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Abstract

Background: Next Generation Sequencing (NGS) experiments produce millions of short sequences that, mapped to
a reference genome, provide biological insights at genomic, transcriptomic and epigenomic level. Typically the
amount of reads that correctly maps to the reference genome ranges between 70% and 90%, leaving in some cases a
consistent fraction of unmapped sequences. This ’misalignment’ can be ascribed to low quality bases or sequence
differences between the sample reads and the reference genome. Investigating the source of the unmapped reads is
definitely important to better assess the quality of the whole experiment and to check for possible downstream or
upstream ’contamination’ from exogenous nucleic acids.

Results: Here we propose DecontaMiner, a tool to unravel the presence of contaminating sequences among the
unmapped reads. It uses a subtraction approach to identify bacteria, fungi and viruses genome contamination.
DecontaMiner generates several output files to track all the processed reads, and to provide a complete report of their
characteristics. The good quality matches on microorganism genomes are counted and compared among samples.
DecontaMiner builds an offline HTML page containing summary statistics and plots. The latter are obtained using the
state-of-the-art D3 javascript libraries. DecontaMiner has been mainly used to detect contamination in human
RNA-Seq data. The software is freely available at http://www-labgtp.na.icar.cnr.it/decontaminer.

Conclusions: DecontaMiner is a tool designed and developed to investigate the presence of contaminating
sequences in unmapped NGS data. It can suggest the presence of contaminating organisms in sequenced samples,
that might derive either from laboratory contamination or from their biological source, and in both cases can be
considered as worthy of further investigation and experimental validation. The novelty of DecontaMiner is mainly
represented by its easy integration with the standard procedures of NGS data analysis, while providing a complete,
reliable, and automatic pipeline.
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Background
Standard NGS data analysis procedures involve a pre-
processing step of quality assessment of the reads, fol-
lowed by the alignment of the filtered ones to a reference
genome. The mapped sequences are then investigated to
extract the relevant biological information, such as tran-
scripts expression, splicing events, nucleotide or struc-
tural variations and enriched regions of specific binding
sites. Typically, the amount of reads that correctly maps
to the specific reference genome ranges between 70%
and 90%, leaving in some cases a consistent fraction of
unmapped sequences.

The alignment process usually rejects two classes of
reads: those which map several times along the genome
(known as multimapped reads) and those which fail to
correctly map on the reference. The first case is mostly
due to the presence of repetitive elements, whereas the
latter can be ascribed either to technical errors of the
sequencing experiment, not detected or resolved through
the quality assessment step, or to sequence differences
between the reads and the reference. Investigating the
reasons for this discrepancy may provide relevant infor-
mation about the source of the so called unmapped reads.

As demonstrated by the literature, is not unusual that
genetic material of microorganisms is present in biolog-
ical samples undergoing sequencing [1–3]. The interest
in detecting microorganisms-derived sequences in high-
throughput data has grown up together with the knowl-
edge that commensal and pathogenic microbes play an
essential role in human health [4], thus fostering the pos-
sibility to find new disease-associated pathogens. Indeed,
it is well established that the interplay of genetic and
environmental factors determines the onset and progres-
sion of chronic diseases [5–8]. While the study of the
genes and their tight regulation is a topic under constant
investigation, the nature of the environmental compo-
nents, their interaction with the genome and their specific
role in physio-pathological mechanisms still represent a
challenge of biological research.

Several studies have contributed to the definition of
microbial populations in the human body as an impor-
tant environmental factor, able to regulate the cellular
behaviour and to influence the pathological processes
[9–12]. These studies mainly focused on the gut micro-
biome characterisation, for which the regulatory func-
tion is very well known. Indeed, diseases as diabetes
[13], coeliac disease [14, 15], obesity [16] and colorec-
tal cancer [17] have been associated to the variation of
the gut microbiome composition. The advent of high-
throughput technologies allowed to understand that also
other body sites, always considered sterile, such as lung,
stomach and breast, host peculiar indigenous microbial
populations [18–20]. Commensal microorganisms mostly
show beneficial properties, especially in immune system

homeostasis, but in particular conditions or predisposi-
tions can represent risk factors and are then defined as
’pathobionts’. The mechanisms by which these microor-
ganisms are responsible for the onset of some chronic
diseases are still unknown, although several studies have
characterised a tight communication with host cells and
identified the induction of DNA damage, chromosome
instability and aneuploidy [21].

