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Abstract

Background: Clustering methods are essential to partitioning biological samples being useful to minimize the
information complexity in large datasets. Tools in this context usually generates data with greed algorithms that
solves some Data Mining difficulties which can degrade biological relevant information during the clustering
process. The lack of standardization of metrics and consistent bases also raises questions about the clustering
efficiency of some methods. Benchmarks are needed to explore the full potential of clustering methods - in which
alignment-free methods stand out - and the good choice of dataset makes it essentials.

Results: Here we present a new approach to Data Mining in large protein sequences datasets, the Rapid Alignment
Free Tool for Sequences Similarity Search to Groups (RAFTS3G), a method to clustering aiming of losing less biological
information in the processes of generation groups. The strategy developed in our algorithm is optimized to be
more astringent which reflects increase in accuracy and sensitivity in the generation of clusters in a wide range of
similarity. RAFTS3G is the better choice compared to three main methods when the user wants more reliable result
even ignoring the ideal threshold to clustering.

Conclusion: In general, RAFTS3G is able to group up to millions of biological sequences into large datasets, which
is a remarkable option of efficiency in clustering. RAFTS3G compared to other “standard-gold” methods in the
clustering of large biological data maintains the balance between the reduction of biological information
redundancy and the creation of consistent groups. We bring the binary search concept applied to grouped
sequences which shows maintaining sensitivity/accuracy relation and up to minimize the time of data generated
with RAFTS3G process.

Background
Since the emergence of large-scale genomic sequencing,
in 2002, the analyses of genomes and proteomes begun
to be used and have strength, mainly in recent years.
However, it was noticed that there was an exponential
increase of more sequences to be deposited resulting in
the need to create large databases to store such informa-
tion which we call Big Data [1]. Currently works high-
light the importance of the study of large clusters: as in

the prediction of structural families, identifying biologic-
ally relevant molecular features in large-scale omics
experiments with variable measurements at multiple
conditions and to detect in the expansion of the network
of interaction between groups and subgroups of bio-
logical sequences [2–4]. Clustering methods are essen-
tials for partitioning biological samples and are useful in
minimizing the complexity of needed information in ex-
tensive datasets [5] and in bioinformatics is the first
strategy to search information in biological datasets. In
addition, as the size of large biological databases is
extensively larger - billions of sequences are currently
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available for analysis - clustering algorithms generate
large number of clusters and superclusters which makes
manual curation of these impracticable [6] – i.e. UniRef
consortium contains clusters with more than 302,000,
000 clusters [7]. Most methods apply the same approach:
First, the similarity is calculated and then used to group
objects - e.g., experimental samples or biological se-
quences - into clusters, however the clustering output is
useful only if the clusters correspond to the biologically
relevant data features that were not used to define the
grouping [8]. Currently, two tools are considered as “golds
standards” in the clustering sequences to minimize redun-
dancy in large proteins dataset: CD-HIT [9] and UCLUST
[10]. CD-HIT is one of the most popular tools and is the
state-of-art method [11]. UCLUST is a tool used by thou-
sands of users around the world as high-performance
clustering considered faster than the CD-HIT algorithm
[12]. However, those tools use greedy strategies for clus-
tering. Furthermore CD-HIT does not support values
lower than 40% of similarity and in lower identities
whereas UCLUST degrades the quality of alignment [13].
It is also worth pointing out that both the CD-HIT and
UCLUST tools require a manual preprocessing step in
which the data to be rotated by the algorithms must be or-
ganized in order of sequence size, because both algorithms
select the largest to minor sequences to choose the
representative sequence to the group and align the others
from them, not being a random process. Therefore, both
CD-HIT and UCLUST are not reliable choices for cluster-
ing in large datasets with values less than 30% of similarity
so trivial to search sequences with homologies in remotely
structures [14]. The most efficient techniques for this pre-
diction use as gold standard the Basic Local Alignment
Search Tool (BLAST) ‘all-against-all’ or, in another cases,
Markov Clustering (MCL) method adaptations [15]. How-
ever, these tools are dependents on alignment metrics re-
quiring a lot of processing and time to generate results
mainly in large datasets [16–18].
Alignment-free methods are strong alternatives to

