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Abstract

Background: The segmentation of a 3D image is a task that can hardly be automatized in certain situations, notably
when the contrast is low and/or the distance between elements is small. The existing supervised methods require a
high amount of user input, e.g. delineating the domain in all planar sections.

Results: We present FitEllipsoid, a supervised segmentation code that allows fitting ellipsoids to 3D images with a
minimal amount of interactions: the user clicks on a few points on the boundary of the object on 3 orthogonal views.
The quantitative geometric results of the segmentation of ellipsoids can be exported as a csv file or as a binary image.
The core of the code is based on an original computational approach to fit ellipsoids to point clouds in an affine
invariant manner. The plugin is validated by segmenting a large number of 3D nuclei in tumor spheroids, allowing to
analyze the distribution of their shapes. User experiments show that large collections of nuclei can be segmented
with a high accuracy much faster than with more traditional 2D slice by slice delineation approaches.

Conclusions: We designed a user-friendly software FitEllipsoid allowing to segment hundreds of ellipsoidal shapes in
a supervised manner. It may be used directly to analyze biological samples, or to generate segmentation databases
necessary to train learning algorithms. The algorithm is distributed as an open-source plugin to be used within the
image analysis software Icy. We also provide a Matlab toolbox available with GitHub.
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Background
Starting observation
Segmenting ellipsoidal structures in 2D or 3D imagescan
be used to characterize the shape of organs, tissues, cells,
nuclei or other cell organels [1–3], or serve as an initializa-
tion for more advanced algorithms such as active contours
[4–7].
While fully automatic detection algorithms [8–11] are

probably the ideal tool to limit subjectiveness and time
of analysis, existing strategies are not sufficient to pro-
vide convincing segmentation results when images suffer
from strong degradations (e.g. blur, noise, low resolution)
or contain densely packed objects. In addition, automatic
methods usually require tuning a few parameters, which
may be more time consuming than using a simple super-
vised segmentation algorithm. Finally, the generation of
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learning databases or gold standards to test and compare
existing segmentation algorithms still requires efficient
supervised algorithms. Unfortunately, to the best of our
knowledge, there currently exists no such freely available
tool, which would benefit many different communities.

Contributions
These few considerations motivated us developing two
simple plugins for the Icy image analysis software [12] that
are based on a novel computational approach. They are
dedicated to fitting ellipses in 2D images or ellipsoids in
3D images. The objectives of this paper are to present the
methodology and describe the plugin for 3D ellipsoids.
The core of the algorithm consists in solving the well

studied problem of ellipsoid fitting from point clouds.
This is a notoriously difficult problem that attracted the
attention of researchers from different fields such as com-
puter vision, statistics or numerical analysis, to name a
few [13–26]. We propose an original and robust compu-
tational algorithm that shares the same spirit as a recent
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work [26], but significantly outperforms it when the ellip-
soids are not centered or anisotropic. An important fea-
ture of the proposed algorithm is affine invariance: the
point cloud is registered prior to computation, ensuring a
robust behavior whatever the shape of the point cloud.
The proposed algorithms are shared not only within

the Icy plugin, but also through a set of Matlab codes
delivered on a Github repository [27]. To the best of our
knowledge, FitEllipsoid is the first open-source toolbox
that allows fitting ellipsoids and notmore general quadrics
(e.g. hyperbolas).
In order to showcase the usefulness of the plugin, we

propose to examine the morphology and the distribution
of shapes of nuclei in a 3D tumor spheroid. Are they rather
elongated, spherical or none of these? Using FitEllipsoid,
we obtained the shape of hundreds of nuclei from 3D
SPIM images of optically-cleared spheroids.

Implementation
Specifications
The main objective of this plugin is to provide users an
accurate segmentation of ellipsoidal objects, while satisfy-
ing the following constraints:

• permit 3D visualization to allow for visual inspection
of the segmentation,

• minimize the time required for user interaction. This
is particularly important in biology where hundreds
or thousands of objects have to be analyzed routinely,

• export the results as files that other programs can use
for further processing,

• deliver a free and open-source software.

Description
The need for a free software dedicated to biomedical
imaging oriented us to the recently developed imaging
tool Icy [12]. It is based on VTK (Visualization ToolKit)
[28], allowing for nice 3D visualization.
An ellipsoid can be represented in different ways:

• A center (3 parameters), three angles of rotations and
the length of each axis (3 parameters).

• A center (3 parameters), the three axes (9 parameters
linked through orthogonality relationships) and the
length of each axis (3 parameters).

• A center (3 parameters) and a positive symmetric
definite matrix (6 coefficients).