In literature, there are many shreds of evidence of the
presence of contaminating organisms in high through-
put sequencing data. The exogenous sequences can derive
from the normal or altered tissues microbiome (upstream
contamination) or environmental contamination dur-
ing the samples processing (downstream contamination).
Upstream contamination has been reported by several
research groups which have used NGS techniques pur-
posely to discover exogenous agents in human tissues
samples and cell lines [22–25].

The detection of downstream contamination is equally
important, since it can help to check the quality of the
working environment and procedures. Strong et al. iden-
tified bacterial RNA, belonging to different taxa, in cell
line data of different sequencing experiments. Microbial-
derived sequences were present in polyA enriched RNA-
Seq data and this finding made authors hypothesize
that the exogenous reads did not derive from the spec-
imens themselves but from downstream contamination
[1]. Indeed, since bacteria are poorly polyadenylated
[26], the mRNA enrichment step should remove even-
tual upstream contamination. Interestingly, laboratory-
peculiar contamination has been found by a study which
illustrated how various sequencing centres had specific
signatures of contaminating genomes as ’time stamps’
[27]. Among the different NGS approaches, chromatin
immunoprecipitation experiments (ChIP-Seq) are partic-
ularly characterised by a low read mappability, having
very often a large portion (20-90%) of unaligned reads.
Unmapped ChIP-Seq reads from A. thaliana, Z. mays,
H. sapiens, and D. Melanogaster datasets were inves-
tigated and found contaminated by foreign sequences.
The authors characterised the contaminant organisms
and calculated the relative abundance for each dataset
by taxonomic classification [28]. Quality assessment of
the working environment is crucially important, since
sequence-based methods are particularly sensitive to
reagents and laboratory contamination. Mycoplasma con-
tamination, which is particularly worth of attention for
biologists, was searched in DNA sequences obtained from
The Thousand Genome Project [29] and was detected
in 7% of samples [30, 31]. Negative control libraries are
strongly recommended to check contaminant DNAs in
the context of high throughput sequencing, although they
have a limited ability to recover low-frequency contami-
nants [32]. Low-abundance microbes and novel sequences
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are often hidden by common contaminants of NGS exper-
iments, but their detection and characterization can be
pursued by a detailed analysis of the unmapped reads [33].
Besides the contamination within samples, another alarm
is represented by the cross-contamination among sam-
ples, that can invalidate the whole experimental protocol
as well. Ballenghien et al. very recently highlighted the
importance of examining NGS datasets for contamination
and identifying the most susceptible steps, to propose tar-
geted solutions. They uncovered indirect evidence that
the vast majority of cross-contamination events is ascrib-
able to sequencing centres [34].

Several tools, based on different computational
approaches, have been developed and used for the detec-
tion of pathogens in high-throughput sequencing data.
As far as we know, many of the available tools, such as
PathSeq [35], SURPI [36] and RNA-COMPASS [37], are
primarily aimed to the analysis of metagenomic data.
Consequently, their pipelines are not appropriate for the
detection of contamination among the unmapped reads.
Moreover, they have features that might prevent their
easy inclusion in an already established NGS analysis
pipeline: PathSeq, for example, requires a commercial
computing platform (i.e. Amazon Elastic Compute Cloud,
EC2). SURPI aims at detecting microorganisms in com-
plex clinical metagenomic samples, and, to this extent, it
uses the entire NCBI nt and/or NCBI nr protein databases
in comprehensive mode, requiring up to 2 terabytes of
free space for the reference data creation. RNA Com-
pass is specially designed for the simultaneous analysis
of transcriptome and metatranscriptome data. It offers
automation of analysis and works on the cloud and local
servers but it requires a cumbersome installation. Other
tools are DeconSeq [38], that works only on longer-read
metagenomic datasets (> 150 bp mean read length), or
CaPSID [39]. However, in order to reduce the required
time and computational efforts, CaPSID works on BAM
files provided by the user, who should take care of aligning
the sequences both to human and to each pathogen refer-
ence genome of interest. Approaches developed to clean
the fastq sequences from contaminants often require an
a-priori knowledge, as expected in FastQ Screen [40] or
contamination_screen [41], where the user must provide
the genome of each putative contaminating species.
Other tools, such as TruePure [42], have limits on the
input size and process only small subsets of a fastq file.

