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Abstract

method design.

feature extraction methods.

Background: Protein feature extraction plays an important role in the areas of similarity analysis of protein sequences
and prediction of protein structures, functions and interactions. The feature extraction based on graphical representation
is one of the most effective and efficient ways. However, most existing methods suffer limitations from their

Results: We introduce DCGR, a novel method for extracting features from protein sequences based on the chaos game
representation, which is developed by constructing CGR curves of protein sequences according to physicochemical
properties of amino acids, followed by converting the CGR curves into multi-dimensional feature vectors by using the
distributions of points in CGR images. Tested on five data sets, DCGR was significantly superior to the state-of-the-art

Conclusion: The DCGR is practically powerful for extracting effective features from protein sequences, and therefore
important in similarity analysis of protein sequences, study of protein-protein interactions and prediction of protein
functions. It is freely available at https://sourceforge.net/projects/transcriptomeassembly/files/Feature%20Extraction.
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Background
Similarity analysis of protein sequences plays an important
role in protein sequence studies, e.g. the prediction or
classification of protein structures and functions. In Gen-
eral, the biological function of a protein is determined by
its three dimensional structure which is dependent on the
linear sequence of amino acids. Rigden [1] presented that
one of the fundamental principles of molecular biology is
that proteins having similar sequences possess similar
functions. Up to now, lots of methods have been proposed
for the similarity analysis of protein sequences, among
which the graphical representation of protein sequences is
one of the most used and effective strategies [2—21].

The chaos game representation (CGR) based on an
iterative function system was firstly proposed for the
representation of DNA sequences by Jeffrey in 1990
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[22]. The Jeffrey’s CGR is drawn within a quadrate with
four vertices referring to nucleotides A, C, G and T. The
first point is placed halfway between the center of the
quadrate and the vertex corresponding to the first nu-
cleotide of the sequence. The i-th (i>1) point is placed
halfway between the (i-1)-th point and the vertex corre-
sponding to the i-th nucleotide. Being capable of discov-
ering the inner pattern of gene sequences, CGR has
been widely used in the investigation of DNA sequences
[23-28]. Encouraged by the CGR of DNA sequences,
the CGR of protein sequences has also been extensively
studied by many researchers. Fisher et al. [29] first pro-
posed an improved CGR of protein sequences, which
was produced in a 20-side regular polygon with
20-vertices representing 20 kinds of amino acid. Randi¢
et al. [30] constructed the CGR of protein sequences in
the interior of a unit circle, on the circumference of
which 20 amino acids are located uniformly according to
the alphabet order of their three letter codes.

Amino acids themselves have physicochemical properties,
which are important for protein structures, functions and
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protein-protein interactions and have strong effects on the
pattern of protein evolution. Therefore, physicochemical
properties of amino acids have been widely used in protein
sequence studies, such as similarity analysis of protein se-
quences, prediction of protein subcellular localization and
protein structural class prediction [2—15, 18—-20, 31-38]. In
[39], Randi¢ mentioned that ordering amino acids based on
their physicochemical properties may offer better insights
in comparative studies of proteins than representations of
proteins based on alphabetical ordering of amino acids,
which is essentially equivalent to random ordering. Follow-
ing Randic’s approach, He et al. [31, 40] proposed some dif-
ferent cyclic orders for the 20 amino acids to introduce the
CGRs of protein sequences based on the physicochemical
properties of amino acids. We denote the above CGRs by
20-CGR as 20 kinds of letters are used to represent protein
sequences. Basu et al. [41] used a 12-sided regular polygon
to generate the 12-CGR of protein sequences, each vertex
of which represents a group of amino acids based on the
conservative substitutions. Later Yu et al. [32] and Mani-
kandakumar et al. [33] proposed 4-CGR, 5-CGR and 6-
CGR for protein sequences, in which 4, 5 and 6 kinds of let-
ters were used to represent protein sequences, respectively.
In fact, using reduced amino acid alphabet to represent a
protein sequence would easily result in loss of sequence in-
formation, since the amino acids belonging to the same
group are considered identical.

