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Abstract

Background: Recent comparative studies have brought to our attention how somatic mutation detection from
next-generation sequencing data is still an open issue in bioinformatics, because different pipelines result in a low
consensus. In this context, it is suggested to integrate results from multiple calling tools, but this operation is not
trivial and the burden of merging, comparing, filtering and explaining the results demands appropriate software.

Results: We developed isma (integrative somatic mutation analysis), an R package for the integrative analysis of
somatic mutations detected by multiple pipelines for matched tumor-normal samples. The package provides a
series of functions to quantify the consensus, estimate the variability, underline outliers, integrate evidences from
publicly available mutation catalogues and filter sites. We illustrate the capabilities of isma analysing breast cancer
somatic mutations generated by The Cancer Genome Atlas (TCGA) using four pipelines.

Conclusions: Comparing different “points of view” on the same data, isma generates a unique mutation catalogue
and a series of reports that underline common patterns, variability, as well as sites already catalogued by other
studies (e.g. TCGA), so as to design and apply filtering strategies to screen more reliable sites. The package is
available for non-commercial users at the URL https://www.itb.cnr.it/isma.
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Background
The identification of somatic mutations from Next
Generation sequencing (NGS) data is a challenging task.
Several studies compared the single nucleotide variations
(SNVs) [1–3] and insertions/deletions (INDELs) [4, 5]
detected by different computational tools and underlined
relevant discrepancies. Therefore, it is recommended to
analyse the same NGS data using multiple callers, like
Mutect [6], SomaticSniper [7] and Varscan [8], which
generate lists of mutations encoded in Variant Call
Format (VCF) [9]. This way of facing conflicting predic-
tions demands appropriate tools that harmonize
different outputs and enable comparative analyses [4].
Indeed, for instance, mutation callers encode the same
information in multiple ways (Table 1) and generate out-
puts with relevant qualitative (e.g. germline/somatic/

loss-of-heterozygousity, SNVs/INDELs) and quantitative
(number of sites found) differences. More generally if, in
principle, the use of multiple callers is expected to re-
duce false positive findings, in practice, the resulting
large and heterogeneous lists of mutation sites increase
the complexity of the subsequent interpretations. Exist-
ing tools like myVCF [10], NGS-pipe [11], VariantTools
[12], vcfR [13] and VCFTools [9], implement functions
and pipelines to work with VCF files, but do not specific-
ally address the problem of integrating and comparing the
results of different mutation callers. A few tools exist to
address this problem: Cake [14] (a bioinformatics pipeline
implemented in perl) offers the opportunity to run
multiple callers and applies customizable filtering steps to
obtain a final unique list of single nucleotide variations
(SNVs); BAYSIC [15] (implemented in perl) provides a
bayesian method for combining SNVs from different
variant calling programs.
Here, we describe isma (integrative somatic mutation

analysis), an R package that provides functions for the
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joint analysis of VCF files generated by somatic mutation
callers from NGS data (Fig. 1). Differently from existing
tools, beyond site integration and filtering, isma provides
functions for a more in-depth analysis of mutation sites
occurrence across subjects and tools, considering both
SNVs and INDELs. The results generated by isma under-
line common patterns (e.g. recurrent calls, tool consen-
sus in each subject), specificities (e.g. outlier samples,
pipeline specific sites, genes enriched in calls from a
single pipeline), as well as sites already catalogued by
other studies (e.g. The Cancer Genome Atlas (TCGA)

[16]), so as to design and apply filtering strategies to
screen more reliable sites.

Implementation
The software isma is implemented in R. The package
takes in input mutation sites encoded in VCF files or
tab-delimited text files. isma extracts mutation site infor-
mation from the output of multiple mutation callers by
means of specific parsers and integrates sites into a
unique data structure:

mut_sites <− pre_process (“config.txt”)

Most of the analyses can be easily carried out through
a few wrapper functions, like site_analysis and gene_ana-
lysis for site- and gene-level analyses respectively.
Nevertheless, many routines are available as part of the
user interface to carry out custom analyses (Table 2).
Gene-level analyses require mutation site annotation, for
which isma relies on the R package VariantAnnotation [17]
or, alternatively, on user-provided files. Computationally

Fig. 1 Overview of isma. Integrative analysis of somatic mutations
detected by multiple pipelines