Here we propose DecontaMiner, a tool developed to
unravel the presence of contaminating sequences among
the reads that fail to map to the reference genome. We
described the first DecontaMiner prototype and analyzed
the results in a previous work [43]. Here we present a
more complete and mature version of the pipeline: the
DecontaMiner’s code was completely reorganized in a way
that permits to run all the processing steps separately.

This is an essential feature, since it lets the user inde-
pendently tune the parameters on the various analyzed
databases as well as filter the results on different thresh-
olds. Moreover, the code has been freely released for the
first time and a companion website is provided, that per-
mits an interactive visualization of the results. Unlike
the above-cited tools, DecontaMiner has been conceived
purposely to provide a method for investigating the pos-
sible foreign source of the unmapped reads. It does not
require commercial platform or complicated installation,
since it exploits several tools that are widely used by the
sequencing community. It does not have limits of reads
length and performs the alignment to several microorgan-
ism databases. It uses a subtraction approach in which
the sequences are first filtered accordingly to quality
parameters and then sequentially mapped to ribosomal,
mitochondrial and foreign organisms databases. Although
the experimental protocols provide a rRNA removal step,
often this procedure is not sufficient, due to the high
number of rRNA copies. The reads that do not map on
human genome are then mapped, through a local align-
ment algorithm (MegaBLAST), to bacteria, fungi and viral
genomes. DecontaMiner generates several output files to
track all the processed reads, and to provide a complete
report of their characteristics. The good quality matches
on microorganism genomes are counted and compared
among samples. Results are also generated as an offline
HTML page, containing interactive plots. Furthermore,
DecontaMiner provides an online page where the user
can upload the result files and, setting the desired thresh-
olds both on samples and detected contaminants, narrow
the search and view the aggregated results in different
charts. It is worth noting that, apart from being a tool for
examining the source of unmapped reads, DecontaMiner
can be also used as a pre-filtering step, i.e. to remove the
low quality and non-human reads before the alignment to
the reference genome. The strength of DecontaMiner is
the flexibility of its use, coupled with a complete, easy to
plug-in, and automatic pipeline.

Methods
DecontaMiner has been developed to work on one or
more samples, and both on paired- and single-end experi-
ments. The input is a directory containing all the samples
to analyze. The tool is composed of two main modules,
the first one involving the format conversion, filtering
and mapping steps, and the second one performing the
extraction and the parsing of the results. The first mod-
ule automatically and sequentially executes all the steps up
to the alignment to the microbial genomes. All the single
scripts belonging to this module are provided, allowing
the user to run them separately, depending on the needs
and data. The second module is composed of two parts,
one for the filtering of the BLAST alignment results,
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and one to collect the information accordingly to user
defined settings. The code is written in Perl, with bash
scripts to connect and launch the various submodules of
the pipeline. A schematic view of the pipeline is shown
in Fig. 1.

DecontaMiner has the following dependencies from
external tools: Samtools [44], FastX toolkit [45], Sort-
meRNA [46] and BLAST [47]. These softwares are widely
used by the NGS community. The input files are accepted
in fastq, fasta and bam formats, and this option deter-
mines the starting point of the pipeline. If a bam file is
given as input, it is converted first to the fastq format
and then to fasta. The quality parameters to retain or
discard reads can be set by the user to override default val-
ues. The sequences which pass the filtering step are then
aligned against the human ribosomal and mitochondrial
RNA using SortmeRNA, a software designed to this aim.
For DNA sequencing data it is sufficient to omit this step.

The hypothetical non-human sequences can then be
mapped to bacteria, fungi and viral genome databases
(NCBI nt) using the MegaBLAST algorithm and speci-
fying the alignment length and the number of allowed
mismatches/gaps. The BLAST databases have been cre-
ated downloading the sequences of the complete genomes
from the RefSeq repository through the biomartr 0.7.0 R
package [48]. The fasta files have then been assembled as
blast databases trough the blast command “makeblastdb”.
The databases are available for download at the Decon-
taMiner website. The user can also create its own db and
provide it to the tool, simply indicating the absolute path
in the configuration file.

The output from the BLAST alignment step is in tabular
format and contains all the matches satisfying the align-
ment criteria. Additionally, the files containing the reads
discarded along the overall pipeline are also generated.