So far, CGR method has achieved many applications in
the studies of bioinformatics. The key issue in the applica-
tion of CGR is to extract as many useful features as possible
from CGR and several studies showed that those extracted
features plays important roles in protein studies [25-28, 31,
34-38, 40—42]. One of the most frequently used feature ex-
traction methods is the so-called FCGR, in which the CGR
image is split into small grids and the frequencies of points
falling into each grid are taken as the feature of the corre-
sponding protein sequence. For example, in [34-38, 41],
the CGR image of a protein sequence was split into 24
grids, and the frequencies of points falling into 24 grids are
counted and taken as the numerical characteristics of the
protein sequence. Under this procedure, a protein sequence
can be converted into a 24-dimensional vector. Although
FCGR method could effectively extract useful information
from CGR, however, it loses the distribution information of
the points in each grid, which is proved of great importance
in this paper.

In this paper, we propose a novel feature extraction
method of protein sequences based on the Randic¢’s 20-
CGR, which effectively integrates the physicochemical
properties of amino acids into the construction of CGR
curves and makes full use of the distribution information of
points for extracting numerical characteristics from CGR
curves. When tested on five data sets, it performs much
better than all the compared methods.
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Results

In this study, five most frequently used data sets were
adopted to evaluate the performance of the new method
DCGR in comparison with different feature extraction
methods and also the sequence alignment method
ClustalW.

Similarity analysis of 9 ND5 protein sequences

We first apply DCGR to analyze the similarities of the
ND5 protein sequences from 9 kinds of species (detailed
in Additional file 1: Table S1), which have been widely
used in different studies and considered as a standard to
evaluate the model [2, 4-8, 10, 12-15, 19, 20, 31, 43].

Based on DCGR, we first obtained a 9 x 632 feature
matrix for the 9 protein sequences. Then PCA was used
to reduce the dimensionality of the feature vectors. Here,
only the first 6 principal components were selected and
therefore a 9 x 6 reduced feature matrix could be built.
Euclidean distance was used to calculate the distance be-
tween each two protein sequences (see Additional file 1:
Table S2 for the calculated distances between protein se-
quences). The smaller distance between two proteins,
the closer relationship between the two species.

From Additional file 1: Table S2, it is clear that the dis-
tance between Fin whale and Blue whale is the smallest of
all, demonstrating the closest phylogenetic relationship
between them. The distances among Human, Pigmy
chimpanzee, Common chimpanzee and Gorilla are also
small, showing that they are also similar. In addition, we
can also find that Rat and Mouse have a relatively close re-
lationship. However, the distance between Opossum and
any other 8 species was very large, demonstrating its far
relationship with the others. All results are consistent with
the known evolutionary relationship among the 9 species.

For direct survey of evolutionary relationship among the
9 species, we construct the phylogenetic tree based on the
distance matrix in Additional file 1: Table S2 shown in
Fig. 1, which clearly illustrates four different branches clus-
tered from the 9 species. The first branch consists of the
Rodentia (Rat, Mouse), the second one the Primates
(Pigmy chimpanzee, Common chimpanzee, Human,
Gorilla), the third one the Cetacea (Fin whale and Blue
whale) and the fourth one the Marsupialia (Opossum).
ClustalW is one of the most popular multiple sequence
alignment methods. Here, we also construct the phylogen-
etic tree by using ClustalW shown in Additional file 1: Fig-
ure S1, which shows very similar evolutionary relationships
of the 9 species with our results.

Similarity analysis of 36 protein sequences

In the second example, we apply our method to analyze
a data set consisting of 36 protein sequences of 5 differ-
ent families: Globin (leca, 5mbn, 1lhlb, 1hlm, 1babA,
1babB, 1lithA, 1mba, 2hbg, 2lhb, 3sdhA, lash, 1flp, 1myt,
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Fig. 1 Phylogenetic tree of the nine ND5 proteins constructed by DCGR

11h2, 2vhbA, 2vhb), Alpha—Beta (1aa9, lgnp, 6q21A,
1ct9A, 1qraA, 5p21), Tim-Barrel (6xia, 2mnr, 1chrA,
4enl), Beta (1cd8, 1ci5, 1qa9, 1cdb, 1neu, 1qfoA, 1hnf),
and Alpha (lcnp, 1jhg) [20, 43—48]. After extracting fea-
tures by the method DCGR and reducing the dimen-
sionality using PCA, the Manhattan distance was used
to calculate the distance matrix of the 36 protein se-
quences. Similarly, we constructed the phylogenetic tree
of the 36 protein sequences in Fig. 2, demonstrating that

the 36 proteins have been accurately clustered into the 5
corresponding families, with only one erroneously clus-
tered protein 1ct9.

