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Abstract

Background: A large number of algorithms is being developed to reconstruct evolutionary models of individual
tumours from genome sequencing data. Most methods can analyze multiple samples collected either through bulk
multi-region sequencing experiments or the sequencing of individual cancer cells. However, rarely the same method
can support both data types.
Results: We introduce TRaIT, a computational framework to infer mutational graphs that model the accumulation of
multiple types of somatic alterations driving tumour evolution. Compared to other tools, TRaIT supports multi-region
and single-cell sequencing data within the same statistical framework, and delivers expressive models that capture
many complex evolutionary phenomena. TRaIT improves accuracy, robustness to data-specific errors and
computational complexity compared to competing methods.
Conclusions: We show that the application of TRaIT to single-cell and multi-region cancer datasets can produce
accurate and reliable models of single-tumour evolution, quantify the extent of intra-tumour heterogeneity and
generate new testable experimental hypotheses.

Keywords: Single-tumour evolution, Single-cell sequencing, Multi-region sequencing, Mutational graphs, Cancer
evolution, Tumour phylogeny

Background
Sequencing data from multiple samples of single tumours
can be used to investigate Intra-Tumor Heterogeneity
(ITH) in light of evolution [1–3]. Motivated by this obser-
vation, several new methods have been developed to infer
the “evolutionary history” of a tumour from sequenc-
ing data. According to Davis and Navin, there are three
orthogonal ways to depict such history [4]: (i) with a phy-
logenetic tree that displays input samples as leaves [5], (ii)
with a clonal tree of parental relations between putative
cancer clones [6–9], and (iii) with the order of muta-
tions that accumulated during cancer growth [10–12].
Ideally, the order of accumulating mutations should
match the clonal lineage tree in order to reconcile these
inferences. Consistently with earlier works of us [13–18],

*Correspondence: alex.graudenzi@unimib.it
2Dipartimento di Informatica, Sistemistica e Comunicazione, Università degli
Studi di Milano-Bicocca, Viale Sarca 336, 20126 Milan, Italy
3Institute of Molecular Bioimaging and Physiology of the Italian National
Research Council (IBFM-CNR), Viale F.lli Cervi 93, 20090 Segrate, Milan, Italy
Full list of author information is available at the end of the article

we here approach the third problem (“mutational order-
ing”) from two types of data: multi-region bulk and single-
cell sequencing.
Bulk sequencing of multiple spatially-separated tumour

biopsies returns a noisy mixture of admixed lineages
[19–23]. We can analyse these data by first retrieving
clonal prevalences in bulk samples (subclonal deconvolu-
tion), and then by computing their evolutionary relations
[24–31]. Subclonal deconvolution is usually computation-
ally challenging, and can be avoided if we can read geno-
types of individual cells via single-cell sequencing (SCS).
Despite this theoretical advantage, however, current tech-
nical challenges in cell isolation and genome amplification
are major bottlenecks to scale SCS to whole-exome or
whole-genome assays, and the available targeted data har-
bours high levels of allelic dropouts, missing data and
doublets [32–35]. Thus, the direct application of stan-
dard phylogenetic methods to SCS data is not straight-
forward, despite being theoretically viable [36]. Notice
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that a common feature of most methods for cancer evo-
lution reconstruction is the employment of the Infinite
Sites Assumption (ISA), together with the assumption of
no back mutation [24–35], even though recent attempts
(e.g., [9]) have been proposed to relax such assumption in
order to model relevant phenomena, such as convergent
evolutionary trajectories [37].

In this expanding field, we here introduce TRaIT
(Temporal oRder of Individual Tumors – Figs. 1 and 2),
a new framework for the inference of models of single-
tumour evolution, which can analyse, separately, multi-
region bulk and single-cell sequencing data, and which
allows to capture many complex evolutionary phenom-
ena underlying cancer development. Compared to other

Fig. 1 a A tumour phylogeny describes the order of accumulation of somatic mutations, CNAs, epigenetic modifications, etc. in a single tumour.
The model generates a set of possible genotypes, which are observed with an unknown spatial and density distribution in a tumour (primary and
metastases). bMulti-region bulk sequencing returns a mixed signal from different tumour subpopulations, with potential contamination of
non-tumour cells (not shown) and symmetric rates of false positives and negatives in the calling. Thus, a sample will harbour lesions from different
tumour lineages, creating spurious correlations in the data. c If we sequence genomes of single cells we can, in principle, have a precise signal from
each subpopulation. However, the inference with these data is made harder by high levels of asymmetric noise, errors in the calling and missing
data. d Different scenarios of tumour evolution can be investigated via TRaIT. (i) Branching evolution (which includes linear evolution), (ii)
Branching evolution with confounding factors annotated in the data, (iii) Models with multiple progressions due to polyclonal tumour origination,
or to the presence tumour initiating event missing from input data
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Fig. 2 a TRaIT processes a binary matrix D that stores the presence or absence of a variable in a sample (e.g., a mutation, a CNA, or a persistent
epigenetic states). b. TRaIT merges the events occurring in the same samples (x1, x2 and x4, merged to A), as the statistical signal for their temporal
ordering is undistinguishable. The final model include such aggregate events. c. We estimate via bootstrap the prima facie ordering relation that
satisfies Suppes’ conditions (Eq. 1) for statistical association. This induces a graph GPF over variables xi , which is weighted by information-theoretic
measures for variables’ association such as mutual information or pointwise mutual information. d TRaIT employs heuristic strategies to remove
loops from GPF and produce a new graph GNL [14]. e Edmonds’s algorithm can be used to reconstruct the optimal minimum spanning tree GMO