Unfortunately, none of these representations can be eas-
ily used by a human. For instance, finding the center of
the ellipsoid precisely by just looking at the image would
result in inaccurate results.
The strategy that is adopted in FitEllipsoid is to ask the

user to select a few points in 3D on the object’s bound-
ary and the plugin then creates an ellipsoid that passes

through them approximately. In order to select points on
the object boundary, we let the user select points on 3
orthogonal 2D views (see Fig. 1).
In theory, it is possible to reconstruct an ellipsoid per-

fectly when knowing as little as 9 points in generic posi-
tion lying on its surface (see the Additional file 1 for a
detailed discussion). The estimation with just 9 points
may be unstable to noise, which cannot be avoided due to
imperfect pixel selection by the user. We therefore let the
user select as many points on the boundary as desired.
Orthogonal views are probably the easiest way to inter-

act with a 3D environment and their use is very common

Fig. 1 Selecting points in the orthogonal views on a synthetic 3D
image. Top: in red the points selected by the user. Bottom: the 3
orthogonal views. By convention the views are (clockwise from top
left) in the respective planes (XY, YZ, XZ)
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in biomedical imaging (see e.g. [29]). The user first selects
a point in 3D space to define the 3 planes of interest and
then locks the views to click on a few points on each plane.
The operation can be repeated on multiple orthogonal
views to sample the object surface more uniformly. When
enough points have been selected, an algorithm described
in the next section fits an ellipsoid to the point cloud. The
operation can be repeated in the case when multiple ellip-
soids have to be fitted. The result obtained by the point
selection from Fig. 1 is displayed in Fig. 2.
Apart from the 3D visualization, the ellipsoids parame-

ters (center, axes orientations and length of axes) are saved

Fig. 2 Fitting result on the synthetic 3D image of Fig. 1. Top:
orthogonal views. Bottom: 3D rendering

in a CSV file that can be read using standard spreadsheets
or scientific computing softwares. In addition, it is pos-
sible to save a 3D binary image indicating the interior of
each ellipsoid.

Tutorial
A video tutorial is provided here http://youtu.be/
MjotgTZi6RQ. It describes the main features of the
plugin.

Mathematical description
Given a set of n points X = (xi)1≤i≤n in Rd, where d = 2
or 3, the objective of this section is to describe a fast and
robust algorithm to fit an ellipsoid to those points. This is
a longstanding problem studied in more than 40 journal
papers. We refer to the book [25] for a more comprehen-
sive overview. Two main approaches have been proposed
to solve it.

The geometric approach This method was proposed
in [13, 16, 22]. It consists in finding an ellipsoid E that
minimizes the following least squares problem:

F(E) =
n∑

i=1
dist(xi,E)2, (1)

where dist(xi,E) = infx∈E ‖x − xi‖ is the Euclidean dis-
tance from the point xi to the ellipsoid E. While this
formulation has a clear geometrical meaning, it suffers
from being highly nonconvex. Designing global minimiza-
tion methods is therefore heavy from a computational
point of view.

The algebraic approach This method is the one adopted
in this paper. An ellipsoid E can be represented by a triplet
(A, b, c) through an implicit equation of the form

E =
{
x ∈ Rd, 〈x,Ax〉 + 〈b, x〉 + c = 0

}
, (2)

where A ∈ Rd×d is a symmetric positive definite matrix,
b ∈ Rd is a vector and c ∈ R is a scalar.
The algebraic approach consists in minimizing the fol-

lowing residual

G(X,A, b, c) =
n∑

i=1
(〈xi,Axi〉 + 〈b, xi〉 + c)2, (3)

over a set M of admissible triplets (A, b, c). The sole pos-
itive definiteness condition A � 0 is not sufficient since
the infimum of G over the set of positive semi-definite
matrices is (A, b, c) = (0, 0, 0). It is necessary to add a
normalization condition to avoid the trivial solution. Var-
ious possibilities have been considered in the literature.
We follow the approach proposed in [17] that consists in
imposing Tr(A) = 1. This choice has the advantage of
leading to a convex constraint, allowing to design efficient

http://youtu.be/MjotgTZi6RQ
http://youtu.be/MjotgTZi6RQ
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Fig. 3 A family of ellipses passing through 4 points. In dimension
d = 2 the minimum number of points necessary to ensure
uniqueness is n = 5

numerical algorithms. Overall, the optimization problem
considered here reads

min
(A,b,c)∈M

G(X,A, b, c), (4)

where M ={
(A, b, c) ∈ Rd×d × Rd × R,A � 0, Tr(A) = 1

}
.

