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Abstract

Background: Genetic studies in tetraploids are lagging behind in comparison with studies of diploids as the
complex genetics of tetraploids require much more elaborated computational methodologies. Recent
advancements in development of molecular techniques and computational tools facilitate new methods for
automated, high-throughput genotype calling in tetraploid species. We report on the upgrade of the widely-used
fitTetra software aiming to improve its accuracy, which to date is hampered by technical artefacts in the data.

Results: Our upgrade of the fitTetra package is designed for a more accurate modelling of complex collections of
samples. The package fits a mixture model where some parameters of the model are estimated separately for each
sub-collection. When a full-sib family is analyzed, we use parental genotypes to predict the expected segregation in
terms of allele dosages in the offspring. More accurate modelling and use of parental data increases the accuracy of
dosage calling. We tested the package on data obtained with an Affymetrix Axiom 60 k array and compared its
performance with the original version and the recently published ClusterCall tool, showing that at least 20% more
SNPs could be called with our updated.

Conclusion: Our updated software package shows clearly improved performance in genotype calling accuracy.
Estimation of mixing proportions of the underlying dosage distributions is separated for full-sib families (where
mixture proportions can be estimated from the parental dosages and inheritance model) and unstructured
populations (where they are based on the assumption of Hardy-Weinberg equilibrium). Additionally, as the
distributions of signal ratios of the dosage classes can be assumed to be the same for all populations, including
parental data for some subpopulations helps to improve fitting other populations as well. The R package fitTetra
2.0 is freely available under the GNU Public License as Additional file with this article.
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Background
Genetic studies in tetraploid species are lagging
behind those of diploids. This is mostly due to the
more complex genetics of tetraploids. Tetraploids
have four copies of each of their chromosomes.
Alleles at a marker locus can therefore be present in
five different dosages: 0 (nulliplex), 1 (simplex), 2
(duplex), 3 (triplex) and 4 (quadruplex). Dosage scoring
of such markers is challenging and has been computation-
ally approached only since 2011 [1–4].

Automated dosage scoring is much needed in
high-throughput genotyping technologies. In tetraploid
species SNP arrays are the most widely used due to their
cost efficiency [5]. SNP arrays like Illumina Infinium [6]
or Affymetrix Axiom [7] measure the fluorescence
signals of two dyes generated by the two alleles of each
SNP. The higher the dosage of an allele, the stronger the
fluorescence signal of the dye that is tracking it. Ideally
the signal intensities should fall into one of the five
possible categories. However, in practice these values are
continuous and need to be converted into discrete dos-
age categories. Automated dosage scoring in tetraploid
has been approached with k-means clustering [1] and
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hierarchical clustering [4] on data translated into polar
coordinates, or Bayesian clustering [3].
The fitTetra software [2] uses another approach. First,

the ratio of one of the signals to the sum of both signals
is calculated. Ratio data is then arcsine-square root
transformed to obtain approximately constant variance
for the component distributions. Next, a mixture of
normal distributions is fitted to the continuous ratio
data, using the EM algorithm, and the fitted model is
used to obtain categorical assignments. Similar ap-
proaches have been used in genomic research for many
purposes, e.g. in scoring of AFLP markers [8–10]. This
mixture model approach is computationally demanding
but allows for automatic assignment of genotype cat-
egories by explicit modelling of the means of the distri-
butions as a function of the allele ratios. The algorithm
produces probabilities for each sample ratio to belong to
the five distributions, and these can be used to assign a
dosage to a specific class. This increases the reliability to
deconvolute the distributions even if they overlap
considerably. As a result, fitTetra is useful for automated
dosage scoring in tetraploid species [11–14].
Data in multiple individuals for a single SNP can be

modelled with a mixture of five normal distributions
(each corresponding to a dosage score which may range
from 0 to 4). The ratio values are from 0 to 1 (which
corresponds to 0 to π/2 on the transformed scale) and
the five distributions could be expected to be equally
spaced along this range. However, in practice it is ob-
served that they often are non-equally spaced. Moreover,
limits of the ratios data range are often shifted towards
the middle from one side or both [5]. These phenomena
were accounted for in fitTetra [2] and further extended
in an updated version of the software (fitTetra 1.0) [5].
That update added re-evaluation of the model if one of
the extreme distributions is fitted with less than 2.5% of
all samples and the adjacent distribution is fitted with
more than 15% of samples. Such a situation is rarely ex-
pected. If the population under study is a full-sib family
(FS), only one of the possible combinations of parental
genotypes may result in a pattern close to such (Table 1
– AABB x AABB). Also for a collection of genotypes in