that minimises the weights in GNL; here we use point-wise mutual information (pmi). f. Chow-Liu is a Bayesian mode-selection strategy that
computes an undirected tree as a model of a joint distribution on the annotated variable. Then, we provide edge direction (temporal priority), with
Suppes’ condition (Eq. 1) on marginal probabilities. Therefore, confluences are possible in the output model GMO in certain conditions

approaches that might scale poorly for increasing sample
sizes, our methods show excellent computational perfor-
mance and scalability, rendering them suitable to antici-
pate the large amount of genomic data that is becoming
increasingly available.

Results
TRaIT is a computational framework that combines Sup-
pes’ probabilistic causation [38] with information theory
to infer the temporal ordering of mutations that accumu-
late during tumour growth, as an extension of our previ-
ous work [13–18]. The framework comprises 4 algorithms
(EDMONDS, GABOW, CHOWLIU and PRIM) designed to
model different types of progressions (expressivity) and
integrate various types of data, still maintaining a low
burden of computational complexity (Figs. 1 and 2 – see
Methods for the algorithmic details).
In TRaIT we estimate the statistical association between

a set of genomic events (i.e., mutations, copy number,
etc.) annotated in sequencing data by combining optimal
graph-based algorithms with bootstrap, hypothesis test-
ing and information theory (Fig. 2). TRaIT can reconstruct
trees and forests – in general, mutational graphs – which
in specific cases can include confluences, to account for
the uncertainty on the precedence relation among certain
events. Forest models (i.e., disconnected trees), in particu-
lar, can stem for possible polyclonal tumour initiation (i.e.,
tumours with multiple cells of origin [39]), or the presence

of tumour-triggering events that are not annotated in the
input data (e.g., epigenetic events) (Fig. 1d).
Inputs data in TRaIT is represent as binary vectors,

which is the standard representation for SCS sequenc-
ing and is hereby used to define a unique framework for
both multi-region bulk and SCS data (Fig. 1a–c). For a
set of cells or regions sequenced, the input reports the
presence/absence of n genomic events, for which TRaIT
will layout a temporal ordering. A binary representa-
tion allows to include several types of somatic lesions
in the analysis, such as somatic mutations (e.g., single-
nucleotide, indels, etc.), copy number alterations, epige-
netic states (e.g., methylations, chromatin modifications),
etc. (see the Conclusions for a discussion on the issue of
data resolution).

Performance evaluation with synthetic simulations
We assessed the performance of TRaIT with both SCS
and multi-region data simulated from different types of
generative models.
Synthetic data generation. Synthetic single-cell datasets

were sampled from a large number of randomly generated
topologies (trees or forests) to reflect TRaIT’s generative
model. For each generative topology, binary datasets were
generated starting from the root, with a recursive proce-
dure which we describe for the simpler case of a tree: (i)
for the root node x, the corresponding variable is assigned
1 with a randomly sampled probability p(x = 1) = r,
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with r ∼ U[ 0, 1]; (ii) given a branching node y with
children y1, y2, . . . , yn, we sample values for the n variables
y1, y2, . . . , yn so that at most one randomly selected child
contains 1, and the others are all 0. The recursion pro-
ceeds from the root to the leaves, and stops whenever a 0
is sampled or a leaf is reached. Note that we are simulat-
ing exclusive branching lineages, as one expects from the
accumulation of mutations in single cells under the ISA.
As bulk samples usually include intermixed tumour sub-

populations, we simulated bulk datasets by pooling single-
cell genotypes generated as described above, and setting
simulated variables (i.e., mutations) to 1 (= present) in
each bulk sample if they appear in the sampled single-
cell genotypes more than a certain threshold. More details
on these procedures are reported in Section 2 of the
Additional file 1.
Consistently with previous studies, we also introduced

noise in the true genotypes via inflated false positives and
false negatives, which are assumed to have highly asym-
metric rates for SCS data. For SCS data we also included

