of identified complexes matching reference
complexes but also the accuracy of protein complexes
matching identified complexes.

The identified complexes P = {p1,p2, ..., px} is gener-
ated by identified method, and R = {ry,79,..., 17} is the
reference complexes for any identified complex p; and ref-
erence complex r;. First, we introduce the neighborhood
affinity (NA(p;, rj)) between the identified protein com-
plexes and reference complexes, which is presented as
follows [16, 65, 67]:

[Ny 0 N I

—, (8
|Np,- | % |Ns]- |

NA(pi,S]') =
Here, the neighborhood affinity NA(p;,7;) is defined
to measure the similarity between identified complexes
and reference complexes, and it quantizes the closeness
between them. |N),| is the size of the identified complex,
INy; | is the size of the reference complex, and [Ny, N Ny | is
the number of common proteins from the identified and
reference complexes. The larger the value of NA(p;, 1)) is,
the more possible two complexes closer are. If NA(p;, rj) >
t, then the p; is considered to be matched with r;, where ¢
is a predefined threshold. In this paper, we also set t = 0.2,
which is consistent with previous studies [16, 65].

After the neighborhood affinity NA(p;,r;) has been
defined, we will give the definition of recall, precision and
F-measure. We assume that P and R are the set of identi-
fied complexes and real reference complexes, respectively.
N,y is the number of reference complexes that match at
least an identified complex, i.e. Ny, = |{r|r € R,Ap €
P,NA(r,p) > t}|. Ny is the number of correct identifica-
tion complexes that match at least a real protein complex,
ie, Nyp = l{plp € P,Ar € R,NA(p,r) > t}|. Recall and
precision are defined as follows [68]:

N,
Recall = Wm(, 9)

and

N,
Precision = —2 (10)

Pl
In general, a larger protein complex has the higher recall,

while a smaller protein complex has higher precision.
Therefore, the F-measure is defined as the harmonic mean

Table 2 General properties of the standard protein complexes

Datasets Number of Protein Avg size
protein coverage
complexes
CYC2008 236 1628 4.71
NewMIPS 328 1171 14.93
Human complexes 2289 6206 8.57
Yeast complexes 1045 2773 8.92
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of recall and precision, which The corresponding formulas
are shown as follows [69]:

2 x (Precision x Recall)

F — measure = (11)

Precision + Recall

Coverage rate and mMR

The coverage rate is use for assessing how many pro-
teins in the reference complexes could be covered by the
identified complexes [70, 71]. In detail, when the set of
reference complexes R and the set of identified complexes
P, are given the |R| x |P| matrix T is constructed, where
each element max{T}} is the largest number of proteins
in common between the ith reference complex and the jth
identified complex. The coverage rate is defined as:

_ YR max(Ty)

CR
R b
RN

(12)
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where N; is the number of proteins in the ith standard
complex.

The MMR metric, which is strongly recommended
by Nepusz et al. [13], measures the number of maxi-
mal matching between reference complexes and identified
protein complexes. As discussed by the authors, it penal-
izes the methods that tend to split a reference complex
into more than one part in the identified complexes. To
do so, a bipartite graph is composed by two sets of ver-
tices, and the edge between an identified complex and
a reference complex is weighted by the matching score
of NA(A, B) (see Eq. (8)). The MMR score between the
identified complex and the reference complex is the total
weight of edges, selected by the maximum weighted bipar-
tite matching and divided by the number of known com-
plexes. For more details about computing MMR, please
refer to references [13].