Table 2 isma user interface

Function name Description

pre_process Read and integrate input files; generate
unique identifiers

site_analysis Perform site-level analyses, calling get_sites_
statistics, overlap_Tools, overlap_Subjects

gene_analysis Perform gene-level analyses, calling get_sites_
statistics, overlap_Tools, overlap_Subjects,
gene_mutation

site_annotation Perform site annotation

integrate_TCGA Integrate mutation evidence from TCGA

consensus_Tools Calculate the consensus among tools

get_sites_statistics* Calculate the co-occurrence of mutation sites/
genes across callers and subjects

overlap_Subjects* Calculate subject-by-subject site/gene
co-occurrence matrix

overlap_Tools* Calculate tool-by-tool site/gene co-occurrence
matrix

ese_allsubj* Calculate the variation of site/genes amount
and show the results for each tool

ese_tool_subj* Calculates the variation of site/genes amount,
considering separately each tool and returns
the results for each subject

ese_subj_tool* Calculates the variation of site amount,
considering separately each subject and returns
the results for each caller

calculate_dist_to_exon Calculate the site distance from the nearest
exons

gene_mutation Calculate the gene-by-subject mutation matrix
and the gene mutation frequency vectors

filtering_sites Filter sites

The asterisk (*) indicates functions that work both at site- and gene-level
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demanding analyses (e.g. the comparison among
all-pairs of hundreds of subjects) are implemented in
parallel, using the support provided by the R package
parallel. The package isma contains a tutorial avail-
able as R vignettes:

vignette(“isma”)

Results
In this section, we will describe isma considering breast
cancer (BC) mutations from TCGA, collected using the
function get_TCGA_sites. In particular, we considered
mutation profiles of 975 subjects detected by four
variant callers: Mutect2, Varscan2, Muse and SomaticS-
niper (Additional file 1).

mut_sites <- get_TCGA_sites (tools = c("muse",
"mutect2", "varscan2", "somaticsniper"),
n_subjects = 975)

Note that these sites were already filtered by TCGA
and are therefore less noisy than the corresponding
initial variant caller outputs that would constitute the in-
put of isma in a typical use scenario. Nevertheless, the
exploratory analyses made possible by isma underlined
interesting patterns even among such filtered calls from
TCGA.
The analyses presented below can be easily run by

means of site_analysis and gene_analysis wrapper
functions and include quantification of site/gene oc-
currence across callers and subject, consensus among
tools, detection of outlier subjects and tools, variation
of detected sites at different cut-offs on alignment re-
sults (e.g. read depth) and integration of information
from TCGA.

Site occurrence across callers and subjects
The co-occurrence of sites across tools and subjects is
quantified by get_sites_statistics. This operation allows
the user to quantify the fraction of tool-specific calls,
the distribution of the sites across tools in each sub-
ject and tool consensus on sites. These results are
used to detect and mark outlier features (subjects and
tools), defined by the inter-quartile range (Tukey’s
fences) (Table 3). The amount of shared sites between

Table 3 Outlier subjects report

Subject Hypermutated Imbalance in the
number of sites
across tools

Imbalance in
consensus
among tools

Tool
consensus
score (CS)

A0JC NO YES YES YES

A1G6 NO YES YES YES

A1LI NO YES NO YES

A0UO YES YES YES YES

Examples of subjects recognized as outliers according to the number of sites,
imbalance in the number of sites across tools, imbalance in consensus among
tools and tool consensus score

Fig. 2 Global consensus plot. Overall consensus among pipelines; results obtained on BC mutations detected by TCGA in 975 subjects
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each pair of callers and subjects is calculated and
organized, respectively, in callers-by-callers and
subjects-by-subjects site co-occurrence matrices by the
functions overlap_Tools and overlap_Subjects. Site
co-occurrence matrices are used to summarize consensus
and dispersion. Caller consensus relative to a subject is
quantified by means of the consensus score (CS), defined
as the sum of ratios between the amount of co-occurring
sites (off-diagonal elements of the tools-by-tools site
co-occurrence matrix) and tool-specific calls (diagonal

elements) normalized by the total number of possible tool
pairs:

CS ¼
Pn

i
1
xi;i

Xn

j≠i
xi; j

� �

P n; 2ð Þ

where n is the number of tools, xi,j are the sites shared
between tools i and j, and P(n, 2) is the number of
permutations of tools in pairs.

Fig. 3 Detailed consensus plot. a Number of mutation sites. b Fraction of sites called by different pipelines. c Tool Consensus across subjects.
d Consensus score (CS). a-d Asterisks indicate outliers. Results shown only for 50 subjects (out of 975), selected to include different types of
outliers as well as samples without abnormal behaviours (Additional file 1)
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The results of these analyses are summarized into con-
sensus plots, co-occurrence matrices plot and a series of
text files, like the summary table of outlier subjects. The
overall consensus plot (Fig. 2) reports the total number
of sites found by each tool and the fraction of calls
shared among tools. Note how mutect2 found the high-
est number of sites, the 50% of which was not reported
by other callers (Fig. 2). The consensus plot per subject

shows the total number of unique sites, the fraction of
sites found by each tool, the distribution of the consen-
sus across subjects and the CS (Fig. 3). Note the
presence of a few hypermutated subjects (i.e. A1XQ,
A0U0, A08H, A1J5, A1NC and A25A) (Fig. 3a). Several
subjects display an imbalance of calls among the pipe-
lines (Fig. 3b). Further, there are subjects with a relevant
(e.g. A1J5 and A0XR) or poor (e.g. AIKO and A0JC)