missing data in a proportion of the simulated variables
[11]. Notice that TRaIT can be provided with input noise
rates, prior to the inference: therefore, in each reconstruc-
tion experiment we provided the algorithm with the noise
rates used to generate the datasets, even though mild
variations in such input values appear not to affect the
inference accuracy – as shown in the noise robustness test
presented below and in Fig. 3d.
With a total of ∼140.000 distinct simulations, we could

reliably estimate the ability to infer true edges (sensitivity)
and discriminate false ones (specificity); further details
on parameter settings are available in Section 6 of the
Additional file 1. In particular, we compared TRaIT’s algo-
rithms to SCITE, the state-of-the-art to infer mutational
trees from SCS data [11]. We could not include OncoNEM
[7] – the benchmark tool for clonal deconvolution – in
the comparison, as its computational performance did not
scale well with our large number of tests.
In the Main Text we show results for the Edmonds and

Chow-Liu algorithms, included in TRaIT, and SCITE, in a
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Fig. 3We estimate from simulations the rate of detection of true positives (sensitivity) and negatives (specificity), visualised as box-plots from 100
independent points each. We compare TRaIT’s algorithms Edmonds and Chow-Liu with SCITE, the state-of-the-art for mutational trees inference in a
setting of mild noise in the data, and canonical sample size. In SCS data noise is ε+ = 5 × 10−3; ε− = 5 × 10−2, in multi-region ε− = 5 × 10−2.
Extensive results for different models, data type, noise and sample size are in Additional file 1: Figures S3–S16. a Here we use a generative model
from [6] (Additional file 1: Figure S7-B). (left) SCS datasets withm = 50 single cells, for a tumour with n = 11 mutations. (right) Multi-region datasets
withm = 10 spatially separated regions, for a tumour with n = 11 mutations. bWe augment the setting in A-right with 2 random variables (with
randommarginal probabilty) to model confounding factors, and generated SCS data. cWe generated multi-region data from a tumour with n = 21
mutations, and a random number of 2 or 3 distinct cells of origin to model polyclonal tumour origination. d Spectrum of average sensitivity and
specificity for Gabow algorithm included in TRaIT (see SM) estimated from 100 independent SCS datasets sampled from the generative model in
Additional file 1: Figure S7-B (m = 75, n = 11). The true noise rates are ε+ = 5 × 10−3; ε− = 5 × 10−2; we scan input ε+ and ε− in the ranges:
ε+ = (3, 4, 5, 6, 7) × 10−3 and 3 × 10−2 ≤ ε− =≤ 7 × 10−2
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selected number of relevant experimental scenarios. To
improve readability of the manuscript, we leave to the
Additional file a comprehensive presentation of the results
for Gabow, Prim and other approaches [13, 14].
Results from scenario (i), branching evolution. To simu-

late branching evolution [19], we generated a large num-
ber of independent datasets from single-rooted tree struc-
tures. In particular, we employed three control polyclonal
topologies taken from [6] (Additional file 1: Figure 7) and
100 randomly generated topologies, with a variable num-
ber of nodes (i.e., alterations) in the range n ∈[ 5; 20]. Such
generative models were first used to sample datasets with
different number of sequenced cells (m = 10, 50, 100). In
addition to the noise-free setting, we perturbed data by
introducing plausible and highly asymmetric noise rates
(i.e., ε+ = ε− = 0 (noise-free); ε+ = 0.005, ε− = 0.05;
ε+ = 0.02, ε− = 0.2.). The same generative topologies
were then used to sample multi-region datasets with dif-
ferent number of regions (m = 5, 10, 20), and symmetric
noise rates (ε+ = ε− = 0, 0.05, 0.2).
In Fig. 3a we show two selected experimental settings,

which are characteristic of the general trends observed on
all tests. In particular, one can notice that all the tech-
niques achieve high sensitivity and specificity with SCS
data, and significantly lower scores with multi-region data
from the same topology; Edmonds displays in general the
best results with SCS data (medians ∼ 0.8 and ∼ 1).
From the results in all simulation settings (Additional

file 1: Figures 8 and 9 for the SCS case; Additional
file 1: Figures 13 and 14 for the multi-region case),
we observe that the overall performance significantly
improves for lower noise levels and larger datasets across
for all the algorithms, a general result that is confirmed
in the other experimental scenarios. In particular, with
SCS data, Edmonds and SCITE display similar sensitiv-
ity, even though the latter presents (on average) lower
specificity, which might point to a mild-tendency to over-
fit. Results on multi-region data display similar trends,
with Edmonds showing the overall best performance
and SCITE showing slightly lower performance, especially
with small datasets and/or low noise levels. We also
specify that, as TRaIT’s algorithms share the same con-
straints in the search space and several algorithmic prop-
erties, the reduced variance observed across settings is
expected.
Results from scenario (ii), confounding factors. To inves-

tigate the impact of possible confounding factors on
inference accuracy, we introduced in the datasets from
scenario (i) a number of random binary variables totally
unrelated to the progression. More in detail, we inserted
around n×10% additional random columns in all datasets
with n input variables; each additional column is a
repeated sampling of a biased coin, with bias uniformly
sampled among the marginals of all events.

