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Abstract

Background: RNA-Seq technology is routinely used to characterize the transcriptome, and to detect gene
expression differences among cell types, genotypes and conditions. Advances in short-read sequencing instruments
such as Illumina Next-Seq have yielded easy-to-operate machines, with high throughput, at a lower price per base.
However, processing this data requires bioinformatics expertise to tailor and execute specific solutions for each type
of library preparation.

Results: In order to enable fast and user-friendly data analysis, we developed an intuitive and scalable transcriptome
pipeline that executes the full process, starting from cDNA sequences derived by RNA-Seq [Nat Rev Genet 10:57-63,
2009] and bulk MARS-Seq [Science 343:776-779, 2014] and ending with sets of differentially expressed genes. Output
files are placed in structured folders, and results summaries are provided in rich and comprehensive reports, containing
dozens of plots, tables and links.

Conclusion: Our User-friendly Transcriptome Analysis Pipeline (UTAP) is an open source, web-based intuitive platform
available to the biomedical research community, enabling researchers to efficiently and accurately analyse
transcriptome sequence data.

Keywords: NGS, Transcriptome, RNA-Seq, Sequence analysis pipeline, Bioinformatics workflow, Differentially expressed
genes, Genome mapping, Bulk MARS-Seq, UMI (unique molecular identifier), Gene expression profile, Normalization

Background
Next-generation sequencing (NGS) technologies are the
most advanced molecular tools currently available to in-
terrogate the complexities of the transcriptome[1, 5],
with proven efficient and cost-effective mechanisms for
studying gene expression and reliably predicting differ-
ential gene expression [6]. Many methods for preparing
the libraries have emerged, including Poly A or RiboZero
for mRNA enrichment, complete transcript sequencing,
strand-specific sequencing [2] and 3′ UTR sequencing
[7]. In addition, in cases of initial low RNA levels,
unique molecular identifiers (UMIs) are often incorpo-
rated in order to label individual cDNA molecules with
a random nucleotide sequence before amplification. Ad-
vances in short-read sequencing instruments have

yielded easy-to-operate machines, with high throughput,
at a low price per base.
The massive amount of data created by NGS requires

bioinformatics expertise to tailor specific solutions for
each type of library preparation. Implementing the solu-
tions typically requires scripting and running commands
in the Linux environment. An example of such protocols
can be seen at [8]. To address this challenge and simplify
the analysis, we developed a transcriptome pipeline, with
an intuitive user interface (Fig. 1; results in supplemen-
tary materials; demonstration).

Implementation
Workflow
The UTAP system is composed of a Snakemake [9] work-
flow system backend, and Python (v2.7) and a Django
(v1.11) - based web user interface (WUI) through which
users can run analyses.
Snakemake bundles in-house scripts (written in Python

and R) and public bioinformatics tools for completing
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stepwise processes. Sequence quality control is assessed
by FastQC (v0.11.7), read-genome mapping by STAR
[10] (v2.5.2b), gene count calculation by either STAR or
HTSeq [11] (0.9.1) along with our specialized scripts for
UMI counting. SAM and BAM file manipulation is ac-
complished by Samtools [12] (v1.6), and gene body
coverage plotting is performed by ngsplot [13] (v2.61).
Differentially expressed genes (DEG) detection and
count normalization analysis are performed by DESeq2
[14] (1.18.1). The R package fdrtool [15] (1.2.15) is used
to adjust p values when UTAP deduces that the raw

p-value distribution is biased. The sva [16] (3.26.0) R
package is used for batch correction of the counts when
batch adjustments are required.

Web Interface
To increase usability, thereby broadening the potential
audience of UTAP, the WUI was planned to be intuitive.
Researchers select a pipeline type (demultiplexing or
transcriptome), provide the Illumina sequence data (bcl
or fastq files), and choose the relevant genome and its
annotation source (GENCODE or RefSeq). When

Fig. 1 An example of a page in the pipeline’s Web Graphical Interface. Demonstrates the information required from the user in order to run
the pipeline

Kohen et al. BMC Bioinformatics          (2019) 20:154 Page 2 of 7



running DESeq2, samples should be grouped by category
and can be assigned to batches, using a select and drag
approach (Fig. 1; supplementary information; demon-
stration). Batches are sub-groups of measurements that
might have qualitatively different behaviour across
conditions, and are unrelated to the biological or scien-
tific variables in the study.

Packaging
UTAP is available as a Docker image, which can run locally
on one server, or integrated into LSF (Platform Load Shar-
ing Facility, IBM) or PBS professional (OpenPBS; http://
www.pbspro.org/) HTC (High-throughput computing)
clusters.

Customization
We chose the various pipeline parameters based on our
rich experience in transcriptome analysis. This works
very well for users who are not deeply familiar with bio-
informatics software, and who prefer to quickly benefit
from these choices without having to delve into the

pipeline’s architecture. On the other hand, many re-
search groups have their own particular preferences, and
can achieve system-wide and/or run-specific flexibility
by making adjustments to the parameters or code (Sna-
kefile, R scripts) as described in the guide.