alignment-dependent techniques and are also efficient in
minimizing the redundancy of biological data its compu-
tationally fast and use less memory compared to
alignment-based methods [19]. A method that has been
highlighting among the clustering techniques of large
databases to solve the main time and memory bottle-
necks of existing clustering the algorithms is MMSeqs2-
Linclust, a deep clustering approach [20]. This method
explores the alignment-free analyses and apply two main
steps to clustering: the global Hamming distance and
the gapless local alignment extending the k-mer match.
Sequence pairs are generated under the conditions that
satisfying the clustering criteria - e.g., on the E-value, se-
quence similarity, and sequence coverage- and are linked
by an edge. In the end, the greedy incremental algorithm

locates a cluster so that each input sequence has an edge
to the representative sequence of its cluster [21]. Ultim-
ately, alignment-free methods have been applied to prob-
lems ranging from whole-genome and are particularly
useful for processing and analyzing Next-Generation
Sequencing (NGS) data. However, the benchmark data sets
are required to explore the full potential of alignment-free
methods [22].
The validity of the clusters is challenging: information

from external clusters are needed because they are not
known in advance. At this point, the lack of a priori
knowledge about the number of clusters underlying in
the dataset makes it indispensable and an efficient
metric is necessary to compare clustering solutions with
different number of clusters [23]. Validity is constantly
being questioned because there is a need for stand-
ardization of metrics, besides the application of internal
and external metrics and the use of consistent bases of
biological value [24]. Another point is the application of
a high level of programming skills on the part of re-
searchers to analyze large volumes of data [25]: gener-
ally, each tool uses a different output and makes difficult
the manipulation of data which hinders the fluidity of
the researches [26].
To explore the potential of the alignment-free method

associated with a strategy that combines hashes and
BCOM matrices to reduce the need for the slow se-
quence alignments, we have developed the RAFTS3G.
We incorporated the binary search as an option cluster
input criterion to align the best n candidates, a new al-
ternative proposal for clustering analyses in proteins se-
quences data. We compared RAFTS3G with three main
clustering methods exploring standard metrics applied
to database “gold standard” of enzymes family adopting
as criterion the default parameters of all methods.

RAFTS3G implementation
To minimize time and maintaining consistency in data
analysis with proteins, we developed Rapid Alignment
Free Tool for Sequences Similarity Search to Groups
(RAFTS3G) tool. RAFTS3G was written in MATLAB
v2017a explores the RAFTS3 engineer (Additional file 1:
Figure S1) and uses integrates functions, the Bioinformatics
Toolbox and an in-house library.

Results
The RAFTS3G overview
RAFTS3G applies as search engine RAFTS3 [27] tool,
which purpose is to perform faster by minimizing disk
access storing sequences information in RAM and in
addition to reducing the need for slow sequence align-
ments. RAFTS3 has a hashing strategy based on k-mers
to directly access sequence data – the sequence itself
and the Co-Occurrence Matrix of amino acid residues
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(BCOM). BCOM are sets of 50 bytes containing a binary
matrix within amino-acid sequential co-occurrence data
for a given sequence. The comparison between BCOM
of two sequences is faster than to alignment them to get
similarity metric. When RAFTS3 searches for sequence
similarities, however, it allows the user to choose to align
a set of the top n selected candidates within some k-mer
match against to a query sequence. The metric provided
by BCOM [27] is effective to sort a set of sequences ac-
cording to their similarity, the similarity measure based
on identities, enabled when alignment is performed, is
desirable when the intention is to hold clusters and it is
often selected as cut-off criterion [28]. Once aligning
every subject candidate would be impeditive to a rapid
approach sequence grouping algorithm, we studied ways
to minimize the need of alignment in RAFTS3G; it will
be discussed forward, while we present the algorithm.
From a set of input sequences in a FASTA format -

variable or file -, for each sequence not grouped yet,
RAFTS3G exploits a formatted RAFTS3 data base
searching for similar sequences. Candidates are ordered
by higher BCOM similarity to the query. To select which
from candidates should be in the same cluster of the
query sequence, given a cut-off value (RAFTS3 self-
score), the user can choose:

i) Align the query with up to a limited n number of
the BCOM ordered candidates, living behind the
rest.

ii) Make a binary search aligning candidates/query to
find the cutting point where all sequences of lower
order should be as similar or more than the
sequence in this point. Sequences of higher order
are likely less similar then the stipulated by the
cutoff criterion and are left.

