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Abstract

Background: Single cell RNA sequencing (scRNA-seq) brings unprecedented opportunities for mapping the
heterogeneity of complex cellular environments such as bone marrow, and provides insight into many cellular
processes. Single cell RNA-seq has a far larger fraction of missing data reported as zeros (dropouts) than traditional
bulk RNA-seq, and unsupervised clustering combined with Principal Component Analysis (PCA) can be used to
overcome this limitation. After clustering, however, one has to interpret the average expression of markers on each
cluster to identify the corresponding cell types, and this is normally done by hand by an expert curator.

Results: We present a computational tool for processing single cell RNA-seq data that uses a voting algorithm to
automatically identify cells based on approval votes received by known molecular markers. Using a stochastic
procedure that accounts for imbalances in the number of known molecular signatures for different cell types, the
method computes the statistical significance of the final approval score and automatically assigns a cell type to
clusters without an expert curator. We demonstrate the utility of the tool in the analysis of eight samples of bone
marrow from the Human Cell Atlas. The tool provides a systematic identification of cell types in bone marrow based
on a list of markers of immune cell types, and incorporates a suite of visualization tools that can be overlaid on a t-SNE
representation. The software is freely available as a Python package at https://github.com/sdomanskyi/
DigitalCellSorter.

Conclusions: This methodology assures that extensive marker to cell type matching information is taken into
account in a systematic way when assigning cell clusters to cell types. Moreover, the method allows for a high
throughput processing of multiple scRNA-seq datasets, since it does not involve an expert curator, and it can be
applied recursively to obtain cell sub-types. The software is designed to allow the user to substitute the marker to cell
type matching information and apply the methodology to different cellular environments.
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Background
Bulk RNA-sequencing has provided the bioinformat-
ics community with a large volume of high quality
data over the past decade. However, bulk measurements
make studying the transcriptomics of heterogeneous cell
populations difficult and provides limited insight on
complex systems composed of interacting cell types. Sin-
gle cell RNA-seq (scRNA-seq) techniques promise to
provide the field of bioinformatics with samples suffi-
ciently large to resolve the subtleties of heterogeneous cell
populations [1, 2].
The identification of cell types based on specific molec-

ular signatures is challenging. This is particularly true in
samples obtained from ex vivo bone marrow or periferal
blood samples, where different types of hematological
cells coexist and interact. scRNA-seq of periferal blood
mono-nuclear cells (PBMC) and bone marrow mono-
nuclear cells (BMMC) is nowadays possible with high
level of sensitivity (see e.g. [3]). Monitoring different cell
types and their heterogeneity in these hematological tis-
sues has important applications in precision immunology,
and it could help in determining the optimal therapeutic
solutions in different hematological cancers.
The classification of the hematopoietic and immune

system is predominantly based on a group of cell sur-
face molecular markers named Clusters of Differentiation
(CD), which are widely used in clinical research for diag-
nosis and for monitoring disease [4]. These CD markers
can play a central role in the mediation of signals between
the cells and their environment. The presence of differ-
ent CD markers may therefore be associated with dif-
ferent biological functions and with different cell types.
More recently, these CD markers have been integrated in
comprehensive databases that also include intra-cellular
markers. An example is provided by CellMarker [5]. This
comprehensive database was created by a curated search
through PubMed and numerous companies’ marker hand-
books including R&D Systems, BioLegend (Cell Markers),
BD Biosciences (CD Marker Handbook), Abcam (Guide
to Human CD antigens), Invitrogen ThermoFisher Scien-
tific (Immune Cell Guide), and eBioscience ThermoFisher
Scientific (Cytokine Atlas). Here we use a list of markers
of immune cell types taken directly from a published work
by Newman et al. [6] where CIBERSORT, a computational
tool for deconvolution of cell types from bulk RNA-seq
data, was introduced.
Using cell markers on each single cell RNA-seq data for

a one-by-one identification would not work for most of
the cells. This is fundamentally due to two reasons: (1)
The presence of a marker on the cell surface is only loosely
associated to themRNA expression of the associated gene,
and (2) single cell RNA-sequencing is particularly prone
to dropout errors (i.e. genes are not detected even if they
are actually expressed). The first step to address these