The interests of this specific formulation are the follow-
ing:

• There exists at least one minimizer. Moreover if the
number of points n satisfies n ≥ d(d + 1)/2 + d and
the points are in generic position, then the minimizer
is unique, see Fig. 3 in 2D for an illustration and the
Additional file 1 for a proof.

• The minimizer is covariant to translation and rota-
tion of the input point locations X. More precisely, let
Ê denote the ellipsoid solution of (4) and Ê′ denote the

ellipsoid obtained by solving (4) with input coordinates
X′ = (x′

i)1≤i≤n, where x′
i = Rxi + t, R ∈ Rd×d is a rotation

matrix and t ∈ Rd is a translation vector. Then Ê′ = RÊ+t.
The proof of this property is detailed in the Additional
file 1.

A numerical algorithm
In [17], Calafiore suggested reformulating (4) as a semi-
definite program and using interior point type methods
to solve it. This type of algorithm is known to be robust
and reliable but is rather hard to implement. Moreover,
common primal-dual interior point methods [23] have
a complexity that does not scale well with the number
of input data points n. Based on this observation, Lin
and Huang [26] designed a method based on the alter-
nating direction method of multipliers (ADMM) to solve
problem (4). While the per-iteration complexity of this
approach is lower than that of interior point methods, the
number of iterations is hard to control from a theoret-
ical point of view, and we will show through numerical
experiments that it can be very large to yield satisfactory
solutions. We propose a more robust approach in what
follows.
In 2D, the fact that the point xi belongs to an ellipse rep-

resented by (A, b, c) can be rewritten in the compact form
(see e.g. [13]):

〈di, q〉 = 0,

where

di =
(
xi[ 1]2 , xi[ 2]2 ,

√
2xi[ 1] xi[ 2] , xi[ 1] , xi[ 2] , 1

)T
,

q =
(
a1,1, a2,2,

√
2a1,2, b1, b2, c

)T
,

and we denote xi[ j] the j-th coordinate of the point xi.
Now, lettingD =[ d1, . . . , dn], the objective functionG can
be rewritten as

G(X, q) = ‖DTq‖2. (5)

Fig. 4 Synthetic spheroid used to assess the plugin’s accuracy. Left: the 3 orthogonal views, Right: 3D rendering
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Table 1 Segmentation time and accuracy for 3 different users

Time (s) Center (px) Angle (deg) Length (px)

User 1 25.7± 3.1 1.08 ± 0.32 4.6 ± 1.5 1.07 ± 0.41

User 2 26.1± 5.0 0.90 ± 0.35 5.9 ± 2.5 0.54 ± 0.35

User 3 20.9± 3.3 1.01 ± 0.36 4.9 ± 1.7 0.68 ± 0.36

The number after the sign ± represents the standard deviation

Fig. 5 Segmentation of a cell nucleus on a real 3D image. From top to
bottom: the points selected on the 3 orthogonal views, 3D rendering
of the result of the segmentation

In 3D, a similar decomposition can be performed, see
details in the Additional file 1.
Letm = d(d+1)/2+d+1 denote the number of param-

eters in q. The set of admissible vectors Q is defined as

Q = {
q ∈ Rm, Tr(A(q)) = 1,A(q) � 0

}
, (6)

where A : Rm → Rd×d is the linear mapping that asso-
ciates matrix A to vector q. With the proposed notation,
problem (4) simplifies to the following convex problem:

min
q∈Q ‖DTq‖2. (7)

We solve (7) using the Douglas-Rachford algorithm,
which was first proposed by Lions and Mercier [30]. The
details are presented in the Additional file 1.

Invariance to affine transformations
Non invariance of the Algorithm
As discussed above, the minimizers of (7) are covariant
to isometries. However the algorithm is not, this is illus-
trated in the Additional file 1. Moreover, the solutions of
(4) are not invariant to affine transforms, which would be
a desirable property. We propose to address both issues
below. Similar ideas were proposed in [15] for the specific
case of spheres.

Ensuring invariance using the SVD
In order to ensure invariance of the algorithm we change
the coordinate system and work with a point cloud that
is centered with covariance matrix equal to the identity.
We obtain an ellipsoid in the modified system and finally
map it back to the original one. This can be achieved
using a singular value decomposition, as explained in the
Additional file 1.

Results
Performance of the optimization algorithm
We report in the Additional file 1 experiments and com-
parisons on 2D data, as well as a robustness to noise
study in 3D. We show that our numerical approach never
requires more than 200 cheap iterations to reach machine
precision, while the unnormalized method can require
arbitrarily large computing times depending on the points
set location. In addition, we provide comparisons with
the simpler LLS algorithm [14] and show an improved
robustness to noise.