Table 3 Performance comparison with other methods based on NewMIPS

Algorithms Recall Precision F-measure MMR CR
BioGRID

MCL 0.2896 0.2011 0.2374 0.0726 0.2995
CFinder 0.5914 0.1960 0.2944 0.28013@ 0.4402
Core 0.5609 0.1488 0.2352 0.1437 0.5882
DPClus 06951 0.1741 0.2785 0.201 0.5597
CMC 08109 0.2731 0.4086 03175274 04954
COACH 0.7256 0.2581 0.3807 0.2525 0.63223d
SPICi 04969 0.3725 04258 0.1304 04378
ClusterONE 0.5914 03130 04093 0.1917 0.5311
PEWCC 04512 0.59432nd 0.5129% 0.1889 04119
ProRank+ 04817 0.7131t 0.57502nd 0.241 04763
GMFTP 0.7530%@ 0.2830 04114 0.2551 0.5186
DPC 06310 0.3050 04112 0.2312 0.633220d
EWCA 0.75612d 0.58213d 0.6578'% 0.3764'% 0.6497'¢
DIP

MCL 04908 0.1783 0.2616 0.1255 0.3271
CFinder 0.5762 0.2408 0.3396 02128 0.2403
Core 04420 0.1746 0.2504 0.1249 0.3902
DPClus 0.6067°@ 0.1392 0.2265 0.1626 0.3356
CMC 0.5932 04152 04885 0.249921d 0.5736'*
COACH 0.5731 0.51062"9 0.54012nd 0.2006 0.3351
SPICi 04847 0.2473 0.3275 0.1095 0.3191
ClusterONE 04054 0.3020 0.3462 0.1178 0.2417
PEWCC 0.5670 04822 0.52123 0.2297%d 0.3280
ProRank+ 0.4085 0.6657'< 0.5063 0.1669 0.2444
GMFTP 0.6981204 0.2755 0.3951 0.2228 0.40432nd
DPC 04908 04389 0.4634 01717 0.3305
EWCA 0.7012'5 0.4990% 0.5830' 0.3094'5 0.398231

NOTE: The highest value in each column is shown in bold
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The above three kinds of metrics are independent and
can work together to evaluate the performance of protein
complex identification methods [13].

Analysis of function enrichment

Moreover, because of laboratory-based experiments lim-
itation, the known protein complexes are incomplete.
Therefore, many researchers [7, 72] annotate their main
biological functions by using p-value formulated as
Eq. (13). We also adopt function enrichment test to
demonstrate the biological significance of the identified
protein complexes. Given an identified protein complex
containing C proteins, p-value is used for calculating the
probability of observing m or more proteins from the
complex by chance in a biological function shared by F
proteins from a total genome size of N proteins:

()
p—value=1— Z %
i ()

(13)

Here, where N is the total number of vertices in the PPI
networks, C is the size of the identified complex, F is the
size of a functional group, and m is the number of proteins
of the functional group in the identified complex. The p-
value is calculated on biological process ontologies. The
smaller the p-value of a protein complex is, the more bio-
logical significance of the protein complex is. In general,
if the p-value is lower than 0.01, the protein complex is
considered to be significant.

Results

Comparison between different methods

To demonstate the effectiveness of EWCA in identifying
protein complexes, we compare EWCA with twelve exist-
ing state-of-the-art protein complex identification algo-
rithms including MCL, CFinder, Core, DPClus, COACH,
SPICi, ClusterONE, PEWCC, GMFTP, CMC, ProRank+
and DPC. To be fair for each compared method, we
follow the strategy used in [6, 13], the optimal param-
eters of the reference complexes are set to generate
the best result for each compared method, and the
optimal parameters with respect to the reference com-
plexes are set to generate its best result or follow as
suggested by the authors. More details and the selec-
tion of parameters for all the compared methods are
supplied in website (https://github.com/RongquanWang/
EWCA/SupplementaryMaterial.docx). Here we chose
these parameters that can maximize the value of F-
measure, because it could fully balance the performance
of all methods. Moreover, the comparison results between
EWCA and other methods are shown in Tables 3 and 4,
which is the overall performance of each methods based
on recall, precision, F-measure, MMR and CR.
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What’s more, EWCA achieves almost the highest F-
measure and MMR is also the highest through four com-
binations of the two PPI datasets and the two reference
complexes. Please note that we have removed identified
complexes with having two or less proteins, and we do not
any supply biological data (e.g., Go annotations) in EWCA
method and other compared methods. The bold values is
the best result in comparison with other methods. In fact,
F-measure is the harmonic mean of recall and precision.
Obviously, the higher F-measure is better.