limitations is unsupervised clustering. After clustering,
one can look at the average expression of markers to iden-
tify the clusters. Several clustering methods have been
recently used for clustering single cell data (for recent
reviews see [7, 8]). Some new methods are able to distin-
guish between dropout zeros from true zeros (due to the
fact that a marker or its mRNA is not present) [9], which
has been shown to improve the biological significance of
the clustering. However, once the clusters are obtained,
the cell type identification is typically assigned manually
by an expert using a few known markers [3, 10]. While in
some cases a single marker is sufficient to identify a cell
type, in most cases human experts have to consider the
expression of multiple markers and the final call is based
on their personal empirical judgment.
An example where a correct cell type assignment

requires the analysis ofmultiplemarkers is shown in Fig. 1,
where we analyzed single cell data from the bone mar-
row of the first donor from the HCA (Human Cell Atlas)
preview dataset. HCA Data Portal [11] After clustering
(Fig. 1a), the pattern of CD4 expression (Fig. 1b) sug-
gests that cluster #1 (red) and cluster #2 (light green)
are both highly enriched for CD4+, potentially indicat-
ing T helper cells. However, a more careful analysis of
cluster #2 shows a significant expression of CD68 and
CD33 (Fig. 1c, d) that indicates that this cluster consists
more likely of Macrophages/Monocyte cells. Figure 1d
shows an example of another important marker, CD38,
expressed in many immune cells including T cells, B cells
and Monocyte cells.
We would like to emphasize our method differences

with respect to cell type identification in bulk data, where
the main issue is deconvolution, i.e. extracting the rela-
tive fraction of cell types in data from a mixture. There
are no clusters that have to be labeled in the bulk case and
the nature of the problem a little different than in the sin-
gle cell case. Several deconvolution algorithms have been
developed in the past for estimating the relative compo-
sition of complex tissues from bulk transcriptomics data.
[6, 12–18] These methodologies are based on predefined
signature matrices that contain the relative expression of
markers, not just the presence/absence of a marker, for
different cell types. Regression methods are then used
to infer the relative proportions in a mixture. These
approaches, however, use lists of markers obtained from
the literature as a starting point, and these lists can be
integrated in our p-DCS to identify single cells, as we have
done here.
In this paper we present a methodology that, after unsu-

pervised clustering, automatically assigns clusters to cell
type based on a systematic, unbiased, voting algorithm.
Our method does not rely on a human expert empirically
selecting a set of markers to interpret the results, but uses
all the information available in a large markers database to
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Fig. 1Markers analysis. a t-SNE layout of clusters obtained from the first donor of the HCA preview dataset [11]. b CD4 marker expression displayed
on a t-SNE layout: cells where CD4 is expressed are shown as stars colored according to the expression level from blue (lowest expression) to red
(highest expression), large black circles infer the cluster sizes. Cells in which the marker is not expressed are shown as circles. c-e Expression of CD68,
CD33 and CD38 shown as in (b)

predict cell types. While cell type identification by manual
interpretation can provide good results, the proposed
methodology assures that all the available information is
taken into account in an unbiased way, and it allows for
the identification of many datasets in parallel. From an
algorithmic point of view, voting algorithms are among
the simplest and most successful approaches to imple-
ment fault tolerance and obtain reliable data frommultiple
unreliable channels [19]. The idea can be traced back to
von Neumann [20], and since then it has been practically
used in many error correction computational architec-
tures. The voting algorithm employed here belongs to the

class of approval voting algorithms. For a given cluster,
each participant (a cell marker) votes for a subset of
candidates (cell types) that meet the participant criteria
(significant RNA expression) for the position rather than
picking just one candidate. The approval vote tally deter-
mines the score that we use to assign the cluster to a
cell type.

Methods
Overview
Our p-DCS consists of two main modules: (a) clus-
tering and (b) cell type assignment, which are both
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based on an unsupervised approach. We demonstrate our
methodology using public bone marrow scRNA-seq data
from eight donors [11], that will be referred to as BM1-

-BM8. The data was produced by 10x Genomics with raw
counts matrix generated by Cell Ranger with GRCh38,
standard 10X reference. The 8 donors average median of

