
METHODOLOGY ARTICLE Open Access

Adapting machine-learning algorithms to
design gene circuits
Tom W. Hiscock1,2

Abstract

Background: Gene circuits are important in many aspects of biology, and perform a wide variety of different
functions. For example, some circuits oscillate (e.g. the cell cycle), some are bistable (e.g. as cells differentiate), some
respond sharply to environmental signals (e.g. ultrasensitivity), and some pattern multicellular tissues (e.g. Turing’s
model). Often, one starts from a given circuit, and using simulations, asks what functions it can perform. Here we
want to do the opposite: starting from a prescribed function, can we find a circuit that executes this function?
Whilst simple in principle, this task is challenging from a computational perspective, since gene circuit models are
complex systems with many parameters. In this work, we adapted machine-learning algorithms to significantly
accelerate gene circuit discovery.

Results: We use gradient-descent optimization algorithms from machine learning to rapidly screen and design
gene circuits. With this approach, we found that we could rapidly design circuits capable of executing a range of
different functions, including those that: (1) recapitulate important in vivo phenomena, such as oscillators, and (2)
perform complex tasks for synthetic biology, such as counting noisy biological events.

Conclusions: Our computational pipeline will facilitate the systematic study of natural circuits in a range
of contexts, and allow the automatic design of circuits for synthetic biology. Our method can be readily
applied to biological networks of any type and size, and is provided as an open-source and easy-to-use
python module, GeneNet.

Keywords: Gene circuits, Machine learning, Numerical screens

Background
Biological networks – sets of carefully regulated and inter-
acting components – are essential for the proper function-
ing of biological systems [1, 2]. Networks coordinate
many different processes within a cell, facilitating a vast
array of complex cell behaviors that are robust to noise
yet highly sensitive to environmental cues. For example,
transcription factor networks program the differentiation
of cells into different cell types [3–5], orchestrate the pat-
terning of intricate structures during development [6, 7],
and allow cells to respond to dynamic and combinatorial
inputs from their external environment [8, 9]. In addition
to transcriptional regulation, many other processes form
biological networks, including protein-protein interactions

[10], post-translational modifications [11], phosphoryl-
ation [12] and metabolism [13, 14].
Understanding how these networks execute biological

functions is central to many areas of modern biology, in-
cluding cell biology, development and physiology. Whilst
the network components differ between these disci-
plines, the principles of network function are often re-
markably similar. This manifests itself as the recurrence
of common network designs (“network motifs”) in tran-
scriptional, metabolic, neuronal and even social net-
works [15–19]. For example, negative feedback is a
network design that achieves homeostasis and noise re-
silience, whether that be in the regulation of glucose
levels, body temperature [20], stem cell number [21], or
gene expression levels [22].
A major challenge to understand and ultimately engin-

eer biological networks is that they are complex dynam-
ical systems, and therefore difficult to predict and highly
non-intuitive [23]. Consequently, for anything other than

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Correspondence: twh27@cam.ac.uk
1Cancer Research UK, Cambridge Institute, Li Ka Shing Centre, Robinson Way,
Cambridge CB2 0RE, UK
2Wellcome Trust/Cancer Research UK Gurdon Institute, University of
Cambridge, Cambridge, UK

Hiscock BMC Bioinformatics (2019) 20:214
https://doi.org/10.1186/s12859-019-2788-3

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-019-2788-3&domain=pdf
http://orcid.org/0000-0002-0319-8679
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:twh27@cam.ac.uk

the simplest networks, verbal descriptions are insuffi-
cient, and we rely on computational models, combined
with quantitative data to make progress. For example,
after decades of genetics, biochemistry, quantitative mi-
croscopy and mathematical modeling, a fairly complete,
and predictive, description of Drosophila anterior-pos-
terior patterning is emerging [24–29].
Quantitative approaches have also proven useful in the

rational design of circuits for synthetic biology [30, 31]. If
we are to successfully engineer biological processes (e.g.
for the production of biomaterials, for use as biosensors in
synthetic biology, or for regenerative medicine [31, 32]),
then we need clear design principles to construct net-
works. This requires formal rules that determine which
components to use and how they should interact. Math-
ematical models, combined with an expanding molecular
biology toolkit, have enabled the construction of gene cir-
cuits that oscillate [33], have stable memory [34], or form
intricate spatial patterns [35].
One approach to analyze and design gene circuits is to

propose a network and, through computational analysis,
ask whether it (i) fits some observed data, or (ii) per-
forms some desired function; and if not, modify parame-
ters until it can. For example, Elowitz and Leibler [33]
proposed the repressilator circuit, used simulations to
show it should oscillate, and demonstrated its successful
operation in E. coli. This approach critically relies on
starting with a “good” network, i.e. one that is likely to
succeed. How do you choose a “good” network? In the
study of natural networks, this can be guided by what is
known mechanistically about the system (e.g. from chro-
matin immunoprecipitation sequencing data). However,
often the complete network is either unknown or too
complicated to model and therefore researchers must
make an educated guess for which parts of the network
are relevant. For synthetic circuits, one can emulate nat-
ural designs and/or use intuition and mathematical
modeling to guide network choice. In both cases, these
approaches start from a single network – either based
on some understanding of the mechanism, or on some
intuition of the researcher, or both – and then ask what
function this network performs. (Note, throughout we
use the term “function” to refer to two things: (1) some
real biological function, e.g. patterning the Drosophila
embryo, or (2) some engineered function in synthetic
biology, e.g. an oscillator circuit.)
Here we aim to do the exact opposite, namely to ask:

given a prescribed function, what network(s) can per-
form this function? Equivalently, this means considering
the most general network architecture possible (i.e. all
genes can activate/repress all other genes), and then de-
termining for what parameters (i.e. what strengths of ac-
tivation/repression) the network executes the desired
function. Such numerical screens have discovered a wide

range of interesting gene circuits, including: fold change
detectors [36], robust oscillators [37], stripe-forming
motifs [38], polarization generators [39], robust morpho-
gen patterning [40], networks that can adapt [41], gradi-
ents that scale [42] and biochemical timers [43].
These studies demonstrate that unbiased and compre-

hensive in silico screens of gene circuits can generate
novel and useful insights into circuit function. However,
the drawback of such an approach is that it is computa-
tionally expensive, and becomes prohibitively slow as the
network size is increased, due to the high dimensional
parameter spaces involved. For example, consider a gene
circuit consisting of N genes, where each gene can acti-
vate or repress any other gene. There are then N2 inter-
actions in this network, i.e. at least N2 parameters. It is
therefore challenging to scan through this high dimen-
sional parameter space to find parameter regimes where
the network performs well.
This motivates more efficient algorithms to search