Hardy-Weinberg equilibrium this is unlikely, as a low
proportion of one of the extreme (nulli- or quadruplex)
genotypes implies a low frequency of the corresponding
allele and hence also a low proportion of the next
(simplex or triplex) genotype. This re-evaluation strategy
worked well for Illumina Infinium arrays [5]. Our recent
analysis showed that even with this update, fitTetra1
may be misguided when shifts are severe, and that the
update was insufficient to efficiently call genotypes for
our Affymetrix Axiom array.
In order to improve the performance of fitTetra we

added the possibility to use additional information. We
allowed to specify subpopulations among the samples,
which may be FS families (the direct F1 progeny of a
cross between outbred, heterozygous parents, including
the parents themselves) or panels of accessions such as
collections of tetraploid breeding germplasm. Addition-
ally, we made it possible to specify known genotypes for
the parents of the FS populations.
The accuracy of dosage scoring with fitTetra increases

with the number of samples analyzed. However, a
combined analysis of samples from different types of
populations is not straightforward. Full-sib families, used
routinely in breeding of cross-pollinating polyploid
crops, have expected allele ratios determined by the al-
lele dosages of the parents. Collections of cultivars and
breeding germplasm often display genotype frequencies
close to those expected under Hardy-Weinberg equilib-
rium. However, assumptions concerning the combined
allele dosage ratios can only be made if the composition
of a dataset consisting of several FS families and/or culti-
var panels is considered. To address this problem, we
updated fitTetra to allow some model parameters to be
shared between the subpopulations when they can be
assumed to be equal (e.g. means and variances of the
distributions which correspond to the allele dosage
classes) while the mixing proportions of the dosages are
specific for each subpopulation and therefore estimated
separately. These additions result in increased power as
combined analyses can be done comprising all samples,
while using the most realistic assumptions for each of
the subpopulations.

Table 1 Polysomic segregation ratios

Parent 1 Parent 2

0 = nulliplex 1 = simplex 2 = duplex 3 = triplex 4 = quadruplex

0 = nulliplex 1:0:0:0:0 1:1:0:0:0 1:4:1:0:0 0:1:1:0:0 0:0:1:0:0

1 = simplex 1:1:0:0:0 1:2:1:0:0 1:5:5:1:0 0:1:2:1:0 0:0:1:1:0

2 = duplex 1:4:1:0:0 1:5:5:1:0 1:8:18:8:1 0:1:5:5:1 0:0:1:4:1

3 = triplex 0:1:1:0:0 0:1:2:1:0 0:1:5:5:1 0:0:1:2:1 0:0:0:1:1

4 = quadruplex 0:0:1:0:0 0:0:1:1:0 0:0:1:4:1 0:0:0:1:1 0:0:0:0:1

Polysomic segregation ratios from random bivalent paring without double reduction for all possible combination of parental genotypes. For each parental
combination the proportions of 0 (nulliplex): 1(simplex): 2 (duplex): 3 (triplex): 4(quadruplex) genotypes as expected in the offspring are shown
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If the parental genotypes of a FS family are known, it
is possible to calculate expected allele dosage ratios for
their progeny, which can be used as starting values for
the mixing proportions for that family in the model.
Additionally, these known parental genotypes can be
used to estimate starting values for the means of the dis-
tributions. This helps to guide the algorithm towards a
better result. With our update to fitTetra (fitTetra 2.0,
Additional file 1) that incorporates these capabilities, we
were able to increase the call of SNPs by more than
25%, compared to version 1.0 (full data not shown).
Recently, another tool for automated genotype calling