Fig. 2 Algorithm schematic. Illustration of the methodology with the two main modules highlighted. The novel polling algorithm for cell
identification is implemented in the second highlighted module
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genes per cell is 688, and we did not impute dropout reads.
To visualize data the fast interpolation-based t-distributed
Stochastic Neighbor Embedding (FIt-SNE) layout recently
developed by Linderman et al. [21] can be used. In the
software we provide a switch allowing to use either the
regular t-SNE (default option) or the FIt-SNE. In this
section, we will illustrate the methodology using the first
dataset BM1. The remaining bone marrow data along
with a large scRNA-seq PBMC dataset, obtained from a
different study [3], are analyzed in “Results and discus-
sion” section. In “Results and discussion” section we also
show how the proposed methodology can be used recur-
sively, so that for each main cell type one can find the
corresponding sub-types. Figure 2 shows the workflow
of the methodology. The two main modules are identi-
fied by the “Clustering” and “Cell type assignment” labels.
The clusteringmodule is preceded by data pre-processing,
and a set of visualization tools is included in the
software.

Initial gene/cell filtering and normalization
The expression matrix, Xij, the expression of gene i in cell
jwhere i = 1, . . . ,N and j = 1, . . . , p is normalized follow-
ing the steps outlined in [3]. The gene expression matrix
is first filtered to keep only genes i that are expressed in at
least one cell (

∑
j Xij > 0). The expression in all cells must

then be mapped to the same range of total expression to
account for differing yields from PCR amplification. Each
cell’s expression vector is thus divided by the sum of all its
expression values so that

Xij ← Xij

/∑
i′

Xi′j , (1)

where the left arrow indicates reassignment of the matrix
values. Because gene expression values in RNA-seq mea-
surements tend to span many orders of magnitude, it is
helpful to apply a standard log2 transformation, which is
done either to get “fold changes” when comparing groups
in differential expression analysis, or to get a “normal”
looking statistical distribution. However, the many zeros
inherent in single cell RNA-seq data requires the zeros to
be replaced with positive values. We choose to replace all
zeros withm, the smallest nonzero value in Xij, so that

Xij ←
{
log2 Xij if Xij > 0
log2m otherwise

. (2)

Finally, we keep only those genes exhibiting sufficiently
high variation as parameterized by a threshold θ ,

σi
〈σ 〉 ≥ θ (3)

where σi is the standard deviation of gene i’s expression
across all cells and 〈σ 〉 = N−1 ∑

i σi. For this analysis, we
chose θ = 0.3.

Fig. 3Marker expression for scRNA-seq HCA BM dataset, subset BM1.
aMean expression of marker genes in clusters of yet unidentified cell
types. Stars denote genes expressed above a certain z-score
threshold. bMean expression of marker genes in clusters with
inferred cell type with cluster index in parentheses. Red stars
highlight the supporting markers in assigning the cluster cell type
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a

b

Fig. 4 Voting results visualization. Exemplified on HCA BM1 dataset. a Pkc(Vkc) distributions shown in separate plots for the first three cell types k,
different cluster c are shown in different color detailed for cell type “B cell” in the separate 8 histograms, one for each cluster. b Visualization of the
matrix �kc , where columns are the possible cell types and rows are the assigned cell types Tc , with cluster indices 0,1,...,7 in parentheses. The
negative z-scores are not shown. The barplot on the right shows relative (%) and absolute (cell count) cluster sizes. Cell clusters that have 3 or less
supporting markers are marked with “*”, see Fig. 3 for supporting markers
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Clustering
The clustering algorithms used in p-DCS require to spec-
ify the number of clusters n. The first step is therefore
to find a good value for the parameter n. We used the
Adjusted Rand Index (ARI) [22] between pairs of clus-
terings obtained from the same set using a stochastic
algorithm (Mini-batch K-Means) and averaging the results
to obtain the ARI curve as a function of n. An ARI of one
signifies that two clusters are identical. The optimal n cor-
responds then to the first peak coming from the n = ∞
side of the ARI curve (see Fig. 5 below for an example).
To remove noisy components and accelerate the proce-
dure, clustering is conducted on a smaller array X̃ij defined
by projecting Xij onto its first 100 principal components
(i.e. X̃ij has i = 1 . . . 100). We clustered the cells in X̃ij
using the agglomerative clustering method available in
scikit-learn [23]. Clustering diagrams such as Fig. 1a
are generated by running scikit-learn’s t-SNE routine
on X̃ij, projecting from 100 to two dimensions (simply for
the sake of generating a figure). Cells are colored accord-
ing to their cluster index. 100 principal components (PCs)
were used because the total amount of explained variance
increases first rapidly until about 20-25 PCs. Including the
top-100 PCs assures that we go beyond this first rapid
increase in all samples and capture on average about 25%
of the total variance. Note that the two t-SNE dimen-
sions are not equivalent to the first two PCA compo-
nents. PCA is a linear method, while t-SNE is a nonlinear
dimensionality reduction. The layout of the cells in the

t-SNE plot is therefore using information from all the
100 PCs.

