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Abstract

Background: Single cell RNA sequencing (scRNA-seq) is applied to assay the individual transcriptomes of large
numbers of cells. The gene expression at single-cell level provides an opportunity for better understanding of cell
function and new discoveries in biomedical areas. To ensure that the single-cell based gene expression data are
interpreted appropriately, it is crucial to develop new computational methods.

Results: In this article, we try to re-construct a neural network based on Gene Ontology (GO) for dimension reduction
of scRNA-seq data. By integrating GO with both unsupervised and supervised models, two novel methods are
proposed, named GOAE (Gene Ontology AutoEncoder) and GONN (Gene Ontology Neural Network) respectively.

Conclusions: The evaluation results show that the proposed models outperform some state-of-the-art
dimensionality reduction approaches. Furthermore, incorporating with GO, we provide an opportunity to interpret
the underlying biological mechanism behind the neural network-based model.
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Background
In the past decade, transcriptome studies have bene-
fited from next-generation sequencing (NGS) based on
RNA expression profiling (RNA-seq) [1–3]. However, the
resulting expression value based on bulk RNA-seq is an
average of its expression levels across a large popula-
tion of input cells [4]. Such bulk expression profiles are
insufficient to provide insight into the stochastic nature
of gene expression [5]. Therefore, bulk measures of gene
expression may not help researchers to understand the
distinct function and role of different cells [4]. To address
the problem, single cell RNA-seq (scRNA-seq) is applied
to assay the individual transcriptomes of large numbers
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of cells [6, 7]. The gene expression at single-cell level
provides an opportunity for better understanding of cell
function and new discoveries in biomedical areas [8, 9].

ScRNA-seq data analysis poses several new computa-
tional challenges. To ensure that the single-cell based gene
expression data are interpreted appropriately, it is crucial
to develop new computational methods. One of the most
important applications of scRNA-seq is to group cells and
identify new cell types. The major computational chal-
lenge in this application is to cluster cells based on the
gene expression at single-cell level. Clustering based on
scRNA-seq data may help us to understand underlying
cellular mechanisms, which can promote the discovery of
new markers on specific types of cells [10], and identifica-
tion of tumor subtypes [11], etc.

In the clustering problem, cells are partitioned into
different cell types based on their global transcrip-
tome profiles. Each cell type has a significantly dis-
tinctive expression signature from the others. Since the
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expression values are always with high dimensional-
ity and noise from the sequencing result, dimension-
ality reduction is usually performed before clustering.
Till now, several methods have been proposed to elim-
inate the influence of noise and reduce the dimension.
The existing methods could be loosely grouped into
two categories, unsupervised method and supervised
method.

In the unsupervised category, the main idea is to per-
form dimensionality reduction before clustering. The sim-
plest method is based on the principal component anal-
ysis(PCA) [12]. As one of the most popular methods for
dimensionality reduction, PCA has been studied exten-
sively for clustering single cells [13–16]. Assuming that
the data is normally distributed, PCA uses an orthogonal
transformation to convert a set of observations of pos-
sibly correlated variables into a set of values of linearly
uncorrelated variables, which are called principal com-
ponents. However, for scRNA-seq datasets, they are not
exactly linearly separable. T-distributed stochastic neigh-
bor embedding (t-SNE) [17] is a nonlinear dimensionality
reduction technique, which is also used for clustering
single cells recently [15, 16]. Based on the Gaussian ker-
nel, t-SNE converts high dimension data to low dimen-
sion space. But, it usually maps multidimensional data to
two or more dimensions suitable for human observation.
Hence it always accompanies with dimension restriction.
Besides, similar to PCA, t-SNE also does not consider
the drop out events of scRNA-seq data. To consider the
specificity of scRNA-seq data, ZIFA[18] uses zero-inflated
factors to deal with the drop out events in scRNA-seq
data. Assuming that drop out events may lead to zero
counts, ZIFA models these counts exactly zero rather
than close to zero in the dataset. The evaluation test
shows that ZIFA performs better than PCA and t-SNE on
some datasets. But the hypothesis of ZIFA is that zero
is inflated as Gauss distribution, and the transformation
between the descending dimension and original data is
linear. Given the expression profiles of single cells, SNN-
Cliq computes the similarity between cells by using the
concept of shared nearest neighbor (SNN), and imple-
ments clustering algorithm based on graph theory [19]. By
combining multiple clustering methods, SC3 performs a
consensus clustering which includes spectral transforma-
tion, k-means algorithm, and complete link approach to
achieve high accuracy and robustness [20]. However, SC3
and SNN-Cliq cannot build a relationship between data
representation and quantity and property of cell types.
Integrating PCA and hierarchical clustering, pcaReduce
tries to improve the original PCA method by finding a
connection between the PCA-based representations and
the number of resolvable cell types. Meanwhile, denois-
ing autoencoder (DAE) [15] is used to reconstruct the data
from high dimensions to low dimension space.