through parameter space. One example is Monte Carlo
methods and their extensions, which randomly change
parameters and then enrich for changes that improve
network performance [44, 45]. Another approach that
has had great success is evolutionary algorithms [46].
Here, populations of gene circuits are ‘evolved’ in an
process that mimics natural selection in silico, whereby
at each step of the algorithm, there is (1) selection of the
‘fittest’ networks (those that best perform the desired
function), followed by (2) mutation / random changes to
the circuit parameters. Evolutionary algorithms have
been successfully used to design circuits that exhibit os-
cillations, bistability, biochemical adaptation and even
form developmental patterns [47–51].
Here we designed an alternative approach inspired by

gradient-descent algorithms, which underpin many of
the advances in modern machine learning. We find that
such approaches can significantly accelerate the compu-
tational screening of gene circuits, allowing for the de-
sign of larger circuits that can perform more complex
functions. In machine learning, complex models (typic-
ally ‘neural networks’) with a large number of parame-
ters (typically millions) are fit to data to perform some
prescribed function [52, 53]. For example, in computer
vision, this function could be to detect a human face in
a complex natural scene [54]. Many of the successes in
machine learning have been underpinned by advances in
the algorithms to fit parameters to data in high dimen-
sions. Central to these algorithms is the principle of
“gradient descent”, where instead of exhaustively screen-
ing parameter space, or randomly moving within it, pa-
rameters are changed in the direction that most
improves the model performance [55]. An analogy for
gradient descent is to imagine you are walking on a
mountain range in the fog and wish to descend quickly.

Hiscock BMC Bioinformatics (2019) 20:214 Page 2 of 13

An effective strategy is to walk in the direction of stee-
pest downhill, continuously changing direction as the
terrain varies, until you reach the base. Analogously, gra-
dient descent works by iteratively changing parameters
in the “steepest” direction with respect to improving
model performance.
A major challenge is to efficiently compute these di-

rections in high dimensions. This relies on being able to
differentiate the outputs of a complex model with re-
spect to its many parameters. A key advance in this re-
gard has been to perform differentiation automatically
using software packages such as Theano [56] and Ten-
sorflow [57]. Here, gradients are not calculated using
pen and paper, but instead algorithmically, and therefore
can be computed for models of arbitrary complexity.
We realized that training neural networks is in many

ways similar to designing biological circuits. Specifically,
we start with some prescribed function (or data), and we
then must fit a model with a large number of parameters
to perform the function (fit the data). We thus reasoned
that we could use exactly the same tools as in machine
learning to design gene circuits, namely advanced
gradient-descent, Adam [58], to fit parameters, and
automatic differentiation with Theano/Tensorflow to
calculate gradients. We found that such an approach
could effectively and rapidly generate circuits that per-
form a range of different functions, using a fairly simple
python module, “GeneNet”, which we make freely
available.

Results
Algorithm overview
We seek an algorithm that can robustly fit parameters of
complex gene circuits models. We start by considering a
simple, but generic model of a transcriptional gene cir-
cuit that has been well-studied across a range of bio-
logical contexts [26, 38, 59]. (Later, we will show that
our algorithm works just as well for different models).
The model comprises N transcription factors, whose
concentrations are represented by the N-component
vector, y. We assume that all interactions between genes
are possible; this is parameterized by a N x N matrix, W.
Thus each element Wij specifies how the transcription of
gene i is affected by gene j – if Wij is positive, then j acti-
vates i; if Wij is negative, then j inhibits i. We further as-
sume that each gene is degraded with rate ki. Together
this specifies an ordinary differential equation (ODE)
model of the network:

dyi
dt

¼ ϕ
X

j
W ijy j

� �
þ Ii−kiyi ð1Þ

Here, ϕ(x) is a nonlinear function, ensuring that tran-
scription rates are always positive, and saturate at high

levels of the input. The task of network design is thus to
find the parameters W and k such that the network
operates as desired, translating the input I to a specified
output.
To fit Eq. 1, we start with an analogy to neural net-

works. Neural networks are highly flexible models
with large numbers of parameters that are capable of
performing functions of arbitrary complexity [60],
whose parameters must be fit to ensure the network
performs some designed function. In fact, this corres-
pondence is more than an analogy if one considers
recurrent neural networks (RNNs) [61]. RNNs differ
from canonical feedforward neural networks, in that
connections between the nodes form a directed cycle,
allowing the representation of dynamic behavior (e.g.
the leaky-integrate-and-fire RNN model which is simi-
lar to Eq. 1). Therefore, we wondered whether the al-
gorithms used to fit RNNs could be straightforwardly
adapted to fit gene circuit parameters.
To do this, we start with the simplest example where

we wish the network to compute some input-output
function, y = f(x). In this case, we allow one of the genes
y1 ≡ x, to respond to external input, and examine the
output of another gene, yN ≡ y. We then define a “cost”,
C, which tracks how closely the actual output of the net-
work, y, matches the desired output of the network, ŷ .
First, this involves specifying what the desired output is;
as our first example, we consider the case where we
want the network output to respond in an ultrasensitive,
switch-like manner to the level of some input, x, i.e. y =
0 for x < x∗ and y = 1 for x > x∗, as in Fig. 1a. Then, we
choose the mean squared error as the form of our cost,

i.e. C ¼ P
xðyðxÞ−ŷðxÞÞ2.

The goal is then to find the parameters that minimize
this cost and therefore specify the network that best
gives the desired output. To do this rapidly and effi-
ciently in high dimensional parameter spaces, we use
gradient descent. In gradient descent, parameters, pi are
updated in the direction that maximally reduces the
cost, i.e. δpi ¼ −lr∂piC , where lr is the learning rate.
Intuitively, for a two-dimensional parameter set, this
corresponds to moving directly “downhill” on the cost
surface (Fig. 1a).
For classic gradient descent, the learning rate lr is set

to a constant value. However, this can present problems
when optimizing a highly complex cost function in high
dimensions. Intuitively, and as shown in Fig. 2, we would
like the learning rate to adapt as optimization proceeds
(and also to be different for each parameter). A more so-
phisticated version of gradient descent, Adaptive mo-
ment estimation, or Adam [58], has been established to
overcome these difficulties and is being widely used to
fit complex neural network models [62]. For this reason,
we choose Adam as our default optimization algorithm,