The performance of TRaIT and SCITE in a selected setting
for the multi-region case is shown in Fig. 3b. Surprisingly,
the introduction of confounding factors does not impact
the performance significantly. In fact, despite two extra
variables annotated in the data that are unrelated to the
progression, most algorithms still discriminate the true
generative model. Similar results are achieved in the SCS
case (Additional file 1: Figure 10).
Results from scenario (iii), forest models. Forest topolo-

gies can be employed as generative models of tumours
initiated by multiple cells, or of tumours whose initia-
tion is triggered by events that are not annotated in the
input data. In this test we randomly generated forests
with a variable number of distinct disconnected trees, thus
assuming that no mutations are shared across the trees.
In detail, we generated 100 random forest topologies, with
n = 20 nodes and q < 5 distinct roots (i.e., disconnected
trees), both in the SCS and the multi-region case.
The performance of the tested algorithms in a selected

experimental scenario with SCS is shown in Fig. 3c. All
algorithms display a clear decrease in sensitivity, with
respect to the single-rooted case with similar values of
noise and sample size. In the SCS case the performance
remarkably increases with larger datasets (median values
∼ 0.75 with m = 100 samples in the noise-free case;
Additional file 1: Figure 11). Edmonds shows the best
tradeoff between sensitivity and specificity, whereas SCITE
confirms a mild tendency to overfit for small datasets,
yet being very robust against noise. Results from multi-
region analysis show an overall decrease in performance
(Additional file 1: Figure 16).
Robustness to variations in noise input values. Similarly

to other tools, e.g., [7, 11], our algorithms can receive rates
of false positives and negatives in the data (ε+ and ε−) as
input. Thus, we analyzed the effect of miscalled rates on
the overall performance. More in detail, we analyzed the
variation of the performance of Gabow and SCITE, on a
dataset generated from a generative tree with intermedi-
ate complexity (“Medium" topology in Additional file 1:
Figure 7), with n = 11 nodes and m = 75 samples,
ε+ = 5 × 10−3 and ε− = 5 × 10−2. We scanned
25 possible combinations of input ε+ and ε− in the fol-
lowing ranges: ε+ = (3, 4, 5, 6, 7) × 10−3 and ε− =
(3, 4, 5, 6, 7)×10−2. Results in Fig. 3d and Additional file 1:
Tables 4 and 5 show no significant variations of the perfor-
mance with different combinations of input values for ε+
and ε−, for both algorithms. This evidence also supports
our algorithmic design choice which avoids sophisticate
noise-learning strategies in TRaIT, a further reason that
speeds up computations.
Missing data. Significant rates of missing data are still

quite common in SCS datasets, mainly due to amplifica-
tion biases during library preparation. We evaluated the
impact of missing data by using 20 benchmark single-cell
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datasets which were generated from a tree with n = 11
nodes (Additional file 1: Figure 7). For every dataset we
simulated the calling of mutations from m = 75 single
sequenced cells, and in half of the cases (i.e., 10 datasets)
we also imputed extra error rates in the data to model
sequencing errors. In particular, we introduced false pos-
itives and false negative calls with rates ε+ = 0.005 and
ε− = 0.05. On top of this, for each of the 20 datasets
we generated 5 configurations of missing data (uniformly
distributed), using as measure the percentage r of miss-
ing data over the total number of observations. A total
of 100 distinct datasets have been obtained using r =
0, 0.1, 0.2, 0.3, 0.4 (i.e., up to 40% missing data). As SCITE
can explicitly learn parameters from missing data, we run
the tool with no further parameters. Instead, for TRaIT’s
algorithms, we performed the following procedure: for
each dataset D with missing data, we imputed the miss-
ing entries via a standard Expectation-Maximization (EM)
algorithm, repeating the procedure to generate 100 com-
plete datasets (D1, . . . ,D100). To asses the performance of
each algorithm, we computed the fit to all the 100 datasets,
and selected the solution that maximised the likelihood of
the model.
We present in Fig. 4 the results of this analysis for

Edmonds and Chow-Liu algorithms included in TRaIT, and
for SCITE; results for Gabow and Prim algorithms are pre-
sented in Additional file 1: Figure 12. In general, missing
data profoundly affect the performance of all methods.
SCITE shows overall more robust sensitivity, in spite of
slightly worse specificity. The performance is always sig-
nificantly improved when data do not harbour noise and,
in general, is reasonably robust up to 30% missing data.
Computational time. One of the major computational

advantages of TRaIT is its scalability, which will be essen-
tial in anticipation of the increasingly larger SCS datasets
expected in the near future. In this respect, we have
observed across all tests a 3× speedup of TRaIT’s algo-
rithms on standard CPUs with respect to SCITE, and a
40× speedup with respect to OncoNEM (Additional file 1:
Table 6).