Motivated by the success of neural networks in other
areas, Lin et al. develop a supervised method to gener-
ate the low dimensional representation of scRNA-seq data
based on neural networks (NN) [15]. NN model combines
the neural network with the protein-protein interaction
(PPI) network to classify a number of cells. Given cells
with know cell types, this model can be trained as a super-
vised model. After that, the hidden layer of the trained
neural networks is used for generating the low dimen-
sional representation of scRNA-seq data. The experimen-
tal test shows that this supervised method performs better
than most of the existing unsupervised models.

Although many attempts have been made to cluster
single cells based on the global transcriptome profiles,
most of them only consider the transcriptome profiles
neglecting the prior biological knowledge. This large lim-
its the performance of state-of-art systems. Inspired by
the success of neural network in modeling the hierarchi-
cal structure and function of a cell [21], we ask whether
combining the rich prior biological knowledge in gene
ontology (GO) with neural networks could enhance the
clustering of cells based on their global transcriptome pro-
files. Gene Ontology (GO) [22], which has been widely
used in many areas [23–28], provides a popular vocab-
ulary system for systematically describing the attributes
of genes and other biological entities. As one of the
most popular bioinformatics sources, it contains reliable
and easy-interpreted prior biological knowledge. In this
article, we try to construct the structure of neural net-
works based on the prior knowledge of GO. By integrat-
ing GO with both supervised and unsupervised models,
two novel methods are proposed, named GOAE (Gene
Ontology AutoEncoder) and GONN (Gene Ontology
Neural Network) respectively, for clustering of scRNA-
seq data. The major contributions of this article are as
follows:

• To better dimensionality reduction of scRNA-seq
data, we propose a novel neural work structure
considering the prior knowledge in GO.

• We propose two novel models, named GOAE and
GONN, to enhance cluster cells based on their
transcriptome profiles.

• The evaluation results show that the proposed
models outperform some state-of-the-art approaches.

• Incorporating with GO, we provide an opportunity to
interpret the underlying biological mechanism
behind the neural network-based model.

Methods
We propose a novel model to obtain the low dimen-
sional representation of scRNA-seq data by combining
the Gene Ontology and neural network model. We use
the terms in GO to replace the neuron in the neural
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network and convert the fully-connected neural network
as partial-connected. Based on this idea, we propose
two novel methods: an unsupervised method based on
an autoencoder model and a supervised method based
on a traditional neural network model. The basic idea
of our models is to perform the dimensionality reduc-
tion by training a neural network (or autoencoder) model
and extract the latent layer as low dimensional repre-
sentation. This section consists of the following com-
ponents. First, we will introduce how to select signif-
icant GO terms from the whole GO structure. Sec-
ond, we combine GO with an autoencoder to build an
unsupervised model for dimensionality reduction, named
GOAE. Third, we combine GO with a neural network to
build a supervised model for dimensionality reduction,
named GONN. Finally, the low dimensional representa-
tion is used for clustering of cells based on a clustering
method.

Selection of significant GO terms
Gene Ontology (GO) is a popular vocabulary system for
systematically describing the attributes of gene and gene
product. Each GO term could annotate a set of genes. GO
consists of three different categories, which are biology
process, molecular function and cellular component. GO
is structured as a directed acyclic graph. Each term has
defined relations with other terms in the same or various
categories. In this step, we choose GO terms that are used
in the following model. We only use terms in the biolog-
ical process and molecular function category since these
terms might be more functional related. In GO, a parent
term annotates all the genes annotated by its descen-
dants. The main steps of selecting GO terms used in the
following steps are as follows.