Hiscock BMC Bioinformatics (2019) 20:214 Page 3 of 13

which we will later show to be effective for the examples
considered in this manuscript.
Minimizing the cost is, in principle, exactly the same

whether training neural networks or screening gene cir-
cuits. The difference arises when computing the gradient
of the cost function with respect to the parameters. For
the algebraic equations in feedforward neural networks,
the computation is fairly straightforward and can be
written down explicitly. For a gene circuit ODE model,
however, this is much more difficult. One approach is to
estimate gradients using a finite difference procedure
[63, 64], in which you compare the model output when
each of the system parameters is changed by a small
amount. Alternatively, forward sensitivity analysis speci-
fies the time-evolution of the gradients as a set of
coupled ODEs. However, both these approaches scale
poorly as the number of parameters increases [63].
We realized that machine learning libraries, such as

Theano and Tensorflow, could provide a much faster
and more direct way of computing gradients, since they
permit automatic (or “algorithmic”) differentiation of
computer programs. Specifically, by implementing a sim-
ple differential equation solver in Theano/Tensorflow,

we can “differentiate” the solver in a single line of code
and thereby compute gradients rapidly, even in high di-
mensions. Moreover, whilst Eq. 1 resembles a neural net-
work model, this is not at all necessary. Rather, any
dynamics that can be specified algorithmically (in code)
can be accommodated. The general procedure is to write
an ODE solver/simulator for the model, in Theano/Ten-
sorflow code. Since the solver algorithm consists of
many elementary operations (addition, multiplication)
combined, each of which can be differentiated, then the
entire solver can be differentiated by automatically com-
bining these using the product and chain rule. Auto-
matic differentiation in Theano/Tensorflow is analogous
to calculating the adjoint state in adjoint sensitivity ana-
lysis [63], but with the advantage that it can be algorith-
mically calculated for any model.
Together, the gene network model, the cost func-

tion, and the gradient descent algorithm define a
procedure to design gene circuits (see Methods). We
first tested our pipeline by asking it to generate an
ultrasensitive switch, a circuit that is seen in vivo
[65], and has also been rationally engineered [66].
Indeed, we find that as we step through repeated

A

B C

Fig. 1 Overview of GeneNet. a The optimization algorithm consists of three parts: defining a cost function (left), updating parameters to minimize
the cost via gradient descent (middle), and analyzing the learned networks (right). b Regularization selects networks with varying degrees of
complexity. c Final design of an ultrasensitive switch. Upper: the final values of each of the three genes as a function of different levels of input.
Lower: time traces illustrating network dynamics for three representative values for the input level

Hiscock BMC Bioinformatics (2019) 20:214 Page 4 of 13

iterations of the gradient descent, we efficiently
minimize the cost function, and so generate parame-
ters of a gene network model that responds sensi-
tively to its input (Fig. 1a).
To train this circuit, we have used a sophisticated ver-

sion of gradient descent, Adam. Could a simpler algo-
rithm – namely classic gradient descent with constant
learning rate – also work? As shown in Fig. 2, we find
that we can generate ultrasensitive switches using classic

gradient descent, albeit more slowly and after some fine
tuning of the learning rate parameter. We emphasize
that, in contrast, Adam works well with default parame-
ters. Furthermore, we find that as we consider functions
of increasing complexity, classic gradient descent fails to
learn, whilst Adam still can. These results echo outputs
from the machine learning community, where Adam
(and other related algorithms) significantly outperforms
gradient descent [58].

A B

C

Fig. 2 Adam is an effective gradient descent algorithm for ODEs. a Using a constant learning rate in gradient descent creates difficulties in the
optimization process. If the learning rate is too low (upper schematic), the algorithm ‘gets stuck’ in plateau regions with a shallow gradient
(saddle points in high dimensions). If instead the learning rate is too high (lower schematic), important features are missed and/or the learning
algorithm won’t converge. b An adaptive learning rate substantially improves optimization (schematic). Intuitively, learning speeds up when
traversing a shallow, but consistent, gradient. c Cost minimization plotted against iteration number, comparing classic gradient descent (red) with
the Adam algorithm (blue). Left: an ultrasensitive switch. Right: a medium pass filter

Hiscock BMC Bioinformatics (2019) 20:214 Page 5 of 13

Whilst the network in Fig. 1a performs well, its main
drawback is that it is complicated and has many parame-
ters. Firstly, this makes it difficult to interpret exactly
what the network is doing, since it is not obvious which
interactions are critical for forming the switch. Secondly,
it would make engineering such a network more compli-
cated. Therefore, we modified the cost in an attempt to
simplify gene networks, inspired by the techniques of
“regularization” to simplify neural networks [61]. Specif-
ically, we find that if we add the L1 norm of the param-

eter sets to the cost, i.e. C ¼ P
xðyðxÞ−ŷðxÞÞ2 þ λ

P
pi
jpij

, we can simplify networks without significantly com-

promising their performance. Intuitively, the extra term
penalizes models that have many non-zero parameters,
i.e. more complex models [67]. By varying the strength
of the regularization, λ, we find networks of varying de-
grees of complexity (Fig. 1b).
The final output of our algorithm is a simplified gene

network that defines a dynamical system whose response
is a switch-like function of its inputs (Fig. 1c). Therefore,
we have demonstrated that machine-learning algorithms
can successfully train gene networks to perform a cer-
tain task. In the remainder of this work, we show the
utility of our pipeline by designing more realistic and
complex biological circuits.

Applications
First, we consider three design objectives for which there
already exist known networks, so that we can be sure
our algorithm is working well. We find that we can rap-
idly and efficiently design gene circuits for each of the
three objectives by modifying just a few lines of code
that specify the objective, and without changing any de-
tails or parameters of the learning algorithm. Further, we
can screen for functional circuits within several minutes
of compute time on a laptop. In each case, the learned
network is broadly similar to the networks described
previously, lending support to our algorithm.

French-flag circuit
The first design objective is motivated from the
French-Flag model of patterning in developmental biol-
ogy [68]. Here, a stripe of gene expression must be posi-
tioned at some location within a tissue or embryo, in
response to the level of some input. This input is typic-
ally a secreted molecule, or “morphogen”, which is pro-
duced at one location, and forms a gradient across the
tissue. In order to form a stripe, cells must then respond
to intermediate levels of the input. To identify gene cir-
cuits capable of forming stripes, we ran our algorithm
using the desired final state as shown in Fig. 3a. The al-
gorithm converges on a fairly simple network, where the

input directly represses, and indirectly activates, the out-
put, thus responding at intermediate levels of the input
(Fig. 3a). Exactly the same network was described in a
large-scale screen of stripe-forming motifs [38], and has
been observed in early Drosophila patterning [69], sug-
gesting that our learned design may be a common
strategy.