The step in ii) is the only change we made in original
RAFTS3 approach in order to program RAFTS3G. The
main gain of the binary search approach is to allow the
constrution of a cluster within less steps, since it finds most
sequences related to a query in a single search, aligning
only a relatively small number of candidates (O(log2(n)).
In both cases we have a list of sequences to group that

are supposed to be at least as similar to the query as the
measure defined in cut-off.
It remains now review the assembled groups based on

the sequences to group:

a) if the query found already grouped sequences, all
the groups found are joined in a single one and all
other sequences to group are added in this group;

b) if none of the sequence to group is member of a
previously created group then a new group is built
and these sequences are added to it.

While there are sequences to be analyzed these steps will
be repeated for each of them. See (Fig. 1). The RAFT3G
output is easier to be manipulated by the end user because
it is in FASTA format with an extra log is generated with
clusters information (Additional file 1: Figure S2).

RAFTS3G clustering in large dataset
We performed RAFTS3G using the Ref-Seq Non-
Redundant protein from NCBI database (NCBI/NR) [29] -

Fig. 1 RAFTS3G pipeline: cut-off criteria to candidates selection and the
grouping generation. Initially, RAFTS3G formats the FASTA file into a
seeds of BCOM in RAFTS Database. The search for candidates with k-mer
scan from RAFTS Database against a FASTA data indexed into Hash
BCOM is performed. The candidates are ordered by similarity into a new
BCOM matrix which are submitted under a cluster input criteria
selection, which may be option 1 -Align n sequences candidates- or
option 2 – Binary cut-off sequences search. Clustered sequences are
available after the selection where groups are joined and sequences are
added or if clustered sequences is not accessible a new group is created
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with 78,002,046 sequences deposited at this release. We
generated 12,594,179 Total clusters of which 4,127,885 are
non-unique clusters and 8,466,294 are unique clusters.
Twenty-one clusters have more than 100,000 grouped pro-
tein sequences and in nine of them exceed 200,000 se-
quences clustered. In Fig. 2 the 30 largest clusters are
represented, according to the number of sequences in each
cluster. Therefore, with these results, RAFTS3G it is pos-
sible to generate clusters in a higher set of data. Due to
this large set of data we are evaluating the results obtained
allow us to bring more information about the developed
clustering techniques in future works.

Benchmark standardization with F1-score
The choice of a good basis is essential for the reliability
of the metrics, so we chose the GOLD/Brown base from
ASTRAL/SCOPe [30]. For the validation of clusters, we
used F1-Score, an external metric that provides the bal-
ance between the accuracy and sensitivity measures [31,
32]. The GOLD database - a collection “gold standard”
of enzymes families experimentally validated [33] totaliz-
ing 866 sequences - to evaluation of clusters generated
for RAFTS3G compared to three highlighted methods.
The Brown database is a collection of experimentally
classified enzymes with extreme remote similarities and
this database is a challenge to be correclty grouped be-
cause extreme remote similarities sequences have low
identity which generates many false positives in the clus-
tering process [14]. In comparison with CD-HIT we ex-
emplifying this difficult evaluated the F1-Score, accuracy
and sensibility metrics (Additional file 1: Table S5) and
we are improving the RAFTS3G to obtain more hits with

these data sets. We analysed RAFTS3G in 0.5 of similar-
ity threshold in 3 representative clusters from Swissprot/
UniProtKB with remote similarity: Apolipoprotein C-IV,
Period circadian protein and Ribulose bisphosphate
carboxylase/oxygenase activase. We generated the
distance matrix calculing the sequences alignments to
each cluster and we found that RAFTS3G had grouped
sequences with great distances and no false positives
(Additional file 1: Figure S4). These suggests that
RAFTS3G was able to group distance sequences with
low similarities.
According to the results obtained with GOLD data-

base, in low similarities, between 0.2–0.4 intervals of
threshold, RAFTS3G presents sensitivity above the other
compared tools but without significance. We noticed
that all tools seem to have similar performance in simi-
larity of 0.3 - excepts CD-HIT because does not generate
groups with this threshold. From the cut-off lines be-
tween 0.4 and 0.9 of similarity, we observed the ability
of RATS3G to group consistent sequences compared to
MMSeqs2 (Linclust algorithm) - method which stands
out in relation the others two tools Usearch (Uclust al-
gorithm) and CD-HIT. As all the methods compared are
developed to reduce redundancy, in the higher similar-
ities between the values of 0.8–0.9 of similarity we
observed an equity between the results obtained between
MMSeqs, USEARCH and CD-HIT. In this range
RAFTS3G has a 10% gain of F1-Score in relation to the
others. (Comparison with CD-HIT and UCLUST
performed against Astral/SCOPe of proteins database in
20 to 90% of similarity is available at Additional file 1:
Table S2 and S4).