First, we select all the GO terms in the third layer. Eval-
uation test shows that GO terms at the third layer can
achieve the best performance. The number of GO terms at
different levels is shown in Table 1. These 1543 GO terms
at the third level are the candidate terms that connect with
the input layer in the neural network.

Second, we remove redundancy terms from the can-
didate terms obtained from the last step. The annotated
genes of different terms may have overlap. Therefore, we
remove the redundancy terms to decrease the information
redundancy and the parameters in the following neural
network-based model.

Table 1 Number of Gene Ontology terms at different layers

layer number 0 1 2 3 4 5 6 7 8 9 10 11

biology
process

1 24 151 1010 2662 3934 3443 2167 784 305 98 15

molecular
function

1 17 111 476 894 1397 887 481 196 63 23 4

Specifically, let GOi : {gene1, gene2, · · · genen} be a GO
term, named GOi, annotating a set of annotation genes
gene1, gene2, . . . genen. The unique score Uij of two GO
terms is defined as follows:

Uij = num(GOi ∩ GOj)

num(GOi ∪ GOj)
. (1)

If the unique score Uij of two GO terms is larger than 0.5,
the two GO terms are considered as not unique. Then, we
will delete the GO term that has fewer annotation genes.

Third, we remove the terms annotating genes that have
similar expression profiles in different cells. Different
genes may have different expression level in different cells.
We tend to select the genes that have different expression
levels for clustering. Therefore, we select the terms anno-
tating genes having diverse expression levels in different
cells. The diversity of a GO terms could be measured
by gene expression values. Z-score-based method is used
for normalization on gene dimension. Following this nor-
malize operation, the expression values of each gene is
normalized as a standard normal distribution. We define
stdj as standard deviation of genej. The diversity score Hi
of a GO term GOi is calculated as follows:

Hi =
∑n

j=1 stdj

n
, (2)

where n is the number of genes annotated by GOi. If the
diversity score of GOi is less than the given threshold (in
this case 0.1), GOi is considered as low diversity term. We
then delete the low diversity GO terms.

After these three steps, we obtain a set of GO terms with
low redundancy and high diversity.

Architecture of unsupervised model (GOAE)
In the task of scRNA-seq data clustering, an unsupervised
dimensionality reduction model is a key component. To
perform the dimensionality reduction, we combine the
Gene Ontology with autoencoder that has been widely
used in other areas, like image processing, natural lan-
guage processing.

To combine the GO with neural network, we add GO
terms to the neural network as partial-connected neurons.
The structure of this model is formulated from exten-
sive prior knowledge of gene ontology. The architecture of
GOAE is shown in Fig. 1.

The input layer is genes involved in the scRNA-seq
datasets. In hidden layer 1, BP neurons and MF neurons
are added based on the biological process and molecu-
lar function terms obtained from GO. As shown in Fig. 1,
BP and MF neurons are partially connected. Only genes
annotated by the corresponding GO term are fed to the
GO term neuron.

GOAE consists of two components: encoder and
decoder. From the input layer to hidden layer 2 are the
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Fig. 1 Gene Ontology Autoencoder (GOAE) model architecture. BPm and MFn are the GO-term neurons corresponding to biological process and
molecular function category respectively. These neurons partially connected with the input layer. Node d is the full connected neurons. gi

represents the input gene in the given dataset

encoder. The decoder part is exactly a mirror of the
encoder part, which from hidden layer 2 to the output
layer. Let xi be the output of the ith hidden layer. The
forward propagation of the neural network is:

xi = f (Wixi−1 + bi), (3)

where Wi represents the weight matrix of the edge from
i − 1 th layer to ith layer in the neural network, bi is the
bias of each ith hidden layer node, f (·) is the activation
function. We choose tanh function in our case, which is:

tanh(x) = exp(x) − exp(−x)

exp(x) + exp(−x)
. (4)

In this GOAE model, we use the mean square error as
a loss function. Let x0j be the input vector of sample j,
and x4j is the output vector. n represents the number of
training sample. The loss function is defined as follows:

loss = 1
n

∑
‖x0j − x4j‖2. (5)

After several training epochs, the hidden layer 2 could be
a low-dimension space of the input data.

Since the encoder and decoder are completely sym-
metric, both input layer and output layer are partial
connection.