Cell type assignment
The cell type assignment is based on our voting algorithm
idea that uses a database of marker genes. Since this appli-
cation focuses on bone marrow data, we used a list of
markers of immune cells from Newman et al. [6] as our
marker/cell type database, D. The latter is used to cre-
ate a marker/cell type table, specific to a gene expression
dataset of interest, e.g. the matrix X of BM1. The table
for a given dataset is created after the initial gene filter-
ing and normalization discussed above. For each cell type
in D we keep all genes that are expressed. In this way we
build a marker/cell type matrix Mkm where k is the cell
type (e.g. T cell),m is the marker gene (e.g. CD4). The ele-
ment Mkm = 1 if m is an expressed marker of cell type k
and 0 otherwise.
Building the matrix Mkm represents the first step of the

voting algorithm. This is equivalent to defining “ballots”
in which each qualified voter, i.e. the markers chosen,
has a list of candidate cell types they can approve. We
normalize M̃km = Mkm/

∑
m′ Mkm′ by the number of

markers expressed in each cell type so that the absolute
number of known markers in a given cell type is irrele-
vant. Then we normalize M̃km by the number of cell types
expressing that marker. This second normalization is
important because a marker that is unique to a particular
cell type will be automatically assigned a large weight. For

Fig. 5 HCA BM dataset analysis. Adjusted Rand Index (ARI) curves for each dataset BM1-BM8. Clustering was done using Mini-Batch K-Means from
scikit-learn. The black line represents the average of the 8 datasets, and the peak at n = 8 was used to select the optimal number of clusters
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Fig. 6 HCA BM preview dataset analysis. Clustering illustrated with t-SNE plots for each patient in the dataset. The cell type identification is assigned
based on the voting algorithm discussed in “Methods” section
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each cluster c, the voting algorithm is then implemented
as follows:

(i) We build the marker/centroid matrix Ymc, where
Ymc is the mean expression of marker m across all
cells in cluster c. For each marker m, we use Ymc to
compute all cluster centroids’ z-scores Zmc. Then we
build the matrix Z̃mc = 1 if Zmc ≥ ζ and Z̃mc = 0
otherwise for a given threshold ζ . With increasing
values of ζ the number of possible supporting
markers decreases. We have varied the parameter ζ

in the range 0.1-1.5, and for this application, we
chose ζ = 0.3, which provides a reasonable number
of markers for all cell types. This procedure is needed
to identify markers that are significantly expressed in
one cluster compared to the other clusters. Figure 3a
shows Ymc, calculated for HCA BM1 dataset: darker
blue color corresponds to higher expression of
markers, and the stars correspond Z̃mc = 1, i.e.
statistically significant markers with z-score larger
than ζ among all markers as tested across clusters.
The general approach used for selecting ζ has been
be to start with ζ = 0 (which does not filter for
noise) and increasing its value until the number of
matching markers is almost constant.

(ii) We compute the vote matrix according to
Vkc = ∑

m M̃kmZ̃mc/
∑

mk′ M̃k′mZ̃mc. This is when
each voter (the markers) matches a given cluster to a
single or more possible cell types. This matrix
contains an approval score for each type-cluster pair
(k, c).

(iii) To quantify the statistical significance of the
approval scores and make the final assignment, we
use a stochastic method to quantify the statistical
uncertainty associated to each type-cluster pair (k,
c). We randomize the clusters by preserving their
size and assigning to them cells randomly chosen
from the whole dataset, and repeat steps (i) and (ii)
to compute the approval scores. This randomization
is performed n = 104 times, recording the voting
matrix Vkc for each configuration of random
clusters. This method accounts for cluster sizes, the
overall gene expression distribution of the markers,
and imbalances in the number of markers per cell
type in estimating the uncertainty. The procedure
provides distributions of voting results Pkc(Vkc) for a
null model of random clusters. Figure 4a shows
histograms of the distributions Pkc(Vkc) calculated
for the same dataset of Fig. 3. The figure shows three
different cell types in separate plots, and each plot