in tetraploids was published. ClusterCall [4] uses hier-
archical clustering, with training and prediction phases.
In the training phase, per probe, theta values (roughly
equivalent to signal intensity ratios) from each of the FS
families (offspring and parents) are clustered based on
their intensity values, and dosages are assigned to the
clusters based on expected FS segregation ratios. In the
prediction phase, the theta values of the samples in the
prediction set (e.g. a collection of breeding material) are
clustered, and dosages are assigned by matching these
clusters with those found in the training phase. A con-
cordance metric, i.e. the proportion of training samples
that were assigned the same dosage in training and test
phase, is calculated and used for selection of reliable
probes. The authors claim that ClusterCall is able to per-
form better than fitTetra 1.0 when multiple FS families
are present. In our study we benchmarked ClusterCall
against fitTetra 1.0 and fitTetra 2.0.

Implementation
Overview of fitTetra
The R package fitTetra [2] is a program for genotype
calling of SNP markers in tetraploid species using nor-
mal mixture models. It consists of three main functions:
1) CodomMarker: the core function to fit a normal
mixture model to a vector of transformed signal ratios
of a single bi-allelic marker over all the samples; 2) fit-
Tetra: a function to fit different normal mixture models
to a single bi-allelic marker and select the optimal one;
3) saveMarkerModels: a function to fit mixture models
for a series of markers and save the results to files. This
suite of functions allows for automatic genotype
calling for a collection of SNP markers. The normal
mixture model is formulated for the response y = arc-
sine-square root transformed fraction sb/(sa + sb)
where sa and sb are the fluorescence signal strengths
for alleles a and b. The normal mixture density of the

i-th response yi is f ðyiÞ ¼
P5

j¼1π j f jðyiÞ with fj(yi) the

normal density with mean μj and common variance σ2.
The probabilities πj, means μj and variance σ2 are esti-
mated by maximum likelihood using the EM-algorithm.

Starting values of the parameters can be provided by the
user or are derived by the software through naïve cluster-
ing of the data. The genotype calling of observation yi is

based on the set of 5 values pij ¼ π j f jðyiÞ=
P5

j¼1π j f jðyiÞ
(j = 1,..,5) that describe the probabilities that a sample be-
longs to each of the five distributions. If one of the pij is
larger than a user-defined threshold value (e.g. 0.9)
the genotype will be called to be j-1 (as the distribu-
tion for j = 1 corresponds to a dosage score of 0).
The CodomMarker function allows restrictions to be

placed on the μj and πj parameters. Parameters πj may
be free or restricted to follow Hardy-Weinberg equilib-
rium. Parameters μj may be restricted such that 1)
background signals for a and b (for the two SNP alleles)
are equal or unequal; 2) the relationship between signal
ratio and allele dosage is linear or quadratic. These
restrictions allow the means μj to be asymmetrically
positioned within the range 0 - π/2. An example of a
histogram produced by fitTetra for a SNP for tetraploid
potato is shown in Fig. 1. The dark bars in the histogram
represent ratios of diploid potato genotypes included in
this study. The allele ratios for diploid homozygotes are
equal to ratios for homozygotes (nulliplex and quadru-
plex) in tetraploids and the ratio for the diploid hetero-
zygote is the same as the ratio for duplex genotypes in
tetraploids. Therefore, the position of diploid distribu-
tions compared to tetraploid distribution may serve as
an extra check for the quality of the calling.

Extension to multiple populations
In fitTetra 2.0 multiple populations may be specified,
whereas fitTetra 1.0 treated all observations as stemming
from one single population. When multiple populations
are used, the model parameters for the means μj (i.e. the
positions of the peaks) and variance σ2 (i.e. the width of
the peaks on arcsine-square root scale) are shared
among the different populations, while the mixing
proportions πj may be different for each population.
In fitTetra 1.0 the CodomMarker function, performing

calling of a single marker allowed for three types of re-
strictions on the mixing proportions πj: 1) freely esti-
mated (ptype = “p.free”), i.e. the only restriction is that
P5

j¼1π j ¼ 1 ; 2) Hardy-Weinberg equilibrium (“p.HW”)