Pulse detection
In our second example, we consider a more complicated
type of input, namely pulses of varying duration. In many
cases, cells respond not just to the level of some input, but
also to the duration [70, 71]. We sought a circuit design to
measure duration, such that once an input exceeding a
critical duration is received, the output is irreversibly acti-
vated (Fig. 3b). As before, by changing a few lines of code,
and within a few minutes of laptop compute time, we can
efficiently design such a circuit (Fig. 3b). This circuit
shares features (such as double inhibition and positive
feedback) with networks identified in a comprehensive
screen of duration detection motifs [43].

Oscillator
Our third example takes a somewhat different flavor,
where instead of training a network to perform a specific
input/output function, we train a network to
self-generate a certain dynamical pattern – oscillations
[72, 73]. In this case, the cost is not just dependent on
the final state, but on the entire dynamics, and is imple-
mented by the equation C = ∑t(y(t) −A cos(ωt))2, where
A is the amplitude and ω the frequency of the oscillator.
Minimizing this cost yields a network that gives sus-
tained oscillations, and is reminiscent of the repressilator
network motif that first demonstrated synthetic oscilla-
tions [33]. Interestingly, when plotting how the cost
changed in the minimization algorithm, we saw a pre-
cipitous drop at a certain point (Additional file 1: Figure
S1), demonstrating visually the transition through a bi-
furcation to produce oscillations.

Extensions
Networks of increased size
To illustrate the scalability of GeneNet, we considered
larger networks (up to 9 nodes, with 81 parameters)
and asked whether they could also be successfully
screened. As shown in Fig. 4a, we find that the me-
dian number of iterations required to train a French
Flag circuit is largely insensitive to the network size,
demonstrating that GeneNet is scalable to models of
increased complexity.

More complex / realistic ODE models
Whilst Equation 1 is a good description for transcrip-
tional gene circuits [38], we asked whether different

Hiscock BMC Bioinformatics (2019) 20:214 Page 6 of 13

molecular interactions and model complexities could be in-
corporated into our pipeline. One simple extension is to
allow pairs of molecules to bind, facilitating their degrad-
ation; this has been shown to be useful when evolving oscil-
lator circuits in silico [48]. To include dimerization-based
decay, we modified Eq. 1 to the following:

dyi
dt

¼ ϕ
X

j
W ijy j

� �
−kiyi−Γ ijyiy j ð2Þ

Here, Γij is a symmetric matrix that represents the
degradation rates of each dimer pair possible. We find
that, without modifying the optimization algorithm,
we can train this more complicated gene circuit
model; an example output for training an oscillator is
shown in Fig. 4b.
Another possibility is that the additive input model

specified in Eq. 1 must be extended, since gene circuits
often rely on the coincidence of multiple independent
events. Therefore, we considered a rather different type
of circuit, built of multiple, independent repressors. In
this case, circuit dynamics are described by a product of
Hill functions:

dyi
dt

¼
Y

j

1

1þ Wijy j
� �n þ Ii−kiyi ð3Þ

where we set the Hill coefficient, n, to be 3. Again, with-
out modifying neither the structure nor the parameters

of the learning algorithm, GeneNet is capable of design-
ing a co-operative, repressor-only medium pass (French
Flag) circuit (Fig. 4c).
Together, these results suggest that GeneNet can be

straightforwardly adapted to work on a range of different
biological models.

Alternative cost functions
The final extension we consider is the form of the cost
function. We have so far focused on the mean squared
error as our measure of the model’s goodness-of-fit.
However, there are other options, and work from the
field of evolutionary algorithms suggests that the choice
of cost function can have an impact on the efficacy of
circuit design [46]. To determine if GeneNet can be
modified to work with different cost functions, we
trained a switch-like circuit using the negative
cross-entropy cost function, commonly used in image
classification problems. Again, without changing the
optimization algorithm, we can efficiently learn circuit
parameters (Fig. 4d).

Comparison to other algorithms
As outlined in the introduction, there are several other
methods for in silico circuit design, including: (1) com-
prehensive enumeration of circuit parameters / topolo-
gies; and (2) evolutionary algorithms. How does our
method compare?

A

B

C

Fig. 3 Using GeneNet to learn gene circuits. a A French-Flag circuit responds to intermediate levels of input to generate a stripe. The red node
corresponds to the output gene, and the blue node the input. b A “duration-detector” which is irreversibly activated when stimulated by pulses
exceeding a certain critical duration. As above, the red node corresponds to the output gene, and the blue node the input. c An oscillator

Hiscock BMC Bioinformatics (2019) 20:214 Page 7 of 13

Firstly, it is worth noting that there are key shared fea-
tures. For each approach, one defines: (1) an ODE-based
model of a gene circuit, and (2) a cost function that se-
lects networks to execute a specific function. Therefore,
these methods can be used somewhat interchangeably.
However, differences arise in exactly how the algorithms
select the networks with high performance.
Comprehensive screens consider all possible parame-

ters and then identify those that (globally) minimize the
cost. The advantage of an exhaustive screen is that one

can be certain to find the global optimal solution; how-
ever, this comes with the drawback of being computa-
tionally expensive, and prohibitively slow for larger gene
circuits.
In contrast, evolutionary algorithms iteratively im-

prove circuit performance by randomly mutating param-
eters across a population of circuits, and retaining
circuits with the highest cost. This approach can gener-
ate functioning circuits with fewer computations than a
comprehensive screen, and has the added advantage of

A

B

D E

C

Fig. 4 Performance and generality of GeneNet. a Scalability of GeneNet. Left: schematic of N(C) – the number of iterations required to reach a
given network performance. Right: For the same desired circuit function as in Figure 3A, we train networks of varying sizes and provide a boxplot
of the number of iterations required to achieve a cost, C = 0.4. The median is roughly constant. b Example output after training a 2-node network
oscillator using the equation provided. c Example output, and circuit, after training a 3-node French Flag circuit using the independent repressor
circuit. d A switch-like network is learned by minimizing the negative cross-entropy function. e Comparing computational efficiencies of different
circuit design algorithms: GeneNet, evolutionary algorithms and comprehensive enumeration. Each algorithm is run 10 times; the shaded area
corresponds to the mean ± standard deviation of the cost value. We see that the cost is rapidly, and reproducibly minimized by GeneNet

Hiscock BMC Bioinformatics (2019) 20:214 Page 8 of 13

providing some insight into how gene circuits might
evolve during natural selection.
GeneNet is neither exhaustive, nor does it provide an

insight into the evolvability of gene circuits. However, its
key advantage is speed; in particular, its excellent scal-
ability to larger networks (Fig. 4a) and thus a capacity to
train circuits to execute more complicated functions.
We performed a side-by-side comparison in training a
French Flag circuit for each of the three approaches
(comprehensive screens, evolutionary algorithms and
GeneNet) and, consistent with our expectation, see that
GeneNet significantly outperforms the other two in
terms of speed (Fig. 4e). To demonstrate the real utility
of our approach, we end by considering a more compli-
cated design objective.