In order to illustrate the superiority of DCGR, we
compared its performance with six other methods in-
cluding ClustalW in [20, 43-47], and the phylogenetic
trees constructed by the six methods have been shown
in Additional file 1: Figures S2-S8. After comparison,
DCGR showed best performance since most of the six
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Fig. 2 Phylogenetic tree of the 36 proteins constructed by DCGR
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methods erroneously clustered at least three proteins,
especially for ClustalW, which erroneously clustered 5
proteins as reported in [43].

Similarity analysis of 50 beta-globin protein sequences
This data set contains 50 beta-globin protein sequences
from 50 species studied in [46, 49-53], and the accession
numbers have been shown in Additional file 1: Notes
1.2. After extracting features by the method DCGR and
reducing the dimensionality using PCA, the Cosine dis-
tance was used to calculate the distance matrix of 50
beta-globin protein sequences, and the phylogenetic tree
was also constructed in Fig. 3.

As shown in Fig. 3, the 50 beta-globin protein sequences
are correctly grouped into two clusters corresponding to
mammals and non-mammals, respectively. For the mam-
mal cluster, the beta-globin proteins belonging to Carniv-
ora (Black bear, Lesser panda, Giant panda, Coyote, Wolf,
Red fox, Dog, Polar bear), Primate (human, grivet, gorilla,
langur, gibbon, and chimpanzee), Cetacea (Whale, Dol-
phin), Bovidae (Sheep, Bison, Buffalo), Proboscidea (Asi-
atic elephant, African elephant) and Rodentia (Rat,
Marmot) are accurately separated and grouped into
respective taxonomic classes. In addition, in the branch
consisting of Artiodactyla and Perissodactyla, only the
Rhinoceros is erroneously clustered. While for the non-
mammal cluster, the beta-globin proteins belonging to
aves, fish and reptile are also perfectly separated and
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grouped into respective taxonomic classes. In addition, for
the proteins belonging to fishes, the chondrichthyes
(Shark) is accurately separated from the actinopterygii
(Dragonfish, Cod, Goldfish, Salmon and Catfish) as an in-
dependent branch, which is consistent with the known
evolutionary relationships.

The phylogenetic trees of other methods [46, 49-53]
including ClustalW have also been shown in Additional
file 1: Figures S9-S15. After comparison, we found that
ClustalW achieves very similar results with our method
DCGR, while the other methods performs much worse
since even the mammals and non-mammals cannot be
correctly separated by the methods in [46, 49-53], and
lots of proteins are erroneously clustered by the methods
in [46, 51-53].

Similarity analysis of 25 TFs
For this experiment, we select transferrin sequences
from 25 vertebrates, which has been well studied by
Ford [54]. Their taxonomic information and accession
numbers are shown in Additional file 1: Table S3. Simi-
larly processed by DCGR as before, the Manhattan dis-
tance was used to calculate the distance matrix of the 25
transferrin sequences, and the phylogenetic tree of the
25 TFs was also constructed in Fig. 4.

From Fig. 4, it is easy to find that all the sequences are
accurately classified into the fish, amphibian and mam-
mal groups. In the group of mammals, all the sequences
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belonging to transferrin (TF) proteins and lactoferrin
(LF) proteins are also correctly separated and grouped
into respective taxonomic classes. In the group of fishes,
all the TFs from Salmonidae are clustered together and
form a separate branch. In addition, the TFs belonging
to Salmo (Atlantic salmon TF, Brown trout TF), Salveli-
nus (Lake trout TF, Brook trout TF, Japanese char TF)
and Oncorhynchus (Chinook salmon TF, Coho salmon
TE, Sockeye salmon TF, Rainbow trout TF, Amago sal-
mon TF) are also correctly clustered and form separate
branches, respectively. All these results are completely
consistent with known evolutionary relationships. The
phylogenetic tree constructed by DCGR is also great
consistent with that obtained in [54] (see Additional file
1: Figure S16 for details), which is the most classical re-
sult among all the known. However, Possum TF is erro-
neously clustered in [54], which directly demonstrates
that the DCGR is more reliable. For comparison, we also
illustrated the phylogenetic tree constructed by Clus-
talW in Additional file 1: Figure S17, which shows simi-
lar results with our method DCGR.