Segmentation experiments on synthetic data
In order to assess the plugin’s efficiency in terms of: accu-
racy, reproducibility and time of user’s interaction, we
designed a synthetic 3D image composed of 145 oblate1
ellipsoids mimicking a tumor spheroid, see Fig. 4. This
image can be reproduced using the codes available on
GitHub. The image was blurred with a Gaussian kernel
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Fig. 6 Segmentation of cell nuclei on a real 3D image. From left to right: the segmented ellipses on the 3 orthogonal views, 3D rendering of the
result of the segmentation, 3D rendering of the binary image provided by the plugin

of standard deviation equal to 1.5 pixel, to mimick what
happens on a real microscope. Three users were asked to
segment all the ellipsoids, and to time their task. The seg-
mentation results were then compared with the ground
truth. The results are displayed in Table 1. The column
labelled ’time’ displays the average time spent by the user
(in seconds) to segment one ellipsoid, the column ’cen-
ter’ provides the average error (in pixel) between the true
location of the center and the estimated one, the column
’angle’ corresponds to the average error (in degrees) of
the orientation of the minor axis, and the column ’length’
corresponds to the average error (in pixels) on the 3 axes
lengths.
Notice that the accuracy on the center location and on

the axis length is below the resolution of 1.5 pixel. It is
then possible to claim that our plugin allows to obtain
subresolution results for perfectly ellipsoidal objects in a
few seconds. Note that this time is the time required for
the user to select the points, the computation time is in
fractions of a second. In addition, the angular accuracy is
also satisfactory, suggesting that the plugin can be used to
analyze the geometry of large collections of objects.

Segmentation experiments on real 3D tumor spheroids
The plugin FitEllipsoid was used to segment cell nuclei
in spheroids. We show in Figs. 5 and 6 two examples

of 3D tumor spheroids. The one in Fig. 5 is a spheroid
with a large diameter of 500 microns leading to a poor
image quality due to light scattering and absorption.
Figure 6 presents a smaller spheroid with a diameter of
150 microns.
The biological question we addressed was to estimate

the distribution of shapes of nuclei, through the estima-
tion of their semi-axes lengths �1 ≥ �2 ≥ �3. Two different
experimental conditions have been explored: untreated
freely-grown spheroids and spheroids treated for 8h with
Latrunculin, a drug targetting actin cytoskeleton.
We used FitEllipsoid to segment n = 708 nuclei from

x = 19 control spheroids and n = 266 nuclei from
x = 7 spheroids treated with Latrunculin. We display
a 2D-histogram of the joint distribution �2/�1 vs �3/�2
for each condition in Fig. 7. A prolate spheroid (a rugby
ball) satisfies �3/�2  1 and �2/�1 < 1 and on this
graph, it corresponds to a point on the right boundary
of the unit square. An oblate spheroid on its side, satis-
fies �3/�2 < 1 and �2/�1  1. It corresponds to a point
on the top boundary of the square. The sphere coin-
cides with �3/�2 = �2/�1 = 1, which is the top-right
corner.
On the histograms, we can observe that the distribu-

tion is denser along the diagonal, and that there is no clear
trend towards a prolate or oblate shape. It is however clear

Fig. 7 Analysis of the nuclei geometry for control and Latrunculin treated spheroids. Left and center: 2D histograms representing the ratio �2/�1 vs
�3/�2 for the control (left) and the treated spheroids (center). The red cross indicates the mean of the distribution. Right: 1D histograms of the
aspect ratio �3/�1 for the control and treated spheroids
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that the nuclei are not spherical. The 1D histograms on
the right of Fig. 7 shows that the aspect ratio (defined as
�3/�1) of a nuclei is shifted towards 1 when going from
the treated to the control spheroids. The average aspect
ratio is 0.58 for the control spheroid and 0.63 for the
Latrunculin treated spheroid.
Overall we see that the plugin allows to distinguish

subtle but statistically significant changes of shapes.

Conclusions
FitEllipsoid is a powerful tool for supervised ellipsoids
segmentation, with a user-friendly interface. The compu-
tational part of the software is based on a novel algorithm
that is invariant under affine transforms. It allowed to
segment hundreds of cell nuclei in order to analyze statis-
tically their shape.

Endnote
1We used this geometry since we thought that it would

correspond to what is observed in real tumor spheroids.
We will see later that this is actually not the case.

Additional file

Additional file 1: This file contains mathematical facts and proofs
regarding our approach, the detailed algorithms, and quantitative 2D and
3D comparisons with other approaches. (PDF 496 kb)
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