Fig. 1 The DecontaMiner pipeline. The tools and the relative
functions, input and output file formats are shown. The outputs are
grouped in three main directories: ‘Low quality’, ‘Ambiguous’ and
‘Valid’, which collect the result files of each analyzed sample

Hence, low quality, rRNA/mtRNA-mapped, ambiguous
and unaligned reads are all stored, to allow users to trace
every single unmapped read along the whole process. To
execute the second module some thresholds must be spec-
ified. In particular, the user must indicate the match count
threshold (MCT), i.e. the minimum number of total reads
successfully mapped to a single organism to consider it as
a contaminant. The default is five, a very low threshold, so
that the user can have the whole list of the possibly sig-
nificant detections. However it is highly recommended to
tune this parameter based on the size of the database, and
the aim of the performed analyses. The uniqueness of the
mapping is evaluated at the genus level, i.e. considering
ambiguous two reads perfectly mapping on different gen-
era. The results are extracted and organised both by genus
and species annotation.

The result files are collected and grouped in three main
output directories: ’Low quality’, which contains, for each
sample, reads not compliant with the filtering parameters
(i.e. length of alignment, number of allowed gaps and mis-
matches); ’Ambiguous’, containing, for each sample, the
reads list and the tables of the ambiguous reads (i.e. paired
reads not aligning on the same organisms, or reads show-
ing correct matches with more than one genus); ’Valid’,
containing tables and match counts of the alignment sat-
isfying the filtering and collecting criteria. Additionally, a
matrix reporting the percentage of species detected above
a specified count threshold is produced and stored in this
directory. This matrix, containing the distribution of con-
taminating organisms in all the samples, can be used to
easily create a bar plot or other desired charts. Besides,
DecontaMiner builds an offline HTML page containing
summary statistics and plots, for the overall experiment
and each sample. The interactive plots are obtained using
the D3 javascript libraries [49].

DecontaMiner code is freely available for down-
load at the website http://www-labgtp.na.icar.cnr.it/
decontaminer, together with a toy example and the user
guide. Furthermore, it is possible to upload the matrix file
into a dedicated area of the above cited DecontaMiner
online website. This functionality allows users to filter
the results and narrow the search of interesting contam-
inants by selecting a subset of samples and/or setting up
thresholds for the contaminants abundance.

Results
This section is organised as follows: the first part is a short
comparison on synthetic data between DecontaMiner and
other available tools, in which we discuss what are the
features that make DecontaMiner the best choice to detect
and analyze contamination in unmapped NGS data; the
second part is devoted to the analysis of the biologi-
cal results obtained by the tool on two different NGS
datasets.

http://www-labgtp.na.icar.cnr.it/decontaminer
http://www-labgtp.na.icar.cnr.it/decontaminer
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Table 1 DecontaMiner, TruePure and FastQScreen feature
comparison

DecontaMiner TruePure FastQScreen

Input type: bam � × ×
fastq � � �
fasta � � ×
Multiple samples
processing

� × ×

Paired end
processing

� × ×

Unlimited input � × ×
User defined
databases

� × �

Read tracking � × ×
Parameter tuning � × ×
Runs on HPC � × �
Visual output � � �

Accuracy assessment and comparison with other tools
We decided to compare DecontaMiner against CaPSID
[39], FastQ Screen [40], and TruePure [42], since they
are, to the best of our knowledge, the only software per-
forming a similar contamination check. Unfortunately, it
has been impossible to successfully install CaPSID: the
tool relies on very old versions of the underlying soft-
ware, and seems as not maintained since 2012. In Table 1
the principal features of the three compared software
are shown. It is worth noticing that DecontaMiner is
the most flexible and complete tool: it allows for multi-
ple samples processing at the same time, in several input
formats; it process paired-end reads, enforcing the con-
sistency of contamination detection (two mate pairs must
align on the same organism to be counted as a match);
it does not have any limitation on the number or size of
input samples, and supports any kind of contaminating
organisms database provided in blast index format. Addi-
tionally, Decontaminer gives the possibility to check the
quality of the reads and filter them accordingly. When

screening for contamination in a human samples, Decon-
taMiner performs a preprocessing step of mitochondrial
and ribosomal reads removal, to avoid false detections due
to the high number of copies of these RNAs and similar-
ity of those sequences among different species. It is also
possible to fine-tune the DecontaMiner stringency setting
different parameters to filter the BLAST output according
to the user demand. On viral genomes, for instance, it is
important to allow gaps or mismatches, thus taking into
account their high variability with respect to the reference.
Another important feature of DecontaMiner is the possi-
bility to have different views of the data: a coarse-grained
one at the sample level, and a fine-grained view at the level
of the single reads.