Similarity analysis of 27 AFPs

For the last experiment, the 27 antifreeze protein
sequences (AFPs) studied in [43, 52, 55] were used to
evaluate the performance of our method. Antifreeze pro-
teins are a class of proteins produced by certain verte-
brates, plants, fungi and bacteria that permit their survival
in subzero environments by binding to small ice crystals to
inhibit growth and recrystallization of ice. The 27 AFPs
were selected from Choristoneura fumiferana (CF),

Tenebrio molitor (TM), Hypogastrura harveyi (HH), Dor-
cus curvidens binodulosus (DCB), Microdera dzhungarica
punctipennis (MDP) and Dendroides Canadensis (DC),
whose taxonomic information and accession numbers are
provided in Additional file 1: Table S4. After feature extrac-
tions of the 27 AFPs by DCGR, the standardized Euclid-
ean distance was used to calculate the distance matrix, and
the phylogenetic tree of the 27 AFPs was constructed in
Fig. 5. From Fig. 5, it clearly shows that the AFPs of the
same species are accurately grouped together. In addition,
the HH protein has a far relationship with each of the
other 26 AFPs, which is consistent with the result in [56].
However, all the other compared methods [43, 52, 55] in-
cluding ClustalW cannot accurately group all the proteins
into respective taxonomic classes. The phylogenetic trees
constructed by these methods have been shown in Add-
itional file 1: Figures S18-S21. For example, ClustalW erro-
neously divided the TM proteins into two separate groups,
while the methods in [43, 52, 55] failed separating the HH
protein from the other ones.

We could therefore conclude from all these experi-
ments that our method DCGR demonstrates significant
superiority over all the state-of-the-art methods, and it
even outperforms the method ClustalW, which is based
on sequence alignment.

Importance of the distribution information of points in
the CGR image

Applying the distribution information of points in CGR
image is a key step in the design of DCGR and makes an
essential difference from the other FCGR methods.
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Fig. 5 Phylogenetic tree of the 27 AFPs constructed by DCGR
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Traditional FCGR approaches first divide the CGR
image into small grids and then take only the point fre-
quency in each grid as numerical characteristics of the
sequence without considering the distribution informa-
tion of the points in each grid as in our method. In
order to evaluate the importance of the distribution in-
formation of the points in the divided grids, we only
took the point frequencies of the four segments as the
numerical characteristics of the CGR curve and also
used it to construct the phylogenetic trees of the above
five data sets, respectively.

After comparison, we found that it performs much
worse than DCGR, especially on the second and fifth data
sets, whose phylogenetic trees are shown in Figs. 6 and 7,
respectively. For the 36 proteins in Fig. 6, the FCGR
method without considering the distribution information
of points in CGR image separated none of the five protein
families from the others, making the phylogenetic tree in
quite a mess. For the 27 AFPs in Fig. 7, it erroneously
clustered the TM proteins into three branches, and sepa-
rated the 2 MD proteins in two branches. Similar results
could be seen on the other three data sets (see Additional
file 1: Figures S22-5S24 for details). Therefore, it is easy to
conclude that the distribution information of points in the
CGR image shows great importance in the method design
based on the CGR.

Discussion

Feature extractions of protein sequences play an import-
ant role in protein sequence studies, e.g. the predictions
of protein functions or protein-protein interactions.

Although a great amount of methods have been pro-
posed for extracting features of protein sequences, most
of them showed great limits in practical applications.
Many studies have showed that the CGR-based strategy
would be one of the most useful approaches for protein
feature extractions, and the so-called FCGR method is
currently the most frequently used method based CGR,
however a large amount of useful information, e.g. phys-
icochemical properties of amino acids and the distribu-
tion information of points in the CGR image were not
taken into consideration in the method design of FCGR.

In this paper, we proposed a new feature extraction
method for protein sequences based on the CGR, where
two novel techniques are developed in the design of the
method DCGR. (1) During the construction of CGR
curves, we designed a technique attempting to make full
use of the physicochemical properties of amino acids, so
the constructed CGR curves contain more useful infor-
mation, making it more reliable. (2) In the conversion of
the CGR curves into numerical characteristics, different
from traditional FCGR methods, we opened a new door
by integrating the distribution information of points in
the CGR image into the method design of DCGR, which
is proved quite important and makes the extracted fea-
tures more efficient.

Compared with previously published methods includ-
ing ClustalW on five most frequently used data sets,
DCGR consistently performs the best. In addition, the
method DCGR proposed in this paper could be used not
only in the similarity analyses of protein sequences, but
also in the areas of investigating protein classification or
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prediction problems in bioinformatics, which will be the
topics in our future studies.