A more complex circuit: a robust biological
counter
In our final example, we attempt a more ambitious de-
sign– a biological counter – to demonstrate that Gene-
Net can also design circuits to perform more complex
computations and functions. Whilst counters are found
in some biological systems (such as in telomere length
regulation [74]), we focus our aim on designing a coun-
ter for synthetic biology. There are numerous applica-
tions for such counters, two of which are: (1) a safety
mechanism programming cell death after a specified
number of cell cycles, (2) biosensors that non-invasively
count the frequency of certain stimuli, particularly low
frequency events [75].
We consider an analog counter, where we wish some

input set of pulses to result in an output equal (or pro-
portional) to the number of pulses (Fig. 5a). For ex-
ample, the “input” here could be the level of a cell cycle
related protein to count divisions [76]. As is shown in
Fig. 5b, the simplest way to count would be simply to in-
tegrate over time the levels of the input. One implemen-
tation of this used an analog memory device driven by
CRISPR mutagenesis [77], i.e. when the stimulus is
present, Cas9 is active and mutations arise. However, a
major shortcoming of such a circuit is that it is unreli-
able and sensitive to variations in pulse amplitude and
duration that are often present (Fig. 5b).
Therefore, we sought to systematically design a novel

gene circuit to count pulses that would be robust to
their amplitude and duration. To do this, we provided a
complex ensemble of input stimuli, each containing a
different number of pulses, of varying amplitudes and
durations. For each input we then defined the desired
output to be equal to the number of pulses present, and
trained the network to minimize the mean squared error
cost, as before.
Strikingly, this procedure uncovers a network that is

highly robust in counting pulse number (Fig. 5c).

Looking more deeply into the network, we see that it
has learned a very interesting way to count, with two
key ingredients. Firstly, it acts as an “off-detector”. Spe-
cifically, examining the dynamic time traces reveals that
the network responds after the pulse has occurred, as it
turns off. Mechanistically, when the input increases, this
allows build up of the purple node and repression of
the orange node. However, activation of the down-
stream green node is only possible once the input
pulse has ended, and the repression from the purple
node has been alleviated. In this way, the circuit re-
sponds to the termination of the pulse, and is thus
robust to its duration.
Secondly, the network uses “digital encoding” to be ro-

bust to the level of the input. This is achieved by having
the green node undergo an “excitable pulse” of stereo-
typed amplitude and duration, which is then integrated
over time by the red node to complete the counter. By
using “digital” pulses of activity with an excitable system,
the circuit is therefore insensitive to the precise levels of
the input. Together, this forms a circuit that reliably
counts despite large variations in input stimulus.
We emphasize that these behaviors have not been

hard-coded by rational design, but rather have emerged
when training the network to perform a complex task.
This example therefore shows that a more challenging
design objective can be straightforwardly accommodated
into our gene network framework, and that it is possible
to learn rather unexpected and complex designs.

Discussion
By combining ODE-based models of gene networks with
the optimization methods of machine learning, we present
an approach to efficiently design gene circuits. Whilst we
have focused on gene networks and transcriptional regula-
tion as a proof of principle, our algorithm is rather general
and could easily be extended to learn other networks,
such as phosphorylation, protein-protein interaction and
metabolic networks, so long as they are described by or-
dinary differential equations. Further, whilst the networks
we have focused on are relatively small and have been
trained on a personal laptop, our Theano/Tensorflow
pipelines can be easily adapted to run much faster on
GPUs, and therefore we expect that large networks could
also be trained effectively [56].
Our approach could also be extended to incorporate

other types of differential equation, such as partial differ-
ential equations. This would allow us to understand how
networks operate in a spatial, multicellular context,
throughout an entire tissue, and thus provide useful in-
sights into how different structures and patterns are
formed during development [32]. Other extensions would
be to use real data as inputs to the learning algorithm, in

Hiscock BMC Bioinformatics (2019) 20:214 Page 9 of 13

which case more sophisticated algorithms would be re-
quired to deal with parameter uncertainty [78, 79].
One drawback of our approach is that it selects only a

single gene circuit out of many, and thus may ignore al-
ternative circuits that may also be useful or relevant. A
natural extension would therefore be to combine the
speed of GeneNet’s parameter optimization with a com-
prehensive enumeration of different network topologies,
thus generating a complete ‘atlas’ of gene circuits [38].
Finally, one concern with machine learning methods is

that the intuition behind the models is hidden within a
“black box” and opaque to researchers, i.e. the machine,
not the researcher, learns. We would like to offer a
slightly different perspective. Instead of replacing the re-
searcher, our algorithm acts as a highly efficient way to
screen models. In this sense, one shouldn’t view it as a

tool to solve problems, but rather as an efficient way to
generate new hypotheses. The role of the scientist is
then to: (1) cleverly design the screen (i.e. the cost) such
that the algorithm can effectively learn the desired func-
tion, and (2) to carefully analyze the learned circuits and
the extent to which they recapitulate natural phenom-
ena. The distinct advantage of our approach over neural
networks is that we learn real biological models – gene
circuits – which are both directly interpretable as mech-
anism, and provide specific assembly instructions for
synthetic circuits.

Conclusions
In this work, we have developed an algorithm to learn
gene circuits that perform complex tasks (e.g. count
pulses), compute arbitrary functions (e.g. detect pulses

A B

C

Fig. 5 Designing a robust biological counter using GeneNet. a Desired input/output function of a robust biological counter. b Simply integrating
the input over time yields an analog counter with significant error, as shown by the spread in the input/output function (upper) and the relative
errors between the two (lower). c GeneNet learns an “off-detector” network (left), with substantially reduced error rates (right). Inspection of gene
dynamics (middle) shows that an excitable “digital” pulse of green activity is initiated at the end of the input pulse (shaded blue line)

Hiscock BMC Bioinformatics (2019) 20:214 Page 10 of 13

of a certain duration) or resemble some real bio-
logical phenomenon (e.g. a French-flag circuit). We
have demonstrated that these networks can be trained
efficiently on a personal laptop, and require neither
fine-tuning of algorithm parameters nor extensive
coding to adapt to different network designs. This
ease-of-use means that researchers addressing ques-
tions in basic biology can quickly generate models
and hypotheses to explain their data, without invest-
ing a lot of time carefully building and simulating
specific models. Equally, our approach should also
allow synthetic biologists to rapidly generate circuit
designs for a variety of purposes.