where only the allele frequency is estimated and mixing
proportions are a function of those based on
Hardy-Weinberg equilibrium, which is often reasonable
for association panels; 3) fixed proportions (“p.fixed”),
i.e. the πj are kept fixed at their given values during the
EM-algorithm (used when values are known from
another source).
In the new version of the program we added a new type

of restriction on the mixing proportions, p.type = “p.F1”, for
an F1 population. Given the parental genotypes estimated
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in the previous iteration of the EM algorithm, the “p.F1”
proportions are calculated as the expected tetrasomic seg-
regation ratios of the F1 progeny of these two parents.
These segregation ratios assume random bivalent pairing
and no double reduction and are shown in Table 1. Double
reduction is expected to occur in relatively low frequency
even when there are occasionally multivalent pairings. The
parental samples are specified as separate populations.
The EM-algorithm is used to find the maximum likeli-

hood estimates of the parameters of the multi-population
mixture model. In this algorithm E-steps (Expectation)
and M-steps (Maximization) are repeatedly taken until the
likelihood converges. In the E-step, given current estimates
of the parameters, the probabilities for an observation to
belong to each of the five mixture components are calcu-
lated. In the M-step, based on these calculated probabil-
ities, new component means and variance are calculated
over all observations. Then new mixing proportions are

calculated per population depending on the type of restric-
tions on the mixing proportions, as discussed above.
In fitTetra 2.0, function “CodomMarker” (and, as a re-

sult the wrapper function “fitTetra” and the convenience
function “saveMarkerModels”) produces the same type
of output as fitTetra 1.0 with the exception of the output
of probabilities of the five distributions, which are now
population specific. Optionally, an array of histograms is
plotted, showing per population (for association panels
and for FS’s) the histogram of ratios with the fitted mix-
ture model. Parental data are shown with separate
coloured symbols in the histograms for the corresponding
FS family (Fig. 1).

Support for parental genotype data
When extra parental information is available, it can be
used to further facilitate the genotype calling. Custom
SNP arrays, the most popular means of genotyping

Fig. 1 Histogram of genotype calling for probe_1028 (from fitTetra 2.0 test dataset), an example where the results of fitTetra 2.0 are different
from fitTetra 1.0. Two populations are present: an association panel labeled “PANEL” and a FS family with two parental genotypes (both
replicated). The association panel is assumed to be in Hardy-Weinberg equilibrium. Right: Calling with fitTetra 2.0 (using parental genotype data).
The parental genotypes are set to be duplex (2) and quadruplex (4), leading to the segregation pattern 0:0:1:4:1, which is shown in the upper
panel. Left: Calling with fitTetra 1.0. Without information on population structure, parental samples are genotyped as simplex (1) and triplex (3).
Such a combination should result in a 0:1:2:1:0 pattern in the FS family. However, if we just consider samples from the FS family, the results of the
calling suggest a 0:1:4:1:0 pattern which does not match any parental combination
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tetraploids, are often based on discovery studies where
parents of a population are sequenced in order to design
the array for the population itself [5, 11]. The user can
supply this information and set the probability type to
“p.fixed” for the parental populations. This will fix the
mixing proportions for the parental populations through
the run of the algorithm. The probabilities (segregation
ratios) of the corresponding F1 progeny will be calcu-
lated accordingly. It is possible that parental genotypes
are erroneous (e.g. if they were derived from RNA-Seq
they might be affected by differential gene expression).
To avoid losing markers just because of that, fitTetra 2.0
will always attempt fitting a model where “p.free” is used
instead of “p.fixed” and model with better BIC score will
be selected. If parental genotypes supplied by the user
are correct, the run with the “p.fixed” should produce
model at least as good as with “p.free”.
Moreover, if the parents were analyzed in the same

run as the FS family their dosages are also used to assign
starting means for one or two of the mixing compo-
nents. When parents have different dosages, two starting
means are known, and the remaining three are estimated
using a simple linear regression model. This may not be
completely accurate as the relationship between dosage
and intensity is not necessarily linear, but in our experi-
ence it provides a better start than the naïve clustering
of the samples.
When multiple populations are measured in the same