Conclusions

We have developed a practically effective method for
feature extractions of protein sequences. It is the first
CGR-based method by effectively integrating the physi-
cochemical properties of amino acids and the distribu-
tion information of points in the CGR image into the
method design. Results show that DCGR is currently the
most accurate method for protein feature extractions,
and demonstrate great potentials for the studies of pro-
tein similarity analyses, protein function predictions and
protein-protein interactions.

Methods

AAindex database

AAindex is a database of numerical indices representing
various physicochemical and biochemical properties of
amino acids and amino acid pairs [57, 58]. The latest ver-
sion is the 9.2 release, which currently contains 566 indi-
ces. An amino acid index is a set of 20 numerical values
representing any of the different physicochemical proper-
ties of the 20 amino acids. Here, we selected 158 indices
for the following applications after removing all the redun-
dant ones, in which different amino acids have the same
value, and the 158 selected indices have been detailed in
Additional file 1: Notes 1.1.

Construction of CGR curves for protein sequences

As did previously, the 4-CGR, 5-CGR or 6-CGR using
only 4, 5 or 6 letters to represent protein sequences would
result in loss of sequence information, since the amino
acids belonging to the same group are considered identi-
cal. In order to avoid the loss of sequence information, we
developed the DCGR based on 20-CGR mentioned above,
where it is a highly challenging task to reasonably locate
the 20 amino acids at equal distances on the circumfer-
ence of a unit circle, as there are up to 20! possible ar-
rangements. In this study, we first developed a novel
technique specially to solve the problem of amino acid ar-
rangement by applying the physicochemical properties
selected from AAindex database. Then the CGR curves of
a protein sequence could be constructed according to the
arrangements of the 20 amino acids on the unit circle.

Arranging the 20 amino acids on the circumference of a
unit circle

In order to fully use the physicochemical properties of
the amino acids, we first sort the 20 amino acids accord-
ing to their physicochemical indices in ascending order.
Then the 20 amino acids are arranged in order on the
circumference of a unit circle by the following equation,
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where X; represents each of the 20 amino acids.

Building CGR curves for protein sequences

Given a protein sequence S with N amino acids S=s;
55...5n the CGR curve is constructed by successively con-
necting N points corresponding to the N amino acids,
the coordinate of which are determined as follows. The
first point is specified as the midpoint of the center of
the unit circle and the point of the circumference corre-
sponding to the first amino acid s;. For the i-th amino
acid s;, its point coordinate is defined as the midpoint of
the (i-1)-th point and the point of the circumference
corresponding to the amino acid s;. In detail, the itera-
tive procedure can be formulated as:

Wls) = 5 Wlsia) +9(s), i = 1,2, N e

where y/(s;) represents the coordinate of the point cor-
responding to the i-th amino acid s;, and y(s) is set to
be (0, 0).

Corresponding to each of the 158 selected physico-
chemical properties, we can obtain an exclusive arrange-
ment of 20 amino acids on the circumference of a unit
circle, and then a CGR curve for a protein sequence.
Thus, 158 intrinsically different CGR curves could be
constructed for each protein sequence corresponding to
the 158 physicochemical properties of amino acids.

Conversion of CGR curves into numerical characteristics
After obtaining 158 CGR curves for each protein sequence,
another challenging task is to effectively convert the CGR
curves into numerical characteristics, which could then be
used for similarity analysis among protein sequences. In
this study, we developed a new method for extracting nu-
merical characteristics from CGR curves as follows.

Given a protein sequence S, we can obtain 158 differ-
ent CGR curves falling in a unit circle. In order to ex-
tract features from protein sequence, for each of the 158
CGR curves, we first split the unit circle into four seg-
ments according to the four quadrants. Then, we com-
pute pairwise distances between points in each segment
and obtain four distance matrices for a CGR curve. By
computing their leading eigenvalues, we obtain a 4-
dimensional vector which is taken as the numerical
characteristics of the CGR curve. All of the numerical
characteristics of 158 CGR curves are integrated into a
632-dimensional vector which is taken as the feature
vector of the protein sequence.

Given a data set consisting of N protein sequences, we
can obtain an N x 632 feature matrix, each row of which
corresponds to a feature vector of a protein sequence.
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Since the dimension of the feature vectors is very high,
there may be redundancies and noises in them. We use
the Principal Component Analysis (PCA) to reduce the
dimensionality of the feature vectors. The reduced fea-
ture vectors are then applied to analyze the similarity of
protein sequences.

Additional file

Additional file 1: This file contains supplementary notes, figures and
tables. (PDF 1238 kb)

Abbreviation
CGR: Chaos Game Representation
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