After training GOAE model, the hidden layer 2 could be
used as the low-dimension representation of a cell. Then
we can use a clustering method, (in our case, kmeans++),
for the clustering of single cells.

Architecture of supervised model (GONN)
A supervised dimensionality reduction model may also
be needed in single cell clustering or retrieval [15]. Sim-
ilar to the GOAE model, we replace the hidden layer1
neurons of the neural network with GO term nodes,
which are partial-connected to the input layer neu-
rons that represents the genes. In the GONN model,
another hidden layer with 100 fully-connected neurons
are added (see Fig. 2). After the training phase, the
hidden layer with 100 fully-connected neurons is con-
sidered as the low dimensional representation of the
input.

At the output layer, softmax function is used for classi-
fication. Softmax function is defined as:
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Fig. 2 GONN model architectures. typec represents different cell types as the label in the output layer. BPm , MFn , d and gi are illustrated in Fig. 1

softmax(x) =
[

exp(x1)
∑c

i=1 exp(xi)
· · · exp(xc)

∑c
i=1 exp(xi)

]T
,

(6)

where x is the input vector of output layer and c is the
number of all cell types. Based on softmax activation func-
tion, we can obtain the probability vector that a cell is
classified into different cell types. Finally, we use top-1
method (the label which has the largest probability) to
decide the cell type of a cell. In GONN, the loss is defined as:

loss=− 1
n

∑

j

[
yj ln y′

j+(1 − yj) ln(1−y′
j)
]

+ λ

2n
∑

w
w2,

(7)

where n is the number of samples in the training dataset.
The first part of Eq. 7 is cross entropy. yj and y′

j rep-
resent the desired output and the predicted output of
sample j respectively. The second part is L2 regularization,
where λ is the L2 regularization coefficient. w represents
the training parameter vector. We combine cross entropy
and L2 regularization to avoid overfitting and optimize
parameters.

After training GONN models by known label cells, we
extract the information of the last hidden layer(hidden
layer2) as the low-dimension representation. Then we can
use a clustering method, (in our case, kmeans++), for the
clustering of single cells.

Evaluation criteria
We use the adjusted rand index(ARI) [29] to compare the
clustering results of single cells with the true labels. ARI
score can measure the similarity between two clustering

results. It is defined as follows. Let X = {X1, . . . , Xr} and
Y = {Y1, . . . , Ys} be two different clustering results. nij
represents the number of objects in common between Xi
and Yj. Let ai = ∑

j nij and bj = ∑
i nij, the ARI is defined

as follow:

ARI = Index − ExpectedRandIndex
MaxRandIndex − ExpectedRandIndex

=
∑

ij
(nij

2
) −

[∑
i
(ai

2
) ∑

j
(bj

2
)]

/
(n

2
)

1
2

[∑
i
(ai

2
) + ∑

j
(bj

2
)] −

[∑
i
(ai

2
) ∑

j
(bj

2
)]

/
(n

2
) .

(8)

The scale of ARI score is between -1 and 1. The higher the
ARI score is, the more similar two clustering results are.

Furthermore, normalized mutual information(NMI)
[30] is also used for evaluation. NMI uses the concept
of information entropy to compare different clustering
results. NMI score is calculated as follows:

NMI = I(X, Y )√
H(X)H(Y )

. (9)

H(X) is the entropy of X, which is calculated as follows:

H(X) = −
∑

i

ai
N

log
ai
N

. (10)

I(X, Y ) is the mutual information between X and Y, which
is calculated as follows:

I(X, Y ) =
∑

i

∑

j

nij

N
log

nij/N
aibj/N2 , (11)
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Fig. 3 Average ARI and MNI scores on 10 experiments of different unsupervised methods on clustering 11 types of human cells. The number after
methods means n components. i.e.PCA2 means using PCA method which we set 2 components

where N = ∑
i
∑

j nij. NMI scores are between 0 and 1.
The higher the NMI score is, the more similar two cluster-
ing results are. In the following evaluations, we run each
experiment 10 times and calculate their average scores as
final results.