To test the level of accuracy of DecontaMiner and to
compare its performances with the other softwares, a syn-
thetic sample was generated using the InSilicoSeq tool
[50]. The test file contains reads coming from the human
genes (≈ 77.5% of the total), from ten bacterial (≈ 18.1%),
nine viral (≈ 4.1%) and four fungal (≈ 0.3%) genomes.
About one million reads were generated, but, since only
DecontaMiner supports paired-end processing, the file
was split into two, and only half a million single-end reads
were considered. Moreover, only DecontaMiner is able to
process the whole file: TruePure manages no more than
ten thousand reads, and FastQScreen one hundred thou-
sand. Obtaining comparable results was not an easy task:
TruePure and its provided extraction tool do not extract
randomly the reads from the input file, but simply take the
first ten thousand. Being the human reads at the begin-
ning of our input file, no contamination at all was initially
detected by TruePure. To evaluate the accuracy of the
results, a five-thousand reads file containing the same
fraction of genomes of the whole input was manually built
and given in input to TruePure.

TruePure uses internal databases that can not be
changed or updated, whereas DecontaMiner and
FastQScreen were tested on the complete Bacte-
ria/Fungi/Viruses databases obtained form NCBI.
FastQScreen gives the possibility to choose among
three different aligner (BWA, Bowtie, and Bowtie2) and

Table 2 Sinthetic reads compared to DecontaMiner, TruePure and FastQScreen detected reads

Simulated data DecontaMiner TruePurea FastQScreenb

Read % Valid % Sequences % One hit/one %
counts reads found genome

Bacteria 99816 80.28 80527 92.73 975 80.25 13986 86.41

Fungi 2011 1.62 47 0.05 0 0 3 0.02

Viruses 22504 18.1 6263 7.22 240 19.75 2196 13.57

Total 124331 100 86837 100 1215 100 16185 100

aThese are the results on the manually curated input file;
bFor FastQScreen only the hits mapping on a single genome are shown
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Table 3 Species detection: precision and recall for DecontaMiner,
TruePure and FastQScreen

DecontaMiner TruePurea FastQScreenb

Precision Recall Precision Recall Precision Recall

Bacteria 0.82 0.9 0.67 1 NA NA

Fungi 1 1 0 0 NA NA

Viruses 0.92 1 0.53 0.89 NA NA

aThese are the results on the manually curated input file
bFastQScreen does not provide a detailed report on the distribution of the hits found

requires the specific index files of the reference genomes,
but it fails to manage the large indexes created by Bowtie
and Bowtie2 in case of genomes greater than 4 billion
nucleotides in length. The results are summarised in
Table 2 and in Table 3. The comparison among the soft-
wares was not straightforward, since FastQScreen does
not provide information on the single species distribu-
tion, but only an overall result. In Table 2 the simulated
data read counts and fraction on the non-human species
are reported, alongside the results obtained by the three
softwares. Although working on a manually curated input
TruePure was not able to detect fungal contamination,
while extracting correct percentages of bacterial and viral
contamination. FastQScreen detects also the fungal con-
tamination. Both FastQScreen and DecontaMiner detect
lower percentages of fungal and viral contamination, and
a higher bacterial one. Nonetheless, the results of Decon-
taMiner in terms of correctness are very high, as Table 3
shows. It is worth to note that DecontaMiner is able to
give a very detailed species report while working on the
complete databases and on a half million reads. TruePure
results are biased, since the read in the input file were

manually chosen to be representative of all the species.
Nonetheless, the tool is not able to detect at all the fungal
contamination, and misses one of the viruses. Details on
the used data, and the obtained results are available in the
Additional file 1.

Tests on biological data
The DecontaMiner pipeline has been tested on two pub-
licly available datasets downloaded from the GEO (Gene
Expression Omnibus) portal. These datasets have also
been used to test the first prototype as described in
[43]. However, the pipeline has changed since then, and
the NCBI databases of contaminant organisms as well.
The first dataset (GSE69240) contains 25 pure HG-DCIS
(High-Grade Ductal Carcinoma In Situ) and ten normal
breast organoids samples. RNA was polyA enriched, and
76 nt paired-end sequencing was performed. The sec-
ond dataset (GSE68086) contains 228 samples plus two
replicates of six different malignant tumors and 55 sam-
ples plus two replicates of healthy donors. Total RNA
from blood platelets was sequenced in a single-end mode
and with 101-bp reads. The data in SRA (Sequence Read
Archive) format were downloaded and converted to fastq
format using the SRAToolkit [51].