Methods
Gene network model
We considered the following set of coupled ODEs as our
gene circuit model, motivated by [26, 27, 38]:

dyi
dt

¼ ki ϕ
X

j
W ijy j

� �
þ Ii−yi

� �

Here, yi denotes the concentration of gene i, where i = 1
…N for an N-node network. Wij is a matrix correspond to
network weights: Wij > 0 means that gene i activates gene
j, and Wij < 0 means that gene i represses gene j. ki is a
vector that represents the (assumed linear) degradation of
gene i. Ii is the prescribed input to the system, which we
assume directly causes transcription of gene i. The func-
tion ϕ is a nonlinearity chosen such that the gene network
saturates; we choose ϕ(x) = 1/(exp(x) − 1), as in [38]. y0i
represent the initial conditions of the system. Note, this is
a non-dimensionalized version of Eq. 1, whereby gene
concentrations are normalized to their maximal level.
Note, also, that we add further terms for Fig. 4b and c as
discussed in the text.

Algorithm details
We coded the algorithm using python v2.7.5, and the
machine-learning library, Theano v0.8.2, which performs
static optimizations for speed and permits automatic dif-
ferentiation. (We also provide an implementation on
Tensorflow).
The key steps in the algorithm are:

1. Define an ODE solver

We choose a simple Euler integration method,
whereby the differential equation _y ¼ f ðy; tÞ is solved it-
eratively: yn + 1 = yn + f(yn, tn)δt. We set δt = 0.01. We im-
plement the solver using the theano.scan feature, which
optimizes the computation of loops. Note, that it is
straightforward to implement other solvers, e.g. stiff
solvers or adaptive sizes.

2. Define the desired function of the network

This consists of two items: (1) a collection of differ-
ent inputs to train the network on, and (2) for each
input, a desired output. For example, in Fig. 3b, we
must include inputs of varying durations, and a func-
tion that computes whether the pulse exceeds some
critical duration. The input can be static in time (as
in Fig. 2a), dynamic in time (as in Fig. 3b) or zero (as
in Fig. 3c). The desired output can be the final state
of the network (as in Fig. 3b), or the complete time
dynamics of the network (Fig. 3c). See Additional file
2: Table S1 for further details.

3. Define the cost to be minimized

As discussed in the main text, we use the mean
squared error as the cost. Since we are often not
concerned with absolute levels of any gene, but ra-
ther the relative levels, we modify the cost such that
the network output can be rescaled by a factor A,
which is a learnable parameter, i.e. y→ Ay. For
regularization, we add a term λ∑i, j|Wij| to the cost,
with the aim of simplifying the network matrix Wij.

4. Define the parameters that are to be fit

For all simulations, we fit the network weights, Wij to
the data. For Figs. 1, 3a, b, we do not allow ki to change,
and instead set ki = 1. For Figs. 3c and 4c, we use the ki
as learnable parameters. For Fig. 3c, we must allow the
initial conditions of the network to be learned, such that
the oscillator has the correct phase.

5. Define the optimization algorithm

We use the Adam optimizer [58] with parameters
lr = 0.1, b1 = 0.02, b2 = 0.001, e = 10−8 in all cases.

6. Initialize the model parameters

We set ki to be one and the network weights to be a
normally distributed random number with mean zero
and standard deviation 0.1. Initial conditions (except for
Fig 3c) are set as y0i ¼ 0:1.

7. Train the network

We iteratively perform the optimization procedure to
update parameters, initially setting λ = 0. At each step,
we train the network using a subset of total input/output
data, using a “batch” of B input/output pairs. The idea is
that batching the data in this way adds stochasticity to
the optimization and therefore avoids local minima.

Hiscock BMC Bioinformatics (2019) 20:214 Page 11 of 13

8. Regularize the network

Once a network has been trained, we now regularize it
by increasing λ and re-implementing the optimization
procedure. A range of different λ values is used until a
network of desired complexity is achieved.

9. “Prune” the network

In the final step, we retrain a simplified network. Spe-
cifically, starting from the regularized network, we set
any small network weights to be exactly zero, i.e.

W ðpruneÞ
i j ¼ 0 ∀i; j : Wij < ϵ , and then optimize over

the remaining weights, using λ = 0.

10. Save parameters

See Additional file 2: Table S1 for the parameter values
for the networks learned.

Implementation details
Networks were designed was performed on a Macbook
air, 1.3GHz Intel Core i5, with 8GB 1600 MHz DDR3
RAM. We repeated the learning algorithm for each of
the designs in the paper several times, with different
regularization levels λ, and found similar, or often identi-
cal, network topologies to be learned in each case. In the
figures we report a representative network, where λ has
been chosen manually to give a minimal network that
still performs the function well.
Additional file 2: Table S2 gives details of the algo-

rithm implementation specific to the networks learned.
For the comparative and extension studies in Fig. 4, we

developed a TensorFlow implementation of an evolution-
ary algorithm and compared its speed to the Tensorflow
implementation of GeneNet, using the same cost function.
We repeated this for a Tensorflow implementation of a
comprehensive screen, for which we randomly sample pa-
rameters and retain the (global) minimum cost value.
These were performed on a MacBook Pro, 2.7 GHz Intel
Core i5, with 8 GB 1867MHz DDR3 RAM.

Additional files

Additional file 1: Figure S1. Cost minimization. Example traces of the
cost minimization during the optimization procedure. Note, in all cases
(and particularly in the oscillator), there are sharp drop-offs in cost, which
are likely reflecting bifurcation points in the dynamics. (PDF 177 kb)

Additional file 2: Table S1. Parameter values for networks learned in
the main text. Table S2. Algorithm implementation parameters. Table S3.
Speed tests. (DOCX 70 kb)

Abbreviations
Adam: Adaptive moment estimation; ODE: Ordinary differential equation;
RNN: Recurrent neural network

Acknowledgements
I thank John Ingraham for inspiring this project over breakfast and dinnertime
conversations, and for his enthusiasm and generosity in teaching me machine
learning. I thank Sean Megason for advice and mentoring.

Funding
This work was supported by an EMBO Long-term fellowship, ALTF 606–2018.
This funding source did not play any role in study design, data collection/
analysis, or manuscript preparation.