Table 3 shows the comprehensive comparison results
on the unweighted networks in terms of five crite-
rion by using the NewMIPS complexes. EWCA achieves
the highest F-measure and MMR, which are compared
with the other methods across all two combinations of
the two PPI datasets. It is obvious that EWCA could
identify protein complexes more accurate. In Table 3,
when using BioGRID dataset as input PPI network and
NewMIPS as reference complexes, EWCA obtains the
highest F-measure that is 0.6578, that is higher better
balance between recall and precision. Similar, EWCA
is the highest value in terms of MMR and CR. As
shown in Table 3, EWCA achieves the highest recall
of 0.7012, F-measure of 0.5830 and MMR of 0.3094
in the DIP PPI network, which obviously outperforms
other methods. Meanwhile, EWCA obtains a higher MMR
than other methods, and it indicates that the iden-
tification of protein complexes by EWCA can obtain
a better maximal one-to-one mapping to NewMIPS
complexes. In short, Table 3 shows that EWCA obvi-
ously outperforms other methods on the NewMIPS
complexes.

Table 4 shows the overall comparative results on the
unweighted networks using the CYC2008 complexes. In
Table 4, when the PPI dataset is BioGRID, EWCA achieves
the highest F-measure of 0.6752, however the second
highest ProRank+ is just 0.5104. It is the main difference
between EWCA and other methods, which means EWCA
has the absolutely advantage. Compared with other meth-
ods, EWCA’s other criterion is just a little lower than
the highest of other methods. Secondly, when we com-
pare EWCA with the other methods by using DIP PPI
network. Similarly, EWCA still outperforms others meth-
ods as shown in Table 4. The experimental results show
that EWCA achieves both the highest recall of 0.7076,
the highest F-measure of 0.6020 and the highest MMR
of 0.3766 in the DIP PPI network. Meanwhile, it indi-
cates that our identified protein complexes could match
to reference complexes, which is significantly superior
to the other methods. Furthermore, compared with CR,
EWCA is a little lower than the best GMFTP on DIP
PPI network. Furthermore, for other assessment measure,
EWCA is very close the best in DIP dataset as shown in
Table 4. Meanwhile, the experimental results by using the
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Table 4 Performance comparison with other methods based on CYC2008

Algorithms Recall Precision F-measure MMR CR
BioGRID

MCL 03516 0.2268 0.2758 0.1245 0.5310
CFinder 0.5720 0.1637 0.2546 03115 0.6135
Core 0.5847 0.1527 0.2422 0.2081 0.8058
DPClus 0.7839 0.1978 0.3158 0.304 0.8160
CMC 0.8644'° 0.2677 04088 0.4375'¢ 0.7639
COACH 0.7669 0.2488 0.3757 0.3042 0.8750'
SPICi 0.5127 04039 04518 0.1997 0.6065
ClusterONE 06610 0.3487 04565 0.2734 0.7569
PEWCC 04025 0.53743d 0.46033d 02142 0.5431
ProRank+ 04153 0.6622'" 0.51042nd 0.246 0.5850
GMFTP 0.7838%@ 0.2914 04249 0.3913% 0.7956
DPC 0.7033 0.2874 04081 0.2643 086163
EWCA 0.809321d 0.57932nd 0.6752'5 0.43512nd 0.87182nd
DIP