Data preparation
We evaluate our models on three scRNA-seq datasets.
The first dataset is a human scRNA-seq data from [31].
In our experiment, 300 cells involving 11 cell types are
used. The involved cell types are listed as follows: CRL-
2338(epithelial), CRL-2339(lymphoblastoid), BJ(fibroblast
from human foreskin), GW(gestational 16, 21, 21+3 weeks
from fetal cortex), HL60(myeloid from acute leukemia),
iPS(pluripotent), K562(myeloid from chronic leukemia),
Kera(foreskin keratinocyte) and NPC(neural progenitor
cells). We remove the genes that have missing values in
these cell types. Eigth thousand six hundred eighty six
genes are involved in the evaluation dataset. The second
dataset is obtained from [15]. It integrates three mus mus-
culus scRNA-seq datasets [14, 32, 33], which contains 402
cells involving 16 cell types. Similarly, after removing the
genes with missing values, 9437 genes are included in the
evaluation dataset. The third dataset is also a mus muscu-
lus dataset from [15], which has more than 17,000 single-
cell RNA-seq data from different 31 datasets. We use this
dataset to evaluate cell type assignment. The gene ontology
data is downloaded from http://www.geneontology.org/.

Results and discussion
We test our models on two different scRNA-seq datasets.
We compare our methods with two supervised methods
(i.e. NN(ppi/tf ) [15] and NN(dense)) and six unsupervised

methods(i.e. PCA [12], t-SNE [17], ICA [34], pcaReduce
[35], ZIFA [18], DAE [36]). We set batch size as 64, epoch
number as 100, learning rates as 1e-3 for GOAE model.
We set the batch size as 64, epoch number as 200, learn-
ing rates as 0.2 for GONN model. For NN(dense) model,
it has the same architecture as the two-layer GONN
model but without partial connection between the input
layer and hidden layer1. The NN(dense) model is used
to test whether combining GO information can improve
the supervised model. The DAE model is used to test
whether the addition of GO information can improve the
unsupervised neural network model. We also compare our
model with other unsupervised methods. In all tests, we
use kmeans + + for clustering based on different low-
dimensional representations from different dimension-
ality reduction methods. The models are implemented
using Python 3.6 and tensorflow 1.4.1 package.

Performance evaluation on human scRNA-seq dataset
We test GOAE model (Fig. 1) and GONN model (Fig. 2)
for clustering of human cells. 1174 GO terms satisfy the
criteria described in 2.1 subsection. These terms are used
in the GOAE and GONN model.

Table 2 Average ARI scores of 10 experiments compared with
other supervised model on human scRNA-seq dataset

Number of clusters 2 4 6

NN(dense)1 0.9123 0.7806 0.7427

NN(ppi/tf)1 0.9925 0.8696 0.7542

GONN1 0.9975 0.9036 0.8189

For NN(dense) model, we set epoch number=200, learning rate=0.2. For NN(ppi/tf)
model, the parameters are same as [15] epoch number=100, learning rate=0.1. For
GONN model, we set epoch number=200, laerning rate=0.2

http://www.geneontology.org/
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Table 3 Average NMI scores of 10 experiments compared with
other supervised model on human scRNA-seq dataset

Number of clusters 2 4 6

NN(dense) 0.9008 0.8367 0.8434

NN(ppi/tf) 0.9873 0.9056 0.8243

GONN 0.9918 0.9179 0.8803

See Table 2 for the hyper parameter selection of each model. Numbers in bold
indicate the best performance

In the unsupervised test, all the unsupervised models
are applied to the whole data set. All 11 types of cells
are involved. Overall, GOAE performs the best among
all tested methods. Similar with the experiment design
in [15], several possible parameters (number of compo-
nents) are tested for PCA and ICA method. We reduce
the dimension of all data and using kmeans++ method to
cluster all 11 cell types data. Figure 3 shows that GOAE
perfects the best among all tested methods. The ARI and
NMI score of GOAE are 0.917 and 0.933 respectively,
while the scores of the runner-up method ZIFA are
0.873 and 0.914 respectively. The experiment result indi-
cates that combining Gene Ontology and autoencoder can
improve the performance of clustering of single cells.

For the supervised model, we compare GONN with the
state-of-art method NN(ppi/tf ) [15] and the original neu-
ral network model (NN). We apply the same experimental
protocol used in [15]. The cell types not used in the train-
ing phase are used as the test set. There are 11 cell types
involved in this data set. We randomly select 2, 4 and 6 cell
types as the test set in the evaluation test.