Availability of data and materials
GeneNet (Theano and Tensorflow versions) is available on github: “https://
github.com/twhiscock/GeneNet-”.

Author’s contributions
TWH designed and performed the research, and wrote the paper. The author
read and approved the final manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The author declares that he has no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Received: 18 March 2019 Accepted: 2 April 2019

References
1. Barabasi AL, Oltvai ZN. Network biology: understanding the cell's functional

organization. Nat Rev Genet. 2004;5(2):101–13.
2. Zhu X, Gerstein M, Snyder M. Getting connected: analysis and principles of

biological networks. Genes Dev. 2007;21(9):1010–24.
3. Goode DK, et al. Dynamic gene regulatory networks drive hematopoietic

specification and differentiation. Dev Cell. 2016;36(5):572–87.
4. Plath K, Lowry WE. Progress in understanding reprogramming to the

induced pluripotent state. Nat Rev Genet. 2011;12(4):253–65.
5. Cahan P, et al. CellNet: network biology applied to stem cell engineering.

Cell. 2014;158(4):903–15.
6. Davidson EH. Emerging properties of animal gene regulatory networks.

Nature. 2010;468(7326):911–20.
7. Rhee DY, et al. Transcription factor networks in Drosophila melanogaster.

Cell Rep. 2014;8(6):2031–43.
8. Lopez-Maury L, Marguerat S, Bahler J. Tuning gene expression to changing

environments: from rapid responses to evolutionary adaptation. Nat Rev
Genet. 2008;9(8):583–93.

9. Mangan S, Alon U. Structure and function of the feed-forward loop network
motif. Proc Natl Acad Sci U S A. 2003;100(21):11980–5.

10. Stelzl U, et al. A human protein-protein interaction network: a resource for
annotating the proteome. Cell. 2005;122(6):957–68.

11. Minguez P, et al. Deciphering a global network of functionally associated
post-translational modifications. Mol Syst Biol. 2012;8:599.

12. Linding R, et al. Systematic discovery of in vivo phosphorylation networks.
Cell. 2007;129(7):1415–26.

13. Jeong H, et al. The large-scale organization of metabolic networks. Nature.
2000;407(6804):651–4.

14. Fiehn O. Combining genomics, metabolome analysis, and biochemical
modelling to understand metabolic networks. Comp Funct Genomics. 2001;
2(3):155–68.

15. Alon U. Network motifs: theory and experimental approaches. Nat Rev
Genet. 2007;8(6):450–61.

16. Alon U. Biological networks: the tinkerer as an engineer. Science. 2003;
301(5641):1866–7.

17. Shen-Orr SS, et al. Network motifs in the transcriptional regulation network
of Escherichia coli. Nat Genet. 2002;31(1):64–8.

Hiscock BMC Bioinformatics (2019) 20:214 Page 12 of 13

https://doi.org/10.1186/s12859-019-2788-3
https://doi.org/10.1186/s12859-019-2788-3
https://github.com/twhiscock/GeneNet-
https://github.com/twhiscock/GeneNet-

18. Milo R, et al. Network motifs: simple building blocks of complex networks.
Science. 2002;298(5594):824–7.

19. Rosenfeld N, Elowitz MB, Alon U. Negative autoregulation speeds the
response times of transcription networks. J Mol Biol. 2002;323(5):785–93.

20. Simon E, Pierau FK, Taylor DC. Central and peripheral thermal control of
effectors in homeothermic temperature regulation. Physiol Rev. 1986;66(2):
235–300.

21. Shraiman BI. Mechanical feedback as a possible regulator of tissue growth.
Proc Natl Acad Sci U S A. 2005;102(9):3318–23.

22. Lestas I, Vinnicombe G, Paulsson J. Fundamental limits on the suppression
of molecular fluctuations. Nature. 2010;467(7312):174–8.

23. Alon U. An Introduction to Systems Biology: Design Principles of Biological
Circuits. Chapman & Hall/CRC; 2006.

24. Fowlkes CC, et al. A quantitative spatiotemporal atlas of gene expression in
the Drosophila blastoderm. Cell. 2008;133(2):364–74.

25. Gregor T, et al. Stability and nuclear dynamics of the bicoid morphogen
gradient. Cell. 2007;130(1):141–52.

26. Jaeger J, et al. Dynamical analysis of regulatory interactions in the gap gene
system of Drosophila melanogaster. Genetics. 2004;167(4):1721–37.

27. Jaeger J, et al. Dynamic control of positional information in the early
Drosophila embryo. Nature. 2004;430(6997):368–71.

28. Manu, et al. Canalization of gene expression in the Drosophila blastoderm
by gap gene cross regulation. PLoS Biol. 2009;7(3):e1000049.

29. Manu, et al. Canalization of gene expression and domain shifts in the
Drosophila blastoderm by dynamical attractors. PLoS Comput Biol. 2009;5(3):
e1000303.

30. Mukherji S, van Oudenaarden A. Synthetic biology: understanding biological
design from synthetic circuits. Nat Rev Genet. 2009;10(12):859–71.

31. Khalil AS, Collins JJ. Synthetic biology: applications come of age. Nat Rev
Genet. 2010;11(5):367–79.

32. Davies J. Using synthetic biology to explore principles of development.
Development. 2017;144(7):1146–58.

33. Elowitz MB, Leibler S. A synthetic oscillatory network of transcriptional
regulators. Nature. 2000;403(6767):335–8.

34. Gardner TS, Cantor CR, Collins JJ. Construction of a genetic toggle switch in
Escherichia coli. Nature. 2000;403(6767):339–42.

35. Liu C, et al. Sequential establishment of stripe patterns in an expanding cell
population. Science. 2011;334(6053):238–41.

36. Adler M, et al. Optimal regulatory circuit topologies for fold-change
detection. Cell Syst. 2017;4(2):171–181 e8.

37. Li Z, Liu S, Yang Q. Incoherent inputs enhance the robustness of biological
oscillators. Cell Syst. 2017;5(1):72–81 e4.

38. Cotterell J, Sharpe J. An atlas of gene regulatory networks reveals multiple
three-gene mechanisms for interpreting morphogen gradients. Mol Syst
Biol. 2010;6:425.

39. Chau AH, et al. Designing synthetic regulatory networks capable of self-
organizing cell polarization. Cell. 2012;151(2):320–32.

40. Eldar A, et al. Robustness of the BMP morphogen gradient in Drosophila
embryonic patterning. Nature. 2002;419(6904):304–8.