MCL 0.5169 0.1847 0.2721 0.1899 04892
CFinder 0.5508 0.2398 0.3342 0.2788 0.3807
Core 04618 0.1818 0.2609 0.2033 0.5317
DPClus 066513 0.1518 0.2473 0.2610 0.5184
CMC 0.5932 04125 0.4866 0.2501 0.5755%
COACH 0.5423 0.516731 0.52922nd 0.2764 0.4879
SPICi 0.5000 0.2769 0.3564 0.1665 0.4600
ClusterONE 04279 0.3343 03753 0.1840 0.3750
PEWCC 0.5296 04852 0.50643 0.28473d 0.4682
ProRank+ 03771 0.6923'5t 04883 0.2029 0.3293
GMFTP 0.66522M4 0.2664 0.3804 0.331527d 0.6085'*
DPC 04872 04598 04731 0.2146 04828
EWCA 0.7076'5 0.52392nd 0.6020'¢ 0.3766'" 0.58062"

NOTE: The highest value in each column is shown in bold

CYC2008 as reference complexes are basically consistent
with using the NewMIPS as reference complexes.

In summary, EWCA achieves the better performance
on two PPI network, which is competitive or superior
to the existing protein complexes identification methods.
Especially, EWCA achieves a consistently better F-
measure and MMR than the other twelve methods.
Tables 3 and 4 present the comparison results under two
reference complexes.

Analysis of function enrichment

Since the reference complexes are incomplete, to further
validate the effectiveness of EWCA method, we investi-
gate the biological significance of our identified protein
complexes. Each identified complex is associated with
a p-value (as formulated in Eq. (13)) for gene ontology
(GO) annotation. In general, an identified complex by

different identification methods is considered biologically
significant if its p-value is less than 1E-2. Meanwhile, an
identified complex has a lower p-value, the more statis-
tically biological significance. We calculate the p-value of
identified complexes based on biological process ontolo-
gies by using the web service of GO Term Finder (https://
www.yeastgenome.org/goTermFinder) [73] which is pro-
vided by SGD [74]. Here, for each identification complex,
we use the smallest p-value over all possible gene ontol-
ogy term to represent its functional homogeneity. Besides
analyzing the protein complexes identified by EWCA, we
also calculate the p-value of protein complexes identified
by CMC, PEWCC, GMFTP, COACH, ProRank+ and DPC
whose size are greater than or equal to 3, respectively.
Selecting the above methods to compare with EWCA is
because all of them obtained better performances in two
test PPI networks as shown in Tables 3 and 4.
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Table 5 Function enrichment analysis of protein complexes detected from different datasets

Page 13 of 20

Dataset Algorithms PC <E-15 [E-15,E-10) [E-10,E-5) [E-5,0.01) Significant

BioGRID CMC 1113 125(11.23%) 89(7.99%) 258(23.18%) 360(32.34%) 832(74.76%)
PEWCC 387 181(46.77%) 64(16.53%) 83(21.44%) 46(11.88%) 374(96.65%)
GMFTP 597 73(12.22%) 59(9.88%) 156(26.13%) 161(26.96%) 449(75.21%)
COACH 166 76(45.78%) 32(19.27%) 38(22.89%) 16(9.63%) 162(97.60%)
ProRank+ 746 479(64.20%) 105(14.07%) 97(13.00%) 47(6.30%) 18(97.59%)
DPC 2167 596(27.50%) 166(7.66%) 290(13.38%) 569(26.25%) 1621(74.81%)
EWCA 1388 658(47.40%) 211(15.20%) 299(21.54%) 173(12.46%) 1341(96.62%)

DIp CMC 303 1(0.33%) 8(2.64%) 58(19.14%) 77(25.41%) 144(47.53%)
PEWCC 676 78(11.53%) 117(17.30%) 278(41.12%) 132(19.52%) 605(89.50%)
GMFTP 548 43(7.84%) 36(6.56%) 105(19.16%) 166(30.29%) 350(63.69%)
COACH 329 21(6.38%) 25(7.59%) 66(20.06%) 32(9.72%) 144(43.68%)
ProRank+ 338 74(21.89%) 77(22.78%) 126(37.27%) 42(12.42%) 319(94.38%)
DPC 622 72(11.57%) 113(18.16%) 197(31.67%) 176(28.29%) 558(89.72%)
EWCA 964 188(19.50%) 126(13.07%) 319(33.09%) 236(24.48%) 870(90.15%)