Fig. 2 Top 30 clusters (by order number) database generated by RAFTS3G. The majors clusters grouped with RAFTS3G in 0.5 similarity threshold
using the NR-NCBI database (results available on Additional file 1: Table S3). To performs this test, we adopted Machine 3 configuration (Available
on Additional file 1: Table S1)

Lima Nichio et al. BMC Bioinformatics          (2019) 20:392 Page 4 of 7



Analyzing these points, RAFT3G is the best choice op-
timized to be more permissible to members inclusion
when the clusters increase (Fig. 3). This is interesting
when the user wants to “guess” or to “risk” a data set
when the similarity does is not known by user. Other
methods generate more restricted clusters and choose to
lose these informations. In metagenome data, for ex-
ample, where the collected material is very heteroge-
neous and abundant, using a strategy which increases
sensitivity or probability of clustering sequences mainly
at an early stage of data mining is crucial to the success
of the experimentation and analysis.

Binary search input criteria
In the RAFTS3G overview, we bring the proposal of a
binary search to the assembly of the clusters after the se-
lection of the candidates obtained by the RAFTS3 engin-
eering, instead of the cut-off for the groups to be based
on the alignment of the sequences by the selection of n
candidates. Results of clusters generated with the GOLD
base (Astral / SCOPe) suggest that this type of strategy
maintains the sensitivity / accuracy ratio (Fig. 4). In
addition to being significantly high - around 91% of F1-
Score for RAFTS3G in relation to 0.87 in MMSeqs, 0.73
of USEARCH and 0.72 of CD-HIT - another observable

Fig. 3 F1-Score benchmark results in RAFTS3G, MMSeqs2 (Linclust), CD-HIT and USEARCH (UCLUST) softwares. The tools were evaluated by
running the GOLD database of ASTRAL/SCOPe in the similarity of 0.2 to 0.9, with a range of 0.1, and the F1-Score (families as reference) was calculated
for the results (Additional file 1: Table S6). The four methods were run with recommended parameters in the available user documentation (Available
on Additional file 1: Figure S3a)

Fig. 4 F1-Scores from clustering methods comparison with RAFTS3G binary search and RAFTS3G n candidates. No significative variance was
detected in RAFTS3G using binary search – performed using 0.5 cut-off – compared with RAFTS3G n candidates to clustering sequences. The
result reflects the F1-Score mean parameter for four tools. The softwares were run with the parameters recommended in users’ documentation
presented by each author (Available on Additional file 1: Figure S3b e c)
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advantage is in reducing time - binary search reduced by
up to 73% of the overall execution time of RAFTS3G -
maintaining the quality of the data generated.

Conclusions
The goal of this study is to provide an alternative to
clustering analyses with reduced losses of biological data
information improving the alignment-free concept.
RAFTS3G is able to group up to millions of sequences.
Furthermore, we brought a benchmark analysis using
the F1-score as an external metric to evaluate the per-
formance of the main clustering methods by exploring a
wide range of similarity and found that the RAFTS3G
strategy is the best optimized - to be more permissive -
which reflects in greater accuracy and sensitivity in gen-
erating clusters with consistent biological content. The
binary search input criteria for creating groups demon-
strates to be efficient to create or to integrate candidate
groups as the overall alignment of n candidates.
We hope the RAFTS3G algorithm will prove helpful to

assist the researcher to explore the widest range of avail-
able data and to make them more consistent.

Data and RAFTS3G availability Project name: RAFTS3G.
Project Home Page: https://sourceforge.net/projects/

rafts-g/
Operating System: Windows and Linux (× 86 and ×

64 versions).
Programming Language: Designed in Matlab® v2012.
Other requirements: MCR runtime (v7.17) is re-

quired to runs.
License: the software is under licensed by Matlab®

v 2012.
Any restrictions to use by non-academics: none.

Additional file

Additional file 1: Support material - system requirements, extra
information about RAFTS3 engineering, methodology overflow, tests,
additional links and literatures. (DOCX 808 kb)
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