run, the means of the five genotype/dosage distributions
are shared between populations. Because fitTetra 2.0 has
the ability to process multiple populations at once, using
known dosages of parents benefits the genotype calling
not only for their F1 offspring but also for all the other
populations, even when they are not related to these
parents.
However, the starting parental dosages may be incor-

rect and applying these data as starting values may result
in incorrect calls, or in not fitting any model at all. An
example of this is shown in our previous SNP discovery
study [5] in which we designed the array with RNA-Seq
performance. When parental dosages are estimated from
RNA-Seq data, they might be affected by differential ex-
pression of alleles (e.g. if the true parental genotype is
AABB and allele A is expressed three times as much as
allele B, the SNP array will report genotype AABB but
the RNA-Seq read counts will suggest AAAB). In order
to account for that, the algorithm fits a series of models
both without and with parental dosage data; the best
model (lowest value for Bayesian Information Criterion)
is selected. For brevity, we will refer to fitTetra 2.0
without the use of parental data as fitTetra2NP and to
fitTetra 2.0 where parental genotypes were used to fix
the mixing proportions and calculate starting means as
fitTetra2P later on.

Results and discussion
We compared the performance of fitTetra 2.0 to fitTetra
1.0 and to the recently published ClusterCall [4]
software based on two large datasets. One dataset was
published as supplemental data for the ClusterCall
manuscript. The other set is described in the section
below.

Test dataset
The test set (Additional file 2) comprised of 1000 ran-
domly selected SNPs (with R base sample function [15])
from the STub, an Affymetrix Axiom 60 k SNP array.
Parental genotypes were derived from the RNA-Seq SNP
discovery study that led to the creation of the array. For
the two parents, 12 and 13 replicate samples were used.
The analysis of the test set is shown in the vignette ac-
companying the package. Analysis of the whole array
with all the versions of fitTetra is not yet published.
In order to judge if genotype calling was performed

correctly we made use of the fact that our collection
comprises a FS family and its parents. For each SNP that
was called, we compared the estimated genotype propor-
tions in the offspring to the expected proportions from
each possible combination of parental genotypes (using
a chi-squared test for goodness-of-fit). If the parental
combination that best matched the estimated propor-
tions agreed with the parental genotypes that resulted
from genotype calling we called the SNP “matching”. If
this was not true, or not possible to assess (i.e. dosage
not assigned to one or both of parents) the SNP was
marked as “not matching”.

Parameter selection
We compared the performance of fitTetra 2.0 to fitTetra
1.0 and to the ClusterCall [4] software. Both fitTetra and
ClusterCall are sensitive to parameters used to per-
form the calling. For fitTetra, all default parameter
settings were used, except for call.threshold = 0.75 and
peak.threshold = 0.9.
In ClusterCall, the parameter min.posterior corre-

sponds to the peak.threshold parameter of fitTetra and
was initially set to the same value, 0.9. We tested num-
ber of values for min.posterior and max.range parame-
ters. Based on the results we decided to use two values
for min.posterior: 0.5 and 0.9 and one for max.range:
0.5. The code used for the parameter selection is
attached in a form of an R script (Additional file 3) to
assure easy replication of our results.
For the data from the ClusterCall paper [4] we

followed the instructions in the package vignette. We
again applied fitTetra with all default parameters, ex-
cept for call.threshold = 0.75 and peak.threshold = 0.9.
Since for these data no other source for the parental
dosages was available, the corresponding capabilities
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of fitTetra2P could not be applied. The code used for
the analysis is attached in a form of an R script
(Additional file 4) to assure easy replication of our
results.