NOTE: Table 5 lists the number percentage of protein complexes detected by CMC, PEWCC, GMFTP, COACH, ProRank+, DPC and EWCA in the PPI network whose p-value falls
within different value ranges. In order to analyze functional enrichment, we should take into account of two values. For example, in the DIP dataset, in the fourth column of
the fourteenth row 188 times 19.50% is 36.66 which is the highest value in this column that means EWCA is the best among these methods. Here, from the fourth column to

the seventh column the larger value is, the better functional enrichment is

The results of p-value test for CMC, PEWCC, GMFTP,
COACH, ProRank+, DPC and EWCA are presented in
Table 5. To compare the biological significance of dif-
ferent algorithms, the number of identified complexes,
the number of identified complexes and the proportion
of identified complexes by various methods whose p-
value falls within different value ranges are calculated for
each algorithm. Most of previous algorithms only take
account of the proportion of identified complexes. How-
ever, the p-value of protein complexes identified has close
relationship with their size [16]. Therefore, we should
consider both the number of identified complexes and
the proportion of identified complexes to analyze func-
tion enrichment of identified protein complexes. As the
Table 5 shows, on the BioGRID dataset, the proportion of
significant protein complexes identified by EWCA is 96.62
percent, which is about 1 percentage point lower than the
best method COACH and 0.97 percentage point lower
than the second best method ProRank+. It may be due to
the fact that EWCA detects many more protein complexes
than COACH and ProRank+ and the size of identified
protein complexes by EWCA is relatively smaller than
other algorithms, such as ProRank+. However, it is obvi-
ous that the number of identified protein complexes by
EWCA is 1341, which is maximum and it is far more than
COACH and ProRank+.

On the DIP dataset, the proportion of significant protein
protein complexes identified by EWCA is 90.15 percent,
which is about 4 percentage point lower than the best
method ProRank+. Meanwhile, the number of identified
protein complexes by EWCA is also maximum. Similarly,

the number of identified protein complexes by CMC
and GMFTP in BioGRID dataset is 1113, 2167, respec-
tively. The number of identified protein complexes by
PEWCC and DPC in BioGRID dataset is 676 and 622,
respectively. Generally, the smaller the number of iden-
tified protein complexes is, the higher the proportion of
significant complexes is. In fact, the number of identi-
fied protein complexes by CMC, GMFTP and PEWCC is
much smaller than EWCA. However, they have the per-
centage of significant protein complexes is relatively lower
than EWCA method. All in all, EWCA has more practi-
cal and biological significant than other methods in terms
of the number of identified protein complexes and the
proportion of identified complexes. According to their
p-value, those identified protein complexes by EWCA
has a higher possibility to be identified as real protein
complexes through laboratory experiments in the future.

To further reveal the biological significance of iden-
tified complexes, five identified protein complexes with
very low p-values provide by EWCA method with dif-
ferent datasets are presented in Table 6, which lists the
p-values (Biological Process) of protein complexes, Clus-
ter frequency and Gene Ontology term. The third column
of Table 6 shows the cluster frequency. From this col-
umn, we can see that many of our identification protein
complexes match well with the Gene ontology term. The
p-value of identified complexes in Table 6 is very low,
which further demonstrates that the protein complexes
identified have high statistical significance.