Analysis of patient-derived multi-region data for a
MSI-high colorectal cancer
We applied TRaIT to 47 nonsynonymous point muta-
tions and 11 indels detected via targeted sequencing in
patient P3 of [40]. This patient has been diagnosed with a
moderately-differentiated MSI-high colorectal cancer, for
which 3 samples are collected from the primary tumour
(P3-1, P3-2, and P3-3) and two from a right hepatic
lobemetastasis L-1 and L-2 (Fig. 5a). To prepare the data
for our analyses, we first grouped mutations occurring in
the same regions. We obtained: (a) a clonal group of 34
mutations detected in all samples (b) a subclonal group
of 3 mutations private to the metastatic regions, and (c)

8 mutations with distinct mutational profiles. The clonal
group contains mutations in key colorectal driver genes
such as APC, KRAS, PIK3CA and TP53 [15],
Edmonds’s model predicts branching evolution and

high levels of ITH among the subclonal populations, con-
sistently with the original phylogenetic analysis by Lu
et al. [40] (Fig. 5b). In particular, the subclonal trajec-
tory that characterizes the primary regions is initiated by
a stopgain SNV in the DNA damage repair gene ATM,
whereas the subclonalmetastatic expansion seems to orig-
inate by a stopgain SNV in GNAQ, a gene reponsible for
diffusion in many tumour types [41]. The model also pic-
tures two distinct trajectories with different mutations in
SMAD4: a nonsynonimous SNV in group L, and a stop-
gain SNV in two regions of the primary. Interestingly,
SMAD4 regulates cell proliferation, differentiation and
apoptosis [42], and its loss is correlated with colorectal
metastases [43].
We applied SCITE to the same data (Additional file 1:

Figure S22), and compared it to Edmonds. Both models
depict the same history for the metastatic branch, but dif-
ferent tumour initiation: SCITE places the ATM mutation
on top of the clonal mutations, which appear ordered in a
linear chain of 34 events. However, this ordering is uncer-
tain because SCITE’s posterior is multi-modal (i.e., several
orderings have the same likelihood; Additional file 1:
Figure 22). Further comments on the results, and out-
puts from other algorithms are available Supplementary
Material (Additional file 1: Figure 21).

Analysis of patient-derived SCS data for a triple-negative
breast cancer
We applied TRaIT to the triple-negative breast cancer
patient TNBC of [34]. The input data consists of single-
nucleus exome sequencing of 32 cells: 8 aneuploid (A)
cells, 8 hypodiploid (H) cells and 16 normal cells (N)
(Fig. 6a). Wang et al considered clonal all mutations
detected in a control bulk sample and in the majority of
the single cells, and as subclonal those undetected in the
bulk [34]; all mutations were then used to manually curate
a phylogenetic tree (Fig. 6b).
We run TRaIT on all single cells, with nonsynonymous

point mutations annotated in 22 genes, and set ε+ =
1.24×10−6 and ε− = 9.73×10−2 as suggested in [34]. All
TRaIT’s algorithms return tree topologies (Additional file 1:
Figures 17–18); Fig. 6c shows the model obtained with
Edmonds. We integrate the analysis by applying SCITE to
the same data, and by computing prevalence and evolu-
tionary relations of putative clones with OncoNEM as well
(Fig. 6d).
TRaIT provides a finer resolution to the original anal-

ysis by Wang et al. [34], and retrieves gradual accumu-
lation of point mutations thorough tumour evolution,
which highlight progressive DNA repair and replication
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Fig. 4 Sensitivity and specificity for different percentages r of missing entries, namely, r = (0, 0.1, 0.2, 0.3, 0.4) as a function of the number of
variables in the data, and different levels of noise: (i) ε+ = ε− = 0 and (ii) ε+ = 0.005, ε− = 0.05. The original dataset is generated from a tree with
n = 11 nodes andm = 75 samples (Additional file 1: Figure 7)

deregulation. The model also predicts high-confidence
branching evolution patterns consistent with subclones
A1 (PPP2R1A, SYNE2 and AURKA), A2 (ECM2, CHRM5
and TGFB2), and H (NRRK1, AFF4, ECM1, CBX4), and
provides an explicit ordering among clonal mutations in
PTEN, TBX3 and NOTCH2, which trigger tumour initi-
ation. Interestingly, TRaIT also allows to formulate new
hypotheses about a possibly undetected subclone with
private mutations in JAK1, SETBP1 and CDH6. Finally,
we note that that temporal ordering among mutations in
ARAF, AKAP9, NOTCH3 and JAK1 cannot be retrieved,
since these events have the same marginal probability in
these data.