Fig. 4 Site co-occurrence plots and gene mutation frequency variability. a Total number of sites (diagonal), site co-occurrence among mutation
callers (below diagonal) and corresponding similarity between callers (Jaccard index, above diagonal). b Total number of mutated genes
(diagonal), mutation co-occurrence across subjects (below diagonal) and corresponding coefficients of variations (CVs) across pipelines (above
diagonal). Asterisks indicate CVs greater than 1; grey colour indicates no mutation co-occurrence between two subjects. c Standard deviation of
gene mutation frequency across pipelines; red: genes associated with BC [19–21]. d Number of subjects with mutations detected by each tool.
a-b Results obtained on BC mutations from 50 subjects (Additional file 1); c-d results obtained on all 975 subjects (Additional file 1)
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proportion of sites supported by more than one caller
(Fig. 3c). Lastly, note how CS underlines, by means of a
unique score, subjects with issues in tool consensus, in-
cluding imbalances in the number of sites or consensus
among tools (Fig. 3d and Table 3).
Site co-occurrence between callers revealed that

mutect2 detected up to 3 times more sites than other
tools, while muse and varscan shared approximately the
60% of their sites (Fig. 4a). The mutation co-occurrence
in each pair of subjects underlines similarities between

mutation profiles; this information is completed with an
estimation of the variability (coefficient of variation) of
such co-occurrences due to the use of different callers
(Fig. 4b). The package provides the possibility of
calculating, for every gene, the fraction of subjects with
at least one mutation, i.e. the gene mutation frequency
across subjects (f ), and its dispersion across callers. The
corresponding plot, obtained on BC TCGA sites, under-
lined the presence of some genes, including known BC
genes as GATA3 and CDH1, with a particularly higher

Fig. 5 Number of called sites at various filtering criteria. Number of mutation sites at varying tumor VAF for (a) the whole dataset (975 subjects)
and (b) in single subjects. c Number of sites at varying number of reads supporting the alternative allele in four subjects. a-c Results obtained on
BC mutations detected by TCGA
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variation of f (Fig. 4c): indeed, mutect2 and varscan2
detected much more sites than other callers in GATA3
and CDH1 (Fig. 4d).

Called sites and sequencing results
The variation of caller output at different cut-offs on
site-level quantities (e.g. minimum number of reads,
allele frequency) is informative of caller performance
and samples (subjects) specificities. This analysis can be
done by the function:

ese1 <- ese_allsubj(mut_sites$sites, type = “Site”)

The pipelines used to call mutations in TCGA BC
data show a different behaviour, especially at low
tumor variant allele frequency (VAF). In fact, in this
range, mutect2 calls more sites than other tools,
SomaticSniper detects almost half of mutect2 sites,
while muse and varscan2 show similar trend and are
halfway between mutect2 and SomaticSniper (Fig. 5a).
This global pattern is particularly relevant in some
subjects (Fig. 5b-c).

Collecting data from the TCGA
The function integrate_TCGA uses the R package
TCGAbiolinks [18] to collected data from the TCGA.
These data are used to support the mutation sites under
analysis with the possible evidence of availability of the
same sites among those already catalogued at TCGA,
which would be an additional evidence of site reliability.

Conclusions
The R package isma provides functions for the integra-
tive analysis of mutation sites detected by multiple pipe-
lines. It quantifies the consensus between somatic
mutation call pipelines, estimates pipeline variability and
biological variability, and underlines outlier features
(subject/tools) that may require further investigation.
Indeed, an outlier subject may reflect a biological
phenomenon (e.g. due to tumor genetic heterogeneity)
and/or an experimental problem (e.g. poor biological
sample, sequencing performance). The application of
isma on BC mutations from TCGA underlined relevant
variations among pipelines across subjects, with extreme
cases characterized by a very poor consensus. Relevant
imbalances among pipelines were also spotted at gene
level, which implies a significant variability in the esti-
mation of gene mutation frequency according to the
pipeline used. In general, mutect2 reported a higher
number of sites at low VAF in comparison to other
callers.
In conclusion, the knowledge emerging from the

analyses made possible by isma is useful to screen more
reliable mutation sites, carry out comparative analysis

among pipelines and, lastly, may suggest novel biological
insights.

Availability and requirements
Project name: isma
Project home page: https://www.itb.cnr.it/isma
Operating system: Platform independent
Programming language: R (> = 3.3.3)
Other requirements: The R Project for Statistical
Computing.
License: GNU General Public License (> = 2)
Any restrictions to use by non-academics: According
to GNU General Public License (> = 2)

Additional file

Additional file 1: TCGA barcodes. List of TCGA barcodes used in this
study. (TXT 33 kb)

Abbreviations
BC: Breast cancer; INDEL: Insertions, deletions; isma: Integrative somatic
mutation analysis; NGS: Next generation sequencing; SNV: Single nucleotide
variations; TCGA: The cancer genome atlas; VCF: Variant Call Format
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