Furthermore, we discover many identified protein
complexes with cluster frequency of 100%. Here,
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Table 6 Some example of identified complexes with low p-value detected by EWCA method on different datasets
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Dataset D P-value(BP) Cluster frequency Gene ontology
term
BioGRID 1 8.83e-108 62 of 66 genes, 93.9% mRNA splicing,
via spliceosome
2 2.68e-106 70 of 71 genes, 98.6% cytoplasmic
translation
3 1.09e-80 78 of 92 genes, 84.8% chromatin
organization
4 2.11e-72 55 of 88 genes, 62.5% ribosomal large
subunit
biogenesis
5 248e-78 83 of 102 genes, 81.4% ribosome
biogenesis
DIP 1 462e-32 14 of 16 genes, 87.5% mMRNA
polyadenylation
2 1.54e-31 24 of 25 genes, 96.0% mMRNA processing
3 2.96e-25 15 of 23 genes, 65.2% maturation of
LSU-rRNA from
tricistronic rRNA
transcript
4 1.80e-28 16 of 18 genes, 88.9% histone
acetylation
5 5.58e-29 12 of 13 genes, 92.3% ATP biosynthetic

pprocess

let’s take 5 examples with p-value less than E-19
are listed in Table 7. Such identified protein com-
plexes are probably real protein complexes, which
also provide meaningful references to the related
researchers.

Discussion

Parameter selection

In this experiment, we introduce an user-defined param-
eter structural similarity (ss) and study its effect to identi-
fying protein complexes. For yeast, protein complexes are

Table 7 Ten protein complexes with cluster frequency being 100% on different datasets

Datasets D P-value(BP) Cluster Frequency Gene ontology term
BioGRID 1 1.76e-75 46 of 46 genes, RNA splicing
100.0%
2 142e-43 16 of 16 genes, tRNA transcription
100.0%
3 5.77e-40 23 of 23 genes, MRNA transport
100.0%
4 1.36e-32 14 of 14 genes, ergosterol
100.0% biosynthetic process
5 2.24e-30 20 of 20 genes, DNA replication
100.0%
DIP 1 4.68e-26 10 of 10 genes, anaphase-promoting
100.0% complex-dependent
catabolic process
2 1.06e-31 19 of 19 genes, mRNA splicing, via
100.0% spliceosome
3 7.37e-27 21 of 21 genes, mMRNA metabolic
100.0% process
4 8.64e-24 15 of 15 genes, mitochondrial
100.0% translation
5 2.57e-19 10 of 10 genes, ncRNA transcription

100.0%
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Fig. 3 The effect of ss. Performance of EWCA on protein complex identification with different values of structural similarity threshold values of ss is
measured by all evaluation meterics, with respect to CYC2008 and NewMIPS standard complex sets. The x-axis denotes the value of structural
similarity and the y-axis denotes some evaluation metrics in DIP dataset. The F-measure is maximised at ss=0.4 for unweighted DIP dataset
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structural similarity

identified from the two yeast PPI datasets including DIP
and BioGRID in Table 1. The performance is evaluated
in terms of precision, recall, F-measure, MMR and CR,
which are calculated by using NewMIPS and CYC2008 as
reference complexes.

To investigate the effect of the parameter ss on perfor-
mance of EWCA, we evaluate the identification accuracy
by setting different values of ss and we change the value
of parameter ss from 0.1 to 1.0 with 0.1 increment. It
is obvious that ss is allowed when ss > 0 and is not
allowed when ss = 0. Figures 3 and 4 show the perfor-
mance of EWCA method fluctuates under various ss and
the results on DIP dataset and BioGRID dataset are shown
separately. Figures 3 and 4 indicate that EWCA gets the
better performance when ss is assigned 0.4.

As shown in Figs. 3 and 4, with the increase of ss, the
value of recall, MMR and CR decrease but the value of
precision increases. It is shown almost similar trends in
all cases. Furthermore, we study the behaves of EWCA in
terms of F-measure. Notably, in DIP dataset, the value of
F-measure increases gradually with the increase of ss until
ss = 0.4. Here, when CYC2008 and NewMIPS reference
complexes are used, the maximum value of F-measure is
0.6020 and 0.5830, respectively. As the gradual increase of
ss, the value of F-measure shows different change trends,
which are all below ss = 0.4. For the DIP dataset, we set
ss = 0.4. Similarly, in the BioGRID dataset, the value of F-
measure increases as ss increasing and the value reach up
to 0.6752 and 0.6578 by using CYC2008 and NewMIPS
reference complexes when ss = 0.4, which is the optimal
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value as shown in Fig. 4. In the rest of experiment, we set
ss = 0.4 for obtaining experimental results.