Results
Our User-friendly Transcriptome Analysis Pipeline (UTAP)
requires minimal user intervention. After providing the
information described above (see demonstration), all steps
required per library type are automatically executed. Upon
completion, the system produces a rich and structured
report as output. The transcriptome pipeline is designed for
stranded or non-stranded TruSeq libraries, or, alternatively,
for bulk RNA 3′ UTR MARS-Seq samples.
The pipeline runs the following steps (see Fig. 2 and ex-

amples in supplementary materials): demultiplexing,
adapter and low-quality trimming, quality checks, map-
ping to a genome, gene quantification, UMI counting (if
required), normalization, and detection of statistically sig-
nificant differentially expressed genes (DEG) for pairwise

Fig. 2 Flow of analysis step performed by the UTAP pipeline. Note that steps that take place only in the MARS-Seq pipeline are shown within
broken-line rectangles
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comparisons of user-defined categories. Once a run has
been completed, the user can redefine the samples and
categories and rerun only DESeq2. If batches are defined,
DESeq2 analyses take them into account.
The comprehensive report (see Fig. 3 and examples in

supplementary materials) contains dozens of figures for
visual inspection, including statistical information, enab-
ling one to explore the efficiency of the process. The fig-
ures contain details covering the number of reads per
sample in the various steps of the process, the amount
of similarity between the samples, and more. In addition,
the report contains tables with information on the DEG
in each category (up/down) as well as links to gene an-
notation at GeneCards [17] and submitting gene sets for
pathway analysis on Intermine [18]. The report closes
with a description of the databases, tools and parameters
used, and links to additional results. All pipeline outputs,
such as trimmed fastq files, mapped and indexed bam
files, matrices of raw, normalized counts and statistical
DEG values, are available in structured folders. R scripts
containing code for plots and statistics and logs are also
included, thus packaging the analysis into a reproducible
format.
The pipeline is scalable, utilizing the full power of the

server or cluster. The Docker image has been tested on
LSF and OpenPBS clusters. The scalability allows for fast
processing of the data. When the pipeline runs in paral-
lel on each sample with 20 threads per sample, the run

time is ~ 1 h for MARS-Seq analysis and ~ 2.5 h for
RNA-Seq analysis.
A collection of features that significantly differentiates

UTAP from previously reported pipelines and platforms
[19–25] is presented in Table 1. Specifically, the other
platforms either lack a friendly graphical user interface,
and/or are not scalable, and/or have complex installations,
and/or do not provide predefined pipelines, and/or do not
provide meticulous ways to detect differentially expressed
genes, and/or do not have structured outputs. All of the
other systems create reproducible results, but lack analysis
for bulk MARS-Seq, and do not automatically create sum-
maries via comprehensive reports.
Our future plans include improving customization by

providing options to modify parameters via the web
interface, adding NGS pipelines such as small RNAs,
ChIP-Seq, ATAC-Seq, Ribo-Seq, SNP detection in
RNA-Seq and single-cell RNA-Seq, and adapting the
pipeline to run on other types of computing clusters and
in the cloud.

Conclusions
UTAP is an open source, web-based intuitive, scalable
and comprehensive platform available to the biomedical
research community. It executes an efficient and accur-
ate analysis of transcriptome sequence data, producing
sets of differentially expressed genes and sophisticated
reports, and requiring minimal user expertise.

Fig. 3 Selection of plots produced in a UTAP report. a Histogram with the number of reads for each sample in the various pipeline steps. b Sequence
coverage on and near gene regions using ngs.plot [13] c. Heatmap of Pearson correlation between samples according to gene expression values. d.
Scatter plot of significance (y axis) versus fold-change (x axis). e Hierarchical clustering heatmap of differentially expressed genes. Plots D and E are
created when DESeq2 analysis is executed
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Availability and requirements
Project name: UTAP: User-friendly Transcriptome
Analysis.
Pipeline Installation manual: https://utap.readthedocs.io
Operating system(s): Linux.
Programming language: Python v2.7, R.
Other requirements: Docker v1.7, miniconda v2.
The pipeline consumes ~40GB RAM. The required disk
space for the output files is ~1GB per sample for
MARS-Seq analysis and ~6GB per sample for RNA-Seq
analysis. In addition, ~135GB are required for storage of
the genome files.
License: GNU GPL version 3.
Any restrictions to use by non-academics: License
needed for commercial use.

Abbreviations
BAM: Binary alignment map; DEG: Differentially expressed genes;
GB: Gigabyte; NGS: Next generation sequencing; RAM: Random access
memory; SAM: Sequence alignment map; SNP: Single nucleotide
polymorphism; UMI: Unique molecular identifier; WUI: Web user interface
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