Fig. 7 HCA BM dataset summary. Cell type relative fractions for each BM sample. The cell types are sorted by average (across samples) fraction size,
with the exception of the “Unknown” which is moved to the bottom. Color coding for cell types is identical to Fig. 6
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Fig. 8 Subclustering of HCA BM1. Application of p-DCS on a T cells, and b B cells, revealing subtype composition
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Fig. 9 PBMC dataset processing. a Clustering with inferred cell types. b Fractions of various cell types obtained by p-DCS in comparison with
DropClust manual clusters’ annotations [10]. c Visualization of the voting results of all possible cell types (columns) and identified clusters (rows),
generated from the input marker cell/type table. d Same as (c) for clustering method by Sinha et al. [10] and 13 clusters

contains the distributions of each cluster in a
different color. Note that the distributions do not
show a strong dependence on the cluster index c, but
they can be very different for different cell types k.

(iv) Finally, we determine the z-scores, �kc, of the voting
results Vkc in (ii), given the null distribution Pkc(Vkc)
calculated in (iii) and assign the cell type according
to Tc = argmaxk�kc. All cells belonging to cluster c
are thus identified as cell type Tc. Fig. 4b is a visual
representation of �kc, shown only for positive
values, where the indices k, c are along the x- and
y-axis, respectively. After the cell types are
determined, the panel (b) of Fig. 3 is produced, with
all the markers supporting the assigned
identification marked as red stars.

Note that this marker/cell type table is only one of many
possible reasonable choices. The software was designed
to allow the user to easily substitute this table with a
custom table relevant to the particular cell population
under investigation. Likewise, the voting scheme outlined
above can be replaced with any custom function with
the same inputs and outputs. See the documentation for
details and examples. [24]

Results and discussion
In this section, we first present the results obtained with
our methodology using recently-published data from nor-
mal bone marrow samples (the data identified above as
BM1-BM8, containing a total of 378k cells). Addition-
ally, we compare our cell type assignment to an existing
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Table 1 Comparison of p-DCS and DropClust on PBMC
scRNA-seq ∼68.6k cells dataset

Cell type p-DCS DropClust

T cell Cluster #1, 4: 62.3% Cluster #0, 1, 2, 10: 73.2%

NK T cell Cluster #4: 9.0%

NK cell Cluster #0, 6: 24.3% Cluster #6, 12: 5.0%

B cell Cluster #3: 5.7% Cluster #3: 5.8%

Dendritic cell Cluster #2: 4.4% Cluster #5, 7: 1.8%

Monocytes/Macrophages Cluster #5, 7: 3.2% Cluster #8, 9: 4.9%

Progenitor Cluster #11: 0.2%

identification of cell types from a large scRNA-seq ∼68.6k
cells PBMC dataset.

Results on the HCA BM data
Number of clusters
We first calculated the Adjusted Rand Index (ARI) [22]
curves for BM1-BM8. For each n between 4 and 16,
Mini-batch K-Means clustering was performed 12 times
leading to 12 different partitions of the data. The ARI
between all the possible 66 pairs of partitions was then
calculated and averaged. The procedure was repeated in
N = 200 independent runs to obtain error bars. The
ARI curves are shown in Fig. 5. Note that the ARI curves
often have a maximum at or near n = 1. This maxi-
mum does not provide useful information, and the opti-
mal n is therefore associated to the first peak observed
coming from the right side of the plot. In addition to
the ARI for each of the BM1-BM8 sets, Fig. 5 displays
their average in black. The latter has a peak at n = 8,
and we therefore select that value for clustering all the
datasets.

Clustering and identification in BM1-BM8 datasets
The BM samples were analyzed individually and their
cluster plots were combined to demonstrate the similar-
ity between the 8 datasets of bone marrow, see Fig. 6.
The color coding is uniform for the cell types across the 8
datasets, i.e. all T cells are colored orange, B cells – dark
blue, etc. As some of the clusters overlap on the t-SNE
plot [25, 26], it is useful to calculate the relative fractions

of cells of various cell types. The latter provide a snapshot
of the cellular composition of the 8 bone marrow samples,
see Fig. 7.