As a result, we recommend that the suitable range of ss
would be from 0.4 to 0.6. Because the value of F-measure
does not change significantly in this range.

Time complex analysis

In this section, we analyze the computational complex-
ity of EWCA algorithm. All experiments are run on
an Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz com-
puter with 12.0 GB memory. For simplicity, we run
all the programs with their default parameter. Mean-
while, all reported run times are clock times for run-
ning protein complexes identification methods. Fur-
thermore, because the accuracy of protein complexes

identification methods is most important. Therefore,
we only select these comparison methods with having
high accuracy according to Tables 3 and 4 to compare
efficiently.

We present an analysis of the computation complexity
of the algorithm EWCA. Given a graph with m edges and
n vertices, EWCA first executes Algorithm 1. For each
edge, EWCA computes the weight of the edge. For one
vertex, EWCA visits its direct neighbors. Here, we use an
adjacency list which is a data structure where each ver-
tex has a list which includes all its neighbor vertices. The
cost of neighborhood query is proportional to the number
of neighbors, that is, the degree of query vertex. There-
fore, the total cost is O(deg(vi) + deg(vy) + deg(v;) +
... + deg(vy)), where deg(v;),i = 1,2,i,...,n is the degree
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Table 8 Accuracy and running time by different algorithms on Human and Yeast datasets using Human complexes and Yeast

complexes as standard complexes

Dataset Algorithms pC F-measure MMR CR Running time/s
Human PEWCC 2930 0.3955°"d 0.0963°"9 0.5155 83.05 s2nd
COACH 4484 0.2455 0.0677 0.5408'" 2851s
ProRank-+ 838 0.3651 0.0687 0.2856 282665
EWCA 1979 0.4048'" 0.0964'" 05221204 29.37s'"
Yeast PEWCC 1353 0.3446204 0.087120d 04946 36,58 s>
COACH 1547 0.2083 0.0466 0.5520° 360331
ProRank+ 513 0.2712 0.0487 0.2816 251545
EWCA 924 0.4199'% 0.0982'% 0.6182'% 18.54s'%

As the table shows, EWCA obtains best F-measure, MMR and Running time in all the two datasets. Given the results of F-measure, it shows the accuracy of protein complexes
identified by EWCA is better than these comparison algorithms. The results of Running time, it is said the efficient of EWCA is faster than those algorithms. In a word, EWCA
could both accuracy and efficient than some state-of-the-art algorithms with having a higher accuracy according to Tables 3 and 4. NOTE: The highest value in each row is

shown in bold

of vertex v;. If we sum all the vertex degrees in G, we
count each edge exactly twice: O(2 * m). Meanwhile, each
edge has two vertices. Thus the computation complexity
of Algorithm 1 is O(4 * m). Secondly, EWCA executes
Algorithm 2, for each vertex, EWCA visits all its neighbors
and it is same with Algorithm 1. Thus, the computation
complexity of Algorithm 2 is O(2 * m). Thirdly, we exe-
cutes Algorithm 3. We assume that EWCA obtains that
the number of preliminary complex cores is |[N(PCC)|
according to Algorithm 2. The value of |[N(PCC)| must
be lower than n. Let us assume that the average degree
is k in a given PPI network. Furthermore, the real PPI
networks generally have sparser degree distributions and
follow a power-law degree distribution [47]. Thus, k is
generally quite small constant. For each preliminary com-
plex core, during the expansion of a preliminary com-
plex core, we assume that the size of the preliminary
complex core pcc; is |n(pcc;)|. Next, we should obtain
a candidate attachment proteins subset |Neighbor(pcc;)|
from the neighbor of the preliminary complex core pcc.
The time complexity of this process is O(|n(pcc;)| * k).
After we have a candidate attachment proteins subset
|Neighbor(pcc;)|, we judge whether each candidate ver-
tex p should be added to the pcc by some conditions
given in the attachment protein detection section. The
time complexity of this process is O(|Neighbor(pcc;)| *
k). As a result, the time complexity of Algorithm 3