The reads quality was assessed by FastQC [52]. FastQ
files were aligned to the reference genome (assembly
hg19) using the fast splice junction mapper TopHat [53]
guided by UCSC gene annotation. The alignment statis-
tics were checked by SamStat [54]. The reads which failed
to map were stored in a separate bam file for each sam-
ple and put in the same directory, given as input to
DecontaMiner. The samples from the dataset GSE69240
show a good and consistent mapping rate for all the
samples, and, as expected, we did not observe matches

Fig. 2 Overall read mapping rate distribution (GSE68086) Area chart showing the mapping rate of the GSE68086 dataset samples. The amount of
mapped reads ranges from 45.5% to 94.2%, indicating a great variability among samples
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Fig. 3 Bacterial abundance in the tumoral samples. The heatmaps show the relative abundance of bacterial species in 4 tumor types: breast cancer
(a), GBM (b), Lung (c) and digestive system cancers (d). Bacteria with a match count ≥ 100 and a relative abundance ≥ 5% in at least one
sample/group are shown. P. Acnes is highlighted by a dot in all groups, being the most abundant contaminant. The heatmaps are generated by the
DecontaMiner offline HTML page and online website
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Table 4 Number of contaminating genera and species having at
least one hundred matches, and a relative abundance ≥ 5% in at
least one sample/group are shown, for each of the three
considered kingdoms and for Tumor and Control samples

Tumors Controls

Genus Species Genus Species

Bacteria 100 199 57 91

Fungi 12 15 8 10

Viruses / 9 / 7

to contaminating genomes. We also lowered the analy-
sis stringency with respect to allowed mismatches and
gaps (2 for each), obtaining the same outcome. This result
totally agrees with the experiment characteristics. More-
over, to confirm DecontaMiner’s results, we processed
the same samples with FastQScreen, obtaining the same
outcome. Indeed, an efficient polyA enrichment and a
sterile environment should guarantee contamination-free
samples. The absence of matches may suggest a sterile
working environment and careful experimental processes.
The mapping rate of GSE68086 samples, instead, shows a
high variability (Figs. 2 and 3).

The number of unmapped reads range from 5 to 40%
and show several matches to microorganism genomes.
Only contaminants having at least 100 matches were
retained for further investigations (MCT = 100). Among
them, we considered only organisms having a relative
abundance ≥ 5% in at least one sample of the two groups.
These settings were chosen to avoid weak detections, and
to extract only contaminations significant across all the
samples. A summary of the obtained results is reported
in Table 4.

It is evident that tumur samples show a higher
number of detected microorganisms than the con-
trol samples. The quality parameters set to filter the
BLAST alignments were very stringent: match length
equal to the read length; no gaps; no mismatches.
Collecting the results obtained from the alignment
to bacterial genomes, we observed many matches to
Propionibacterium Acnes in almost all samples, both from

tumors and healthy donors, suggesting the possibility
of either a downstream or a common blood platelets
contamination (Figs. 3-4).

Indeed, as reported by literature, P. acnes is a ubiq-
uitous bacterium and its presence has been detected in
human tissues, hospital devices, lab reagents and envi-
ronment [55]. Furthermore, bacterial contamination of
blood components is one of the most challenging issues
of transfusion medicine and sepsis [56, 57]. Bacteremia
diagnosis can be performed by using NGS approaches
[58, 59]. Propionibacterium Acnes is considered to be one
of the most frequent contaminants of platelet concen-
trates [60, 61]. Except for the background contamination
of Propionibacterium Acnes, some samples seem to be
more contaminated than others, suggesting a different
timing of sample processing, or an upstream rather than
downstream contamination. In particular, these contam-
inations involve E. coli and several species of Staphylo-
coccus and Acinetobacter genera. Multiple studies have
demonstrated that pathogenic E. coli strains can be related
particularly to gastrointestinal cancers, since these strains
have the potential to transform enterocytes by cyclo-
modulin toxin effects and promote the development of
cancer [62, 63]. Also almost all healthy control sam-
ples show a remarkable amount of Propionibacterium
genus (Fig. 4), strengthening the hypothesis of a down-
stream contamination during sample processing. Along
with it, also Paeniglutamicibacter is clearly present in
some of the samples. Reclassification of some species of
the genus Arthrobacter into novel genera, among which
Paeniglutamicibacter, have been recently proposed [64].
The Arthrobacter genus belongs to the Actinobacteria
phylum and is found primarily in soil.