Clustering of T and B cells sub-types
We applied the methodology illustrated above to identify
sub-types of major hematological B and T cells. Addi-
tional marker/cell subtype tables Mkm were prepared for
this analysis. Columns of these new matrices indicates
sub-types only and rows are the markers/genes that are
known to be expressed the these sub-types. We used the
same list of immune cell types used above from Newman
et al. [6] to build the Mkm matrices for B and T cells.
As above, these matrices Mkm are created ensuring that
only expressedmakers are included for each sub-type. Cell
sub-types with no expressed makers after pre-processing
are discarded.
Clustering with n = 9 for T cell subtypes from BM1

is shown in Fig. 8a, revealing Naive T cell and Mem-
ory T cell subtypes. In the same way, B cells of BM1
were processed into 6 clusters in Fig. 8b, showing popu-
lations of Naive B cells, Memory B cells and a group of
Plasma cells.
We have tried different strategies for identifying cell

sub-types. The best approach consists in first identify-
ing major cell types and then separately analyzing each of
them as shown in this section. We have tried to include
major cell types and their sub-types in the matrices Mkm
and have attempted their identification with a larger num-
ber of clusters. Such an approach leads often to incorrect
results with relative cell frequencies that are incompat-
ible with normal physiological ranges. Also, using only
sub-types and removing the major types is not a robust
strategy. Depending on the database of markers used,
the results are sometimes completely inconsistent with
some published expert annotation on the same data (see
congruence analysis below).The reason for such incor-
rect results is that when an arbitrary marker is expressed
in several clusters, e.g. sub-populations of T cell, only
the cluster(s) with z-score above cutoff ζ will have this
marker contribute in voting. Thus, adding many sub-
types into the marker-cell type list increases the chance of
incorrectly annotating the cluster(s).

Table 2 Cell counts from cell-by-cell validation of p-DCS and dropClust on PBMC scRNA-seq ∼68.6k cells dataset

p-DCS cell type (count) dropClust cell type

T cell NK T cell NK cell B cell Monocyte Dendritic cell Progenitor

T cell (42741) 42608 73 88 42 1 2

NK cell (16712) 7257 6137 3317 1

B cell (3931) 84 5 1 3841

Dendritic cell (2990) 57 7 76 1802 1048

Monocyte (2205) 235 13 1 19 1537 237 163
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Fig. 10 PBMC dataset: T and B cells subset analysis. a Sub-clustering of cells from clusters #1 and #4 of the PBMC dataset reveals that the p-DCS
automatic sub-type identification is in good agreement with manual annotation. b Analysis of cells from cluster #3 provides subgroups of B cells,
including Naive, Memory B cells and a small group of Plasma cells
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Congruence with expert annotation on PBMC dataset
In a recent work, Sinha et al. [10] presented their drop-
Clust algorithm to cluster ultra-large scRNA-seq datasets.
To illustrate their algorithm, they used data from 68k
PBMC from Zheng et al. [3]. The 68k PBMC data was
collected with GemCode single-cell technology (GEM -
Gel bead in EMulsion) by 10x Genomics using Illumina
NextSeq 500 High Output. The median number of genes
with nonzero expression per cell for this dataset is 525.
Their cluster annotation, obtained from a manual assess-
ment using a few selected markers, is of interest here
and can be used to compare the annotation obtained
by our automated methodology with one obtained man-
ually by an expert. By pre-processing the whole 68k
PBMC dataset, we determined that the optimal num-
ber of clusters was 8. The result of the analysis is
shown in Fig. 9. The clustering and cell type infer-
ence from the automated p-DCS procedure are shown
in Fig. 9(a), indicating that T cells constitute the major
cell type in this sample. Figure 9b shows a graphical
comparison of cell types fractions obtained by p-DCS
and by Sinha et al. [10]. The frequencies of various cell
types are expected to vary from individual to individ-
ual, and the fractions that we determined are within the
normal ranges [27]. The main difference in cell type fre-
quencies, Fig. 9b, using the two approaches is in the
p-DCS NK cell cluster (yellow), which in Sinha et al. is
split into NK (yellow) and NK T (light blue) cells. The
NK T cells expresses a combination of T cell and NK cell
markers, and therefore distinguishing NK formNKT cells
is challenging. Figure 9c displays the candidate cell types
used in the voting and the z-scores of the voting scores.
A cluster receiving a high z-scores in more that one cell
type indicates that it is composed by multiple cell types,
e.g. the NK cluster #2 in Fig. 9 with a z-score of 4.5 likely
has a significant amount of T cells (z-score 3.8) in addi-
tion to NK cells. A full quantitative comparison is also
available in Table 1. In addition to comparing the size
of cluster between p-DCS and dropClust, we individu-
ally analyzed all cells, i.e. their barcodes in the scRNA-seq
data, to check if they were assigned to matching cell types.
For each cell type annotated by p-DCS we counted how
many cells were annotated by Sinha et al. [10] into each
of their categories (Table 2). Overall the agreement is
strong, with the exception of NK cells and Dendritic cells
for which we observed a significant mismatch. Figure 9d
shows the annotation of the PBMC dataset for the cluster-
ing method dropClust [10] with 13 clusters. Interestingly,
all clusters but #4, 11 and 12 are annotated identically to
the reference annotations. Cluster #4 is NK T cells in the
reference, whereas we did not have this cell type in the
list and we labeleld the cluster as NK cells. Similarly we
do not have NK progenitors in our matrix of markers,
therefore the algorithm assigned cluster #12 to NK cells.