Overall, GONN method performs better than other
methods (Tables 2 and 3). With the increase of the num-
ber of cell types in the test set, the clustering task becomes

more challenging. The result shows that GONN performs
the best when the number of cell types equals to 2, 4 and 6.
Furthermore, when the number of cell types is 6, the ARI
score of GONN is 0.8189, which is significantly higher
than the runner-up method (Table 2). Unsurprisingly,
GONN method also achieves the highest NMI score. The
NMI score of GONN is 0.8803 even when the number of
cell types is 6, while the value of the second best method
is 0.8434.

Figure 4 is the 2D visualization of low dimensional rep-
resentation based on GONN and GOAE. We use t-SNE as
the visualization tool. It is shown that the single cells are
partitioned into different clusters based on GONN and
GOAE, indicating that GONN and GOAE can learn a low
dimensional representation for single cell data.

Performance evaluation on mus musculus dataset
Similar with evaluation test on the human dataset, we
also test these models on mus musculus dataset that con-
tains 16 cell types. For unsupervised models, we randomly
select 2, 4, 6, 8, 10 and 12 cell types as test sets. For super-
vised models, since sufficient training set is necessary, we
only randomly select 2, 4, 6 and 8 cell types as test sets.
The rest of data are used as the training set. For GOAE and
GONN model, 854 GO terms satisfy the criteria described
in 2.1 subsection.

As shown in Tables 4 and 5, for the unsupervised model,
GOAE achieves the highest performance on datasets with
different numbers of cell types. The average of ARI scores
of GOAE on all datasets is 0.7671, which is around 0.03
higher than the runner-up method DAE. More details
are shown in Table 4. The trend of NMI scores is sim-
ilar to ARI scores. GOAE can achieve the highest NMI
scores on datasets with different numbers of cell types.

Fig. 4 2D t-sne visualizations for our model on human scRNA-seq data. a is the dimension reduction result on GOAE model. b is the dimension
reduction result on GONN model
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Table 4 Average ARI score of 10 experiments compared with other methods on mus musculus dataset

Number of clusters 2 4 6 8 avg1 10 12 avg2

NN(dense) 0.9562 0.8231 0.6909 0.6832 0.7884 / / /

NN(ppi/tf) 0.9288 0.7983 0.7077 0.6630 0.7745 / / /

GONN 0.977 0.9199 0.7934 0.7599 0.8626 / / /

PCA2 0.9583 0.606 0.49 0.4489 0.6258 0.4184 0.3819 0.5505

ICA2 0.8296 0.5798 0.4786 0.4656 0.5584 0.4293 0.4026 0.5209

t-SNE2 0.4072 0.5223 0.5413 0.596 0.5167 0.5758 0.5725 0.5359

PCA10 0.9583 0.6373 0.5926 0.6073 0.6989 0.5761 0.5604 0.6553

ICA10 0.0535 0.4445 0.4119 0.5502 0.365 0.5231 0.5053 0.4148

PCA100 0.8707 0.7749 0.5792 0.5634 0.6971 0.5428 0.6031 0.6557

ICA100 0.281 0.075 0.0098 0.0307 0.0834 0.0324 0.0694 0.0726

ZIFA -0.0143 0.2115 0.4275 0.5847 0.3024 0.6151 0.6212 0.4076

pcaReduce 0.6476 0.5604 0.5358 0.4777 0.5553 0.4399 0.3888 0.5084

DAE 0.9758 0.8435 0.718 0.698 0.8088 0.6226 0.584 0.7403

GOAE 0.967 0.8614 0.7875 0.7381 0.8385 0.6401 0.6085 0.7671

The number after other unsupervised methods means n components. i.e.PCA2 means using PCA method which we set 2 components. For DAE model, we set epoch number
as 200 and learning rate as 1e-3. For GOAE model, we set epoch number as 100 and learning rate as 1e-3. The parameters in other NN-based models are shown in Table 2. Avg1
is the average ARI score of the formal four cluster results, while avg2 ARI score is the average of all 2,4,6,8,10 and 12 cluster results. The highest values are shown in boldface

The complexity of the problem increases with the increase
in the number of cell types. When the number of cell
types is 8, the NMI score of GOAE is 0.8545 that is 0.04
higher than the runner-up method DAE. The evaluation
test on mus musculus dataset indicates that combining
gene ontology with neural network can improve the per-
formance of single cell RNA-seq data clustering.