Comparison between fitTetra and ClusterCall
We benchmarked versions of fitTetra and ClusterCall by
comparing total number of SNPs called and the number
of called SNPs where genotypes of parents and offspring
matched. Since we called parents together with the
offspring we also checked the number of “matching”
SNPs called.
When tested on the fitTetra2 test data, fitTetra2P was

able to call more SNPs than other versions of fitTetra,
and also more than ClusterCall with both parameter set-
tings (Table 2). ClusterCall with min.posterior set to 0.5
was able to call more SNPs, but with a much lower pro-
portion of “matching” SNPs. For this Axiom test data set
all versions of fitTetra called more “matching” SNPs
than ClusterCall.
ClusterCall performs training on separate FS families

and uses the power of multiple FS’s to score dosage in
unrelated collections [4]. In the fitTetra dataset however,
there is only one large FS family and ClusterCall there-
fore cannot use concordance between families, and it
performs worse than fitTetra.
Results of genotype calling on the test set of 1000

randomly selected probes included with fitTetra2. For
ClusterCall the model is not fitted and when clustering
is unsuccessful, the probe is returned with all scores
missing so those were classified into “>25% samples
unscorable” category.
When tested on the ClusterCall test data fitTetra2NP

was able to call more SNPs and showed similar but
higher accuracy to ClusterCall (Table 3). The data con-
sists of three families. In all three fitTetra2NP was able
to call more “matching” SNPs than ClusterCall, but in
all the cases ClusterCall showed a higher proportion of
“matching” calls.
Results of genotype calling on the test dataset of

ClusterCall. The calling was assessed for each of the

three FS families separately. A x S – Atlantic x Superior,
R x P – Rio Grande Russet x Premier Russet, W x L –
Wauseon x Lenape.
Apart from the numbers of markers genotyped it is

important to know the correctness of the genotyping.
This is not straightforward as the true allele dosages are
not known. However the overall correctness has an
effect on downstream applications such as linkage
mapping or GWAS. In Additional file 5 we present a
comparison of GWAS results obtained with the fitTetra
2 test data as processed by ClusterCall and fitTetra 2.0.
These results suggest that at least for some markers near
the main QTL, the fitTetra scores are more accurate
than those of ClusterCall.

Discussion
Improvement over the previous version
We updated fitTetra to support multiple populations, to
model expected FS segregation ratios and to enable the
use of parental dosage information to guide the calling.
We tested fitTetra 2.0 against fitTetra 1.0, and showed a
significant improvement in the performance. Since the
previous version of fitTetra was used in a number of
studies and proved useful and applicable in multiple data
sets [2, 5, 13], this improvement is likely to benefit many
researchers performing genetic analyses of polyploid
species.

Comparison with ClusterCall
We compared fitTetra 1.0 and fitTetra 2.0 with Cluster-
Call. In all the instances ClusterCall was able to perform
the analysis much faster while fitTetra 2.0 was able to
call the most SNPs with matching parental and progeny
dosages. When tested on the ClusterCall test data, fitTe-
tra 2.0 and ClusterCall showed similar performance. On
the fitTetra 2.0 test data however, fitTetra 2.0 outper-
formed ClusterCall by far. This is not surprising as the
main advantage of ClusterCall is the use of concordance
between multiple FS. Therefore, where multiple FS are
present ClusterCall is able to deliver accurate results
swiftly. The mixture model based algorithm of fitTetra is

Table 2 results of genotype calling on the test set of fitTetra 2.0

fitTetra1 fitTetra2NP fitTetra2P ClusterCall min.posterior = 0.9 ClusterCall, min.posterior = 0.5

Called 63.4% 66.0% 69.0% 41.3% 77.0%

Matching 50.9% 57.4% 63.2% 20.5% 27.9%

Not matching 12.5% 8.8% 6.0% 20.8% 48.9%

Matching rate 80.3% 86.7% 91.3% 49.6% 36.3%

Not called 36.6% 34.0% 31.0% 58.7% 23.0%

> 90% in single category 13.7% 10.2% 12.3% 5.5% 1.9%

> 25% NAs 7.9% 20.9% 7.5% – –

No model 15.0% 2.7% 11.0% 53.2% 21.3%
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computationally costly but able to perform reliably in
more types of datasets.