By applying SCITE to these data with the same noise
rates, we retrieved 10.000 equivalently optimal trees.
The overlap between the first of the returned trees
(Additional file 1: Figure S19) and ours is poor (8 out of
19 edges), and SCITE’s models contain a long linear chain
of 13 truncal mutations. Clonal deconvolution analysis via
OncoNEM allowed us to detect 10 clones, their lineages
and evolutionary relations. This analysis is in stronger
agreement with ours, and the estimated mutational order-
ing obtained by assigning mutations to clones (via maxi-
mum a posteriori, as suggested in [7]) largely overlaps with
TRaIT’s predictions. This is particularly evident for early
events, and for most of the late subclonal ones, exception
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Fig. 5 a. Multi-region sequencing data for a MSI-high colorectal cancer from [40], with three regions of the primary cancer: p3-1, p3-2 and p3-3,
and two of one metastasis: L-1 and L-2. To use this data with TRaIT we merge mutations occur in the same samples, obtaining a clonal group of
34 mutations and a sublclonal group. b. The model obtained by Edmonds including confidence measures, and the overlap in the predicted
ordering obtained by SCITE, Chow-Liu, Gabow and Prim (Additional file 1: Figure S21). All edges, in all models, are statistically significant for
conditions (Eq. 1). Four of the predicted ordering relations are consistently found across all TRaIT’s algorithm, which gives a high-confidence
explanation for the formation of the L2metastasis. This finding is also in agreement with predictions by SCITE (Additional file 1: Figure S22)

made for subclone H, which is not detected by OncoNEM.
These results prove that concerted application of tools
for mutational and clonal trees inference can provide a
picture of ITH at an unprecedented resolution.

Discussion
In this paper we have introduced TRaIT, a computational
approach for the inference of cancer evolution models
in single tumours. TRaIT’s expressive framework allows
to reconstruct models beyond standard trees, such as
forests, which capture different modalities of tumour ini-
tiation (e.g., by multiple cells of origin, or by events miss-
ing in available genomic data, such as epigenetic states)
and, under certain conditions of data and parameters,
confluences. Future works will exploit this latter fea-
ture to define a comprehensive modelling framework that
accounts for explicit violations of the ISA, in order to
model further evolutionary phenomena, such as conver-
gent (parallel) evolution and back mutations [37].

TRaIT is based on a binary representation of input data,
for both multi-region and single-cell sequencing data.
We comment on this design choice concerning the case
of multi-region bulk data, because most methods that
process bulk data use allelic frequencies and cancer cell
fractions to deconvolve the clonal composition of a tumor
(see, e.g., [29, 30, 44]). In this respect, allele frequency-
derived inputs provide higher-resolution estimates of the
temporal orderings among samples. In fact, if two muta-
tions co-occur in the same set of samples, their relative
temporal ordering cannot be determined from a binary
input, while this might be possible from their cancer cell
fractions. However, despite the lower resolution, a binary
representation is still a viable option in multi-region
analyses.
First, binary data can describe the presence or absence

of a wide range of covariates, which otherwise might
be difficult or impossible to represent with allele-
frequencies or cancer cell fractions. These include,
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Fig. 6 a Input data from single-nucleus sequencing of 32 cells from a triple-negative breast cancer [34]. As the rate of missing values in the original
data was around 1%, the authors set all missing data points equal to 0; in the dataset, allelic dropout is equal to 9.73 × 10−2, and false discovery
equal to 1.24 × 10−6. b Phylogenetic tree manually curated in [34]. Mutations are annotated to the trunk if they are ubiquitous across cells and a
bulk control sample. Subclonal mutations appearing only in more than one cell. c. Mutational graph obtained with Edmonds algorithm; p-values are
obtained by 3 tests for conditions (Eq. 1) and overlap (hypergeometric test), and edges annotated with a posteriori non-parametric bootstrap scores
(100 estimates). For these data, all TRaIT’s algorithms return trees (Additional file 1: Figure S17-18), consistently with the manually curated phylogeny
(A). Most edges are highly confident (p < 0.05), except for groups of variables with the same frequency which have unknown ordering (red edges).
The ordering of mutations in subclones A1 , A2 and tumour initiation has high bootstrap estimates (> 75%). Yellow circles mark the edges retrieved
also by SCITE. d. We also performed clonal tree inference with OncoNEM, which predicts 10 clones. Mutations are assigned to clones viamaximum a
posteriori estimates. The mutational orderings of the early clonal expansion of the tumour and of most of the late subclonal events are consistent
with TRaIT’s prediction
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for instance, complex structural re-arrangements, struc-
tural variants, epigenetic modifications, over/under gene
expression states and high-level pathway information.
The integration of such heterogeneous data types and
measurements will be essential to deliver an effective
multi-level representation of the life history of individual
tumours. Methods that strictly rely on allelic frequencies
might need to be extended to accommodate such data
types.
Second, binary inputs can be used to promptly anal-