is O (Zfi(f O (In(pecs)| * k + | Neighbor (pees)| * k)) _
Zi\i(f Ok « (In(pcc;i)| + |Neighbor(pcc;)|). Finally, the
time complexity of Algorithm 4 is O(|N(PCC)|). In sum-
mary, the time complexity of EWCA is O(4 x m) + O(2 %
m) + O (LXF ks (n(pecs)| + [Neighbor(pec)))) +
O(IN(PCC))).

In this paper, for the parameters selection of PEWCC,

COACH and ProRank+, we use the default value accord-
ing to suggestions by their authors. Similarly, because

EWCA only has a structural similarity parameter, in order
to ensure a fairness, we also use the default 0.4 to obtain
experimental results. We run EWCA and previous clus-
tering algorithms which have a higher degree of accuracy
according to Tables 3 and 4 on two smaller PPI network
datasets. In order to show that EWCA could ensure the
accuracy and is also efficient. Therefore, we run them
in two slightly larger PPI networks. Table 8 gives the
accuracy and runtime usage of each algorithm on two
species PPI networks. As Table 8 shows, experimental
results show that EWCA not only has a high accuracy but
also need less time than other methods. All in all, EWCA
could be better balance accuracy and efficiency.

Explain the novelty of EWCA approach

Compared to earlier protein complex identification meth-
ods, EWCA possesses several advantages that are enumer-
ated below.

1. Aswe all known, the reliability of existing PPIs has a
great effect on the accuracy of protein complex
identification methods. According to the literatures
[44, 46], we define a high neighborhood-based
methods based on Jaccard measure to assess the
similarity of interactions.

2. The density-based methods or the core-attachment
structure based methods [7, 11, 12, 15, 16] have
achieved ideal performance; compared to these
methods, EWCA also considers core-attachment
structure and could identify protein complexes with
varying densities.

3. Furthermore, EWCA has fewer parameters and
provides some definitions to distinguish and identify
local overlapping proteins and peripheral proteins.

4. Finally, although Wang et al. [14] consider the
core-attachment structure and use the node degree
and node betweenness to identify global overlapping
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proteins and seed proteins, then they use the
modularity concept to predict overlapping protein
complexes. However, it has high costs which increase
with the number of nodes and edges in the PPI
network and EWCA could be better balance
accuracy and efficiency.

Conclusion
In this paper, we have proposed a new method to iden-
tify protein complexes by identifying complex cores and
attachment proteins. Our main contributions are as fol-
lows: (1) we define a new high-order topological similarity
measure to weight each edge. (2) we further extend the
protein complex cores identification methods by using
the concept of structural similarity; and (3) we propose
a new method to distinguish and identify local overlap-
ping and peripheral proteins. Through the comparative
analysis with other methods, the experimental results
indicate that the performance of EWCA is more effec-
tive and accurate. Furthermore, each method has unique
characteristics, and selecting a clustering method suitable
for your purpose is important. Additionally, EWCA can
balance various assessment measures, which means that
EWCA provides more insight for future biological studies.
We may be able to conceive these further research direc-
tions: The available PPI data are full of noise caused
by high false-positive and false-negative rates [75]. To
overcome this issue, there are two ways to reconstruct
a reliable PPI network by predicting new interactions
among proteins [76] and designing noise-robust methods
[77, 78]. In fact, methods that integrate the two strate-
gies could enhance the performance. In addition, EWCA
could be applied to cluster other biological networks, such
as metabolic networks and gene regulatory networks, and
it can also be used to tackle massive networks. We will
further explore these applications in our future work.
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