41. Ma W, et al. Defining network topologies that can achieve biochemical
adaptation. Cell. 2009;138(4):760–73.

42. Ben-Zvi D, et al. Scaling of the BMP activation gradient in Xenopus
embryos. Nature. 2008;453(7199):1205–11.

43. Gerardin, J. and W.A. Lim, The design principles of biochemical timers:
circuits that discriminate between transient and sustained stimulation.
biorxiv preprint https://doi.org/10.1101/100651, 2017.

44. Perkins TJ, et al. Reverse engineering the gap gene network of Drosophila
melanogaster. PLoS Comput Biol. 2006;2(5):e51.

45. Crombach A, et al. Efficient reverse-engineering of a developmental gene
regulatory network. PLoS Comput Biol. 2012;8(7):e1002589.

46. Francois P. Evolving phenotypic networks in silico. Semin Cell Dev Biol.
2014;35:90–7.

47. Francois P, Siggia ED. A case study of evolutionary computation of
biochemical adaptation. Phys Biol. 2008;5(2):026009.

48. Francois P, Hakim V. Design of genetic networks with specified functions by
evolution in silico. Proc Natl Acad Sci U S A. 2004;101(2):580–5.

49. Francois P, Hakim V, Siggia ED. Deriving structure from evolution: metazoan
segmentation. Mol Syst Biol. 2007;3:154.

50. Noman N, et al. Evolving robust gene regulatory networks. PLoS One. 2015;
10(1):e0116258.

51. Smith RW, van Sluijs B, Fleck C. Designing synthetic networks in silico: a
generalised evolutionary algorithm approach. BMC Syst Biol. 2017;11(1):118.

52. Hinton GE, Salakhutdinov RR. Reducing the dimensionality of data with
neural networks. Science. 2006;313(5786):504–7.

53. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–44.
54. Li H, Lin Z, Shen X, Brandt J, Hua G. A convolutional neural network cascade

for face detection. In: Proceedings of the IEEE conference on computer
vision and pattern recognition; 2015. p. 5325–34.

55. Amari S-i. Backpropagation and stochastic gradient descent method.
Neurocomputing. 1993;5(4):185–96.

56. Bergstra J, et al. Theano: a CPU and GPU math compiler in Python. In: Proc.
9th Python in Science Conf. 2010;1:3–10.

57. Abadi, M., et al., Tensorflow: Large-scale machine learning on
heterogeneous distributed systems. arXiv preprint arXiv:1603.04467, 2016.

58. Kingma, D. and J. Ba, Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

59. Molinelli EJ, et al. Perturbation biology: inferring signaling networks in
cellular systems. PLoS Comput Biol. 2013;9(12):e1003290.

60. Hornik K, Stinchcombe M, White H. Multilayer feedforward networks are
universal approximators. Neural Netw. 1989;2(5):359–66.

61. Goodfellow I, Bengio Y, Courville A. Deep learning. MIT Press; 2016. https://
www.deeplearningbook.org/.

62. Ruder, S., An overview of gradient descent optimization algorithms. arXiv:
1609.04747, 2016.

63. Frohlich F, et al. Scalable parameter estimation for genome-scale
biochemical reaction networks. PLoS Comput Biol. 2017;13(1):e1005331.

64. Uzkudun M, Marcon L, Sharpe J. Data-driven modelling of a gene regulatory
network for cell fate decisions in the growing limb bud. Mol Syst Biol. 2015;
11(7):815.

65. Tyson JJ, Chen KC, Novak B. Sniffers, buzzers, toggles and blinkers: dynamics
of regulatory and signaling pathways in the cell. Curr Opin Cell Biol. 2003;
15(2):221–31.

66. Palani S, Sarkar CA. Synthetic conversion of a graded receptor signal into a
tunable, reversible switch. Mol Syst Biol. 2011;7:480.

67. Brunton SL, Proctor JL, Kutz JN. Discovering governing equations from data
by sparse identification of nonlinear dynamical systems. Proc Natl Acad Sci
U S A. 2016;113(15):3932–7.

68. Wolpert L. Positional information and the spatial pattern of cellular
differentiation. J Theor Biol. 1969;25(1):1–47.

69. Clyde DE, et al. A self-organizing system of repressor gradients establishes
segmental complexity in Drosophila. Nature. 2003;426(6968):849–53.

70. Hopfield JJ. Kinetic proofreading: a new mechanism for reducing errors in
biosynthetic processes requiring high specificity. Proc Natl Acad Sci. 1974;
71(10):4135–9.

71. Mangan S, Zaslaver A, Alon U. The coherent feedforward loop serves as a
sign-sensitive delay element in transcription networks. J Mol Biol. 2003;
334(2):197–204.

72. Novak B, Tyson JJ. Design principles of biochemical oscillators. Nat Rev Mol
Cell Biol. 2008;9(12):981–91.

73. Stricker J, et al. A fast, robust and tunable synthetic gene oscillator. Nature.
2008;456(7221):516–9.

74. Marcand S, Gilson E, Shore D. A protein-counting mechanism for telomere
length regulation in yeast. Science. 1997;275(5302):986–90.

75. Friedland AE, et al. Synthetic gene networks that count. Science. 2009;
324(5931):1199–202.

76. Slomovic S, Pardee K, Collins JJ. Synthetic biology devices for in vitro and in
vivo diagnostics. Proc Natl Acad Sci U S A. 2015;112(47):14429–35.

77. Perli SD, Cui CH, Lu TK. Continuous genetic recording with self-targeting
CRISPR-Cas in human cells. Science. 2016;353(6304):aag0511.

78. Liepe J, et al. A framework for parameter estimation and model selection
from experimental data in systems biology using approximate Bayesian
computation. Nat Protoc. 2014;9(2):439–56.

79. Calderhead B, Girolami M, Lawrence ND. Accelerating Bayesian inference
over nonlinear differential equations with Gaussian processes. Adv Neural
Inf Proces Syst. 2009;21:217–24.

Hiscock BMC Bioinformatics (2019) 20:214 Page 13 of 13

https://doi.org/10.1101/100651
https://www.deeplearningbook.org/
https://www.deeplearningbook.org/

	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Algorithm overview

	Applications
	French-flag circuit
	Pulse detection
	Oscillator

	Extensions
	Networks of increased size
	More complex / realistic ODE models
	Alternative cost functions

	Comparison to other algorithms
	A more complex circuit: a robust biological counter
	Discussion
	Conclusions
	Methods
	Gene network model
	Algorithm details
	Implementation details

	Additional files
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Author’s contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	References