For the supervised model, GONN performs better than
other compared methods. The ARI score decreases with

the increase in the number of cell types involved in the test
set. GONN can achieve a high ARI score (0.7599) even
the number of cell types is 8, while the value of runner-
up method is 0.6832. Similarly, GONN also achieves the
highest NMI score in all tested methods. The average
NMI score of different datasets is 0.9103, which is signif-
icantly higher than NN(dense) and NN(ppi/tf ) method.
The corresponding values of NN(dense) and NN(ppi/tf )
are 0.8623 and 0.8496 respectively.

Table 5 Average NMI scores on 10 experiments compared with other methods on mus musculus dataset

Number of clusters 2 4 6 8 avg1 10 12 avg2

NN(dense) 0.9348 0.8794 0.8179 0.8171 0.8623 / / /

NN(ppi/tf) 0.9083 0.8673 0.8119 0.811 0.8496 / / /

GONN 0.9688 0.9366 0.8721 0.8635 0.9103 / / /

PCA2 0.9527 0.727 0.673 0.6756 0.7571 0.6567 0.6408 0.7210

ICA2 0.8374 0.6966 0.6635 0.6828 0.7201 0.6632 0.6553 0.7261

t-SNE2 0.4025 0.6101 0.6778 0.734 0.6061 0.7432 0.7531 0.6467

PCA10 0.9527 0.7574 0.7349 0.758 0.8008 0.7425 0.7382 0.7835

ICA10 0.1367 0.6224 0.6095 0.7196 0.5221 0.709 0.6965 0.5737

PCA100 0.8656 0.8509 0.7675 0.7812 0.8163 0.7794 0.8215 0.8118

ICA100 0.2186 0.1319 0.1173 0.142 0.15245 0.1539 0.249 0.1665

ZIFA 0.0548 0.3721 0.6267 0.7716 0.4563 0.8188 0.8271 0.5611

pcaReduce 0.6645 0.7115 0.6853 0.6649 0.6816 0.6499 0.6247 0.6689

DAE 0.9621 0.8877 0.8172 0.8194 0.8716 0.8047 0.7957 0.8478

GOAE 0.9544 0.9076 0.8693 0.8545 0.8965 0.8206 0.8018 0.8680

The highest values are shown in blodface. See Table 4 for the more details
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Table 6 Average ARI scores of 10 experiments for GONN model
when select different Uij score

Uij score Number of clusters

2 4 6 8

0.3 0.936 0.8578 0.752 0.7296

0.4 0.9952 0.874 0.7492 0.7209

0.5 0.977 0.8866 0.7579 0.7356

0.6 0.9818 0.8701 0.7312 0.7049

0.7 0.9670 0.8489 0.7317 0.6824

Numbers in bold indicate the best performance

Effect of GO terms
One of the major contributions of our work is to add
GO terms as neurons in the neural networks. To test
whether the GO terms are selected appropriately, we re-run
GONN and GOAE by varying the GO terms involved in
the model. We use the mus musculus dataset on this test.

Table 7 Average ARI scores of 10 experiments for GONN model
when select different Hi score

Hi score Number of clusters

2 4 6 8

0.05 0.9653 0.8444 0.7571 0.6846

0.075 0.967 0.8644 0.755 0.7123

0.1 0.9852 0.8818 0.7662 0.7164

0.125 0.967 0.8489 0.7585 0.7006

0.15 0.9952 0.8245 0.7554 0.7109

Numbers in bold indicate the best performance

To determine the threshold selection for the Uij and
Hi scores, we varied one parameter and fix other param-
eters to conduct experiments on GONN (see Tables 6
and 7). The evaluation test shows that GONN can achieve
the highest performance when the unique score and high
expression score are set as 0.5 and 0.1 respectively.