Table 3 Subclustering of∼42.7k T cells from a∼68.6k cell dataset

T cell subtype p-DCS DropClust

Naive T cell Cluster #1, 5, 6, 8, 9: 41.4% Cluster #1: 46.0%

γ δ T cell Cluster #2: 2.7%

CD8 T cell Cluster #10: 2.9% Cluster #0: 11.8%

Memory T cell Cluster #3, 4: 13.0% Cluster #2: 14.9%

Regulatory T (Treg) cell Cluster #0, 7: 2.3% Cluster #10: 0.5%

Comparison of p-DCS and DropClust subtypes assignment

Cluster #11 is labelled differently for the same reason of
cluster #12.
Sub-clustering of T cells was also done to com-

pare the two approaches. T-cells from clusters #1,
4 (see Fig. 9) were processed with a new list of
markers/cell sub-types. The results of cell sub-types
annotation are presented in Fig. 10, and the detailed
comparison to the results by Sinha et al. [10] are in
Tables 3 and 4.

Alternative cell marker input lists
We have used the list of markers from Newman et al.
[6]. Alternative lists of markers can be obtained by the
Cellmarker database[5], or by the database of the Human
Cell Differentiation Molecules (HCDM) organization
[28], which is sponsored by a number of large compa-
nies. The latter contains detailed information about each
CD molecule, including structure, function, and cellular
expression. The HCDM and Cellmarker databases pro-
vide alternatives to the list of markers used here. We have
observed that the marker overlap between these databases
is very strong.

Conclusions
We have presented a methodology that, after unsuper-
vised clustering of scRNA-seq data, automatically assigns
clusters to cell types based on a voting algorithm without

Table 4 Cell counts from cell-by-cell validation of p-DCS and
dropClust on subset (T cells) of PBMC scRNA-seq ∼68.6k cells
dataset

p-DCS cell type
(count)

dropClust cell type

CD4 Naive T CD4memory T CD8 T Treg other

CD4 Naive T
(28355)

26345 1779 222 6 3

CD4 memory
resting T (8905)

2888 5808 186 19 4

CD8 T (1978) 688 545 727 18

Treg (1622) 301 948 38 300 35

γ δ T (1881) 745 477 582 4 73
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manual interpretation by an expert curator. The method
provides the classification of individual cells into prede-
fined classes based on a database of known molecular
signatures, i.e. cell surface (extracellular) and intracellular
markers. The proposed methodology assures that exten-
sive marker/cell type information is taken into account
in a systematic way when assigning clusters to cell types.
Moreover, the method allows for a high throughput
processing of multiple scRNA-seq datasets since it does
not involve an expert curator.
In addition to determining major cell types, we have

shown how this methodology can be applied recursively
to obtain cell sub-types. We have performed a congru-
ence analysis of cluster identification obtained by our
method with those obtained by expert curators on the
same dataset, showing that the automatic assignment is
consistent with expert assignment both of major cell types
and cell sub-types. While we have focused on the identifi-
cation of hematological cell types, the software is designed
to allow the user to substitute the marker table to apply
the methodology to different tissues.
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