Using the match between the genotypes of parents and
offspring for quality control
We showed that checking if genotypes of parents and off-
spring match is a valuable quality check. Non-matching
parental and offspring dosages are an important warning.
They can signify an erroneous calling procedure (e.g.
convergence to sub-optimal results), technical artefacts in
the data but also potential sample mix-ups/mis-labelling.
A limitation of the use of this approach is that some

segregation patterns may be impossible to distinguish in
smaller datasets (e.g. 1:8:18:8:1 and 0:1:2:1:0), so an
apparent (non-)match between parents and offspring
may not be completely certain.

Extensions of fitTetra 2.0
The version of fitTetra presented here is only able to
perform genotype calling in autotetraploids. An exten-
sion to any higher level of auto-polyploidy has in the
meantime been implemented in a more advanced ver-
sion of the package called fitPoly, available from CRAN
(https://cran.r-project.org/package=fitPoly). The exten-
sion to allo-polyploids is less straightforward since some
parental dosage combinations match with multiple
segregation ratios.
Another possible extension would be the accommo-

dation of (discrete) read count data from Next-
Generation Sequencing, as opposed to (continuous) sig-
nal intensities from SNP arrays. This would involve a
different model for the distribution of the data. How-
ever, recently several publications have already
addressed this problem [16–18]. In [18] a comparison
between the updog package and fitPoly was made. Not
surprisingly fitPoly performed worse, as it was not
designed to handle this type of data.

Conclusions
The package fitTetra 2.0 provides the most robust
approach for automated genotype calling in complex
collections of autotetraploid samples. The tool is able to
call large portion of SNPs correctly, even with strong
confounding effects e.g. background signal, differences
in performance between dyes or non-linear relationship
between dosage and signal strength. Our tool is the most
versatile and accurate solution for automated genotype
calling in tetraploids.

Availability and requirements
• Project name: fitTetra
• Operating system(s): Any platform for which the R
[15] software is implemented, including Microsoft
Windows and Linux. The software is included as an
R package in Additional file 1.

• Programming language: R [15].
• Other requirements: None.
• License: GNU General Public License, version 2.
• Any restrictions to use by non-academics: None.

Dataset
The test set comprises 1000 SNPs randomly selected
from a custom Affymetrix Axiom 60 k SNP array. The
population that was genotyped consisted of 1502 sam-
ples – 975 samples of the tetraploid FS population, 278
samples of the diploid FS population, parents of the
tetraploid FS population in 12 and 13 replicates, parents
of the diploid FS population in 3 and 2 replicates and
222 samples from a panel of breeding clones and market
cultivars. The data set is available as Additional file 2.

Additional files

Additional file 1: A tar archive containing fitTetra 2.0 package. (GZ 46494 kb)

Table 3 results of genotype calling on the test set of ClusterCall

fitTetra2NP ClusterCall

Fam.AxS Fam.RxP Fam.WxL Fam.AxS Fam.RxP Fam.WxL

Called 87.5% 69.9% 88.9% 66.9% 51.5% 68.1%

Matching 73.2% 54.6% 71.2% 60.1% 45.2% 59.7%

Not matching 14.3% 15.3% 17.6% 6.8% 6.3% 8.5%

Not called 12.5% 30.1% 11.1% 33.1% 48.5% 31.9%

> 90% in single category 10.3% 27.9% 9.0% 6.1% 21.5% 4.8%

> 25% NAs 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

No model 2.2% 2.1% 2.1% 27.1% 27.1% 27.1%

Proportion of matching calls 83.7% 78.1% 80.2% 89.9% 87.8% 87.6%

Average proportion 80.6% 88.4%

Average “matching” 66.3% 55.0%
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Additional file 2: A zip archive containing all the data and code
needed to run the comparisons. (ZIP 33420 kb)

Additional file 3: An R script containing all the code needed to run
comparison between ClusterCall and fitTetra 2.0 on the dataset attached
to fitTetra 2.0. (R 3 kb)

Additional file 4: An R script containing all the code needed to run
comparison between ClusterCall and fitTetra 2.0 on the dataset attached
to the ClusterCall manuscript. (R 6 kb)

Additional file 5: A small report of a GWAS analyses to compare the
correctness of dosage calls by ClusterCall and fitTetra 2.0. (DOCX 531 kb)
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