yse targeted sequencing panels, whereas the estimation
of subclonal clusters from allele frequencies (i.e., via sub-
clonal deconvolution) requires at least high-depth whole-
exome sequencing data to produce reliable results. While
it is true that whole-exome and whole-genome assays
are becoming increasingly common, many large-scale
genomic studies are still relying on targeted sequencing
(see, e.g., [45, 46]), especially in the clinical setting. A
prominent example are assays for longitudinal sampling
of circulating tumour DNA during therapy monitoring,
which often consist of deep-sequencing target panels
derived from the composition of a primary tumour (see,
e.g., [47]).
Finally, binary inputs can be obtained for both bulk and

single-cell sequencing data, and this in turn allows to use
the same framework to study cancer evolution from both
data types. This is innovative, and in the future integrative
methods might draw inspiration from our approach.

Conclusions
Intra-tumour heterogeneity is a product of the interplay
arising from competition, selection and neutral evolu-
tion of cancer subpopulations, and is one of the major
causes of drug resistance, therapy failure and relapse
[48–52]. For this reason, the choice of the appropriate
statistical approach to take full advantage of the increas-
ing resolution of genomic data is key to produce pre-
dictive models of tumour evolution with translational
relevance.
We have here introduced TRaIT, a framework for the

efficient reconstruction of single tumour evolution from
multiple-sample sequencing data. Thanks to the sim-
plicity of the underlying theoretical framework, TRaIT
displays significant advancements in terms of robust-
ness, expressivity, data integration and computational
complexity. TRaIT can process both multi-region and
SCS data (separately), and its optimal algorithms
maintain a low computational burden compare to
alternative tools. TRaIT’s assumptions to model accu-
mulation phenomena lead to accurate and robust
estimate of temporal orderings, also in presence of noisy
data.
We position TRaIT in a very precise niche in the

landscape of tools for cancer evolution reconstruction,

i.e., that of methods for the inference of mutational
trees/graphs (not clonal or phylogenetic trees), from
binary data (alteration present/absent), and supporting
both multi-region bulk and single-cell sequencing data.
We advocate the use of TRaIT as complementary to tools
for clonal tree inference, in a joint effort to quantify
the extent of ITH, as shown in the case study on triple
negative breast cancer.

Methods
Input Data and Data Types
TRaIT processes an input binary matrix D with n columns
and m rows. D stores n binary variables (somatic muta-
tions, CNAs, epigenetic states, etc.) detected across m
samples (single cells or multi-region samples) (Fig. 2a).
One can annotate data at different resolutions: for
instance, one can distinguish mutations by type (mis-
sense vs truncating), position, or context (G>T vs G>A), or
can just annotate a general “mutation” status. The same
applies for copy numbers, which can be annotated at the
focal, cytoband or arm-level. In general, if an entry in D is
1, then the associated variable is detected in the sample.
In our framework we cannot disentangle the tem-

poral ordering between events that occur in the same
set of samples. These will be grouped by TRaIT in a
new “aggregate” node, prior to the inference (Fig. 2b).
TRaIT does not explicitly account for back mutations
due to loss of heterozygosity. Yet, the information on
these events can be used to prepare input data if one
matches the copy number state to the presence of muta-
tions. By merging these events we can retrieve their
temporal position in the output graph (Additional file 1:
Figure S23).
TRaIT supports both multi-region and SCS data. As we

expect D to contain noisy observations of the unknown
true genotypes, the algorithms can be informed of false
positives and negatives rates (ε+ ≥ 0 and ε− ≥ 0). TRaIT
does not implement noise learning strategies, similarly
to OncoNEM [11]. This choice is sensitive if the algo-
rithms show stable performance for slight variations in the
input noise rates, especially when reasonable estimates
of ε+ and ε− can be known a priori. This feature allows
TRaIT to be computationally more efficient, as it avoids to
include a noise learning routine in the fit. Missing data,
instead, are handled by a standard Expectation Maximi-
sation approach to impute missing values: for every com-
plete dataset obtained, the fit is repeated and the model
that maximises the likelihood across all runs is returned.