Fig. 5 Performance evaluation by selecting different numbers of GO terms for GOAE and GONN model. a, b Average ARI and NMI results between
GOAEv model and GOAE model. GOAEv represent GOAE model without selection of GO terms. c, d Average ARI and NMI results between GONNv

model and GONN model. GONNv represent GONN model without selection of GO terms. GOAE models in (a) and (b) select different
hyperparameters. Before GO terms selection, it selects epoch number=300, learning rate=1e-4. After selection, it selects epoch number=100,
learning rate=1e-3. All GONN models in (c) and (d) all select epoch number=200 and learning rate=0.2. All these hyperparameters selection are
achieve their best across a lots of hyperparameter groups
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As described in subsection 2.1, we remove the redun-
dancy GO terms and GO terms with low expression
scores. In this test, we create GONNv and GOAEv where
the redundancy and low-diversity GO terms are not
removed. In GONNv and GOAEv, 1486 GO terms are
involved, while only 854 GO terms involved in GONN
and GOAE. Figure 5a and b show that GONN is clearly
better than GONNv, indicating that selecting appropriate
GO terms contributes to the performance and this step
has been appropriately designed. Similarly, Fig. 5c and
(d) show that GOAE is clearly better than GOAEv.
Particularly, on the datasets with 8 and 10 cell types, the
average ARI of GOAE are about 2-3% higher than GOAEv.

Functional analysis on hidden layer nodes
For GOAE model, we train the model using samples of
a certain cell type. Then, we could also obtain the top
10 highest GO-term nodes of the hidden layer. We select
8cell, 16cell, ES, earlyblast, and lateblast in this test, since
training the GOAE model requires a sufficient amount
of samples. For GONN model, we multiply the weight
matrices W 2 and W 3 to represent the degree of impor-
tance between each cell type and the GO terms in the
hidden layer 1. For each cell type, we selected the top-
10 important GO terms for analysis. Table 8 shows some
of the highly weighted GO-term nodes in the GOAE
and GONN models. For example, regulation of trans-
porter activity (GO:0032409) is mainly associated with
ES(embryonic stem cell) [37], and embryonic placenta
development (GO:0001892) is always relative with zygote
cell [38].

Table 8 Highly ranked GO-term nodes for some cell types used
for traing GOAE and GONN models

ModelCell type GO term GO function

GOAE ES GO:0043008ATP-dependent protein binding [37]

ES GO:0032409Regulation of transporter activity [37]

GONNES GO:0022417Protein maturation by protein folding [37]

ES GO:0140101Catalytic activity, acting on a tRNA [37]

BMDC GO:0099590Neurotransmitter receptor internalization [40]

BMDC GO:0050881Musculoskeletal movement [40]

Zygote GO:0001892Embryonic placenta development [38]

Early 2cellGO:0032552Deoxyribonucleotide binding [41]

Cell type assignment
Another important application in single cell analysis is cell
type assignment. To verify the effectiveness of our model
in cell assignment and retrieval. We use a mus musculus
dataset from Lin et al. paper [15], which has more than
17,000 single cells from different 31 datasets. We designed
experiment according to [15].

To measure the results of cell type assignment, we cal-
culate the percentage of the correctly predicted cell types
by using top K nearest neighbors(K=100). Nine cell types
are involved in the experiment, including 2 cell, 4 cell,
8 cell, zygote, embryonic stem cell(ESC), neurons, thy-
mus, spleen and hematopoietic stem cell(HSC). Mean of
average precision(MAP) [15, 39] is used to measure the
assignment performance.

Fig. 6 Average assignment performance on different cell types. The scores are mean of average precision
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We compare our GONN model with NN(ppi/tf ) model,
the results are shown in Fig. 6. Our model GONN per-
forms better in 2 cell, 8 cell, zygote cell types. Besides,
GONN has higher average of MAP than NN (ppi/tf ).

Conclusions
In this paper, we combine neural networks with Gene
Ontology for reducing the dimensions of scRNA-seq data,
which can improve the clustering of scRNA-seq data. We
propose two models GOAE and GONN that are unsuper-
vised and supervised model respectively.

The proposed model mainly contains two key compo-
nents: the selection of significant GO terms and combi-
nation GO terms with the neural network-based model.
When selecting important GO terms, it is crucial to
choose the appropriate thresholds. If the threshold is not
properly selected, deleting too much or too few GO terms
will affect the final result.

Performance evaluation on two datasets shows that
GONN and GOAE perform better than existing state-of-art
dimensionality reduction methods for scRNA-seq data.
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