Compared to bacteria, a more modest amount of reads
aligned to fungal genomes. Both tumor and healthy sam-
ples show, as most predominant species, fungi and yeasts
that can be ascribed to environmental contamination
(Fig. 5). In particular, Wickerhamomyces species are often
recovered from arboreal habitats [65, 66]. Malassezia
species are skin commensal and frequently found as
laboratory reagent contaminants [67, 68]. Penicillium,

Fig. 4 Bacterial abundance in the healthy samples. The dot chart shows the relative abundance of bacteria, grouped by genus. Only genera with a
match count ≥ 100 and a relative abundance ≥ 5% in at least one sample are shown. The dot size is proportional to the abundance. The most
relevant bacteria belong to the Paeniglutamicibacter and Propionibacterium genera. The dot charts are generated by the DecontaMiner offline html
page and online website
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Fig. 5 Fungi contamination in tumor and healthy groups. The stacked bar chart shows the fungal genera having an average value in all groups
≥ 10%, considering tumor and healthy (HC) groups. Bars are stacked by the group for which the contaminating organism (x-axis) has been
detected. The y-axis scale reports the sum of the values in all the samples. Groups are ranked in a increasing order, in terms of contaminant
abundance, from the bottom to the top. The stacked bar charts are automatically generated by the DecontaMiner online companion website

mostly present in healthy samples, is a common air
contaminant [69].

Concerning viruses, we predominantly found matches
to Enterobacteria phage, and, to a lower extent, to Pro-
pionibacterium phage and Staphylococcus phage. This
result can be considered a further confirmation of the
detection of the bacterial species, since bacteriophages
are commonly found where their bacterial hosts are
present, including the human body [70], but also it
suggests the presence of cloning vectors contamination.
Another finding worth to be mentioned is the alignment
of some samples to the human Herpes virus. Associ-
ation of this particular virus with cancer and its fea-
sible etiologic role in tumorigenesis have been largely
studied [71, 72].

Conclusions
DecontaMiner is a tool designed and developed to inves-
tigate the presence of contaminating sequences in NGS
data. It analyzes the sequences rejected during the align-
ment to the reference genome, the so called unmapped
reads. The sequences in input can be in fastq, fasta or
bam format. Hence, DecontaMiner can be used both as
a filtering tool, to remove foreign reads from the raw
sequencing file, usually in fastq or fasta format, and as a

detection tool to identify contaminating sequences among
the unmapped reads, generally stored in a bam file.

The novelty of DecontaMiner is mainly represented by
its easy integration with the standard procedures of NGS
data analysis, thus making DecontaMiner a useful tool for
additional investigation of the data and condition under
study. We assessed the accuracy of DecontaMiner on a
synthetic dataset that was also used to compare its perfor-
mances with similar tools: the results show that Decon-
taMiner is both reliable and precise, while being highly
flexible in the choice of databases and filtering parame-
ters. To test the functionality of our tool on real data, we
used two different RNA-Seq datasets. The lack of matches
to microorganisms in the case of the polyA-RNA samples
(GSE69240) was in perfect agreement with the nature of
the experiment. The reliability of our pipeline was further
tested on a dataset of total RNA sequencing (GSE68086)
of tumor and healthy samples. We found in almost all the
samples a background contamination of P. Acnes, which
is very well known as common contaminant of hospi-
tal and laboratory environments. From the alignment to
fungal and virus genomes the matches were very modest
compared to bacteria, although the mapping to bacterio-
phages was in agreement with what we found as bacterial
contamination.
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In conclusion, DecontaMiner can suggest the presence
of contaminating organisms in samples sequenced by
NGS, that might derive either from laboratory contami-
nation or be part of their biological source, and can be
considered as worthy of further investigation and experi-
mental validation.

Additional file

Additional file 1: This Excel file includes several sheets containing all the
details on the data used for the accuracy assessment and the comparison
with other tools, and the obtained results. (XLSX 139 kb)
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