TRaIT’s Procedure
All TRaIT’s algorithms can be summarised with a three-
steps skeleton, where the first two steps are the same
across all algorithms. Each algorithm will return a unique
output model, whose post hoc confidence can be assessed
via cross-validation and bootstrap [15].
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Step 1: assessment of statistical association – Fig. 2c
We estimate the statistical association between events
by assessing two conditions inspired to Suppes’ theory
of probabilistic causation, which is particularly sound in
modelling cumulative phenomena [38].
Let p(·) be an empirical probability (marginal, joint,

conditional etc.) estimated from dataset D. Conditions on
(i) temporal direction and (ii) association’s strength are
assessed as follows: for every pair of variables x and y inD,
x is a plausible temporally antecedent event of y if

p(x) > p(y) ∧ p(y | x) > p(y | ¬x) . (1)

The former condition acts as the Infinite Sites Assump-
tion (ISA), as we assume that alterations are inherited
across cell divisions (i.e., somatic): thus, the compar-
ison of marginal frequencies is a proxy to compute
the relative ordering among events. The latter condi-
tion, instead, implies statistical dependence: p(x, y) >

p(x)p(y) [13].
Both conditions are assessed among all variables pairs

via non-parametric bootstrap and a one-tailed Mann-
Whitney test: only if both conditions are statistically
significant at some α-level (e.g., 0.05), the edge con-
necting the variable pair will be included in a prima-
facie direct graph Gpf. Edges in Gpf are candidate to
be selected in the final output model, and thus we
are reducing the search space via the the above con-
ditions, which are necessary but not sufficient. These
conditions have been previously used to define causal
approaches for cancer progression [14, 15]; see further
discussion in Supplementary Material. This step has
asymptotic complexity O((nm)2 × B) where B is the
cost of bootstrap and hypothesis testing on each entry
in D. Notice that this procedure can create disconnected
components.

Step 2: loop removal – Fig. 2d
GPF can contain loops, which we have to remove to model
an accumulation process. Loops may arise when an arc
between a pair of nodes cannot be unequivocally directed,
e.g., due to small sample size which leads to uncertain
bootstrap estimations. TRaIT renders acyclic GPF by using
heuristic strategies that remove less confident edges (see
[14]); the output produced is a new graph GNL.

Step 3: reconstruction of the outputmodel – Fig. 2e–f
We render GNL a weighted graph by annotating its edges
via information-theoretic measures such as point-wise
mutual information and the like. Then, we can exploit 4
different off-the-shelf algorithms to reconstruct an out-
put model GMO from GNL. GMO will be either a tree or a
forest with multiple roots, and the complexity of this step
depends on the adopted algorithm. Notably, all algorithms
currently incorporated in TRaIT have theoretically-optimal

worst-case polynomial complexity. We describe two of
them (Edmonds and Chow-Liu), and leave the descrip-
tion of the other techniques (Gabow and Prim) to the
Supplementary Material.

• Edmonds is an algorithm for the inference of
weighted directed minimum spanning trees [53]: it
scanGNL to identify the tree that maximises the edges’
weights. Spanning trees have been previously applied
to cancer [54, 55]. Yet, TRaIT is the only framework to
constraint spanning trees by condition (1);

• Chow-Liu’s algorithm is a method to compute a
factorisation of a joint distribution over the input
variables [56]. Chow-Liu reconstructs undirected trees
by definition; we assign the direction to each edge so
that the event with higher marginal probability is on
top, mirroring condition (1). Confluences in GMO can
emerge under certain conditions of the observed
probabilities, which account for the uncertainty on
the temporal precedence among events (technically,
in such cases we reconstruct direct acyclic graphs,
DAGs – see the Supplementary Material for details).

In all TRaIT’s algorithms, if GNL includes k disconnected
components, then the output model GMO will include k
disconnected trees.
In term of complexity, we note that all TRaIT’s algo-

rithms are optimal polynomial-time algorithmic solutions
to each of their corresponding combinatorial problems.
Thus, they scale well with sample size, a problem some-
times observed with Bayesian approaches that cannot
compute a full posterior on the model parameters. Quan-
titative assessment of TRaIT’s scalability with large datasets
is provided as Supplementary Material (Additional file 1:
Table 7), where we show that many thousands of cells can
be processed in a few seconds.

Tumour evolution scenarios
TRaIT can infer mutational graphs in the following scenar-
ios (see Fig. 1d):

1. Branching evolution (including linear evolution as
subcase): in this case TRaIT will return a tree with one
root and zero disconnected components.

2. Presence of confounding factors in D (e.g., miscalled
mutations): TRaIT will reconstruct a model with
disconnected individual nodes.

3. Polyclonal origin due to multiple cells of tumour
origin, or to upstream events triggering tumour
development that missing in D (e.g., epigenetic
events): TRaIT will return models with disconnected
components (i.e., forests).

In general, we recommend to apply all TRaIT’s algo-
rithms and to compare the output models; the creation
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of a consensus model is an option to rank the edges
detected across several methods, as we show in the case
studies.

Additional file

Additional file 1: Additional file 1: Data.Extensive description of all the
methods and experiments ran with TRaIT, both on simulated data and on
real data. In-depth description of the simulated data generation algorithms
and table summaries of ∼140.00 simulations. (PDF 4507 kb)
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