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Abstract

Background: Dermoscopy is one of the common and effective imaging techniques in diagnosis of skin cancer,
especially for pigmented lesions. Accurate skin lesion border detection is the key to extract important dermoscopic
features of the skin lesion. In current clinical settings, border delineation is performed manually by dermatologists.
Operator based assessments lead to intra- and inter-observer variations due to its subjective nature. Moreover it is a
tedious process. Because of aforementioned hurdles, the automation of lesion boundary detection in dermoscopic

object of interest.

images is necessary. In this study, we address this problem by developing a novel skin lesion border detection
method with a robust edge indicator function, which is based on a meshless method.

Result: Our results are compared with the other image segmentation methods. Our skin lesion border detection
algorithm outperforms other state-of-the-art methods. Based on dermatologist drawn ground truth skin lesion
borders, the results indicate that our method generates reasonable boundaries than other prominent methods
having Dice score of 0.886 +0.094 and Jaccard score of 0.807 £0.133.

Conclusion: We prove that smoothed particle hydrodynamic (SPH) kernels can be used as edge features in active
contours segmentation and probability map can be employed to avoid the evolving contour from leaking into the

Keywords: Dermoscopy, Skin lesion segmentation, Skin lesion border detection

Background

Image segmentation is a process of finding meaningful
regions in an image. Many of the image processing and
analysis methods rely on the accuracy of a proper image
segmentation method. In dermoscopic image processing
and analysis, image segmentation corresponds to detec-
tion of lesion border precisely. Accuracy of skin lesion
border detection in dermoscopic images is critical [1] to
extract important structural features, such as irregular-
ity, symmetry, and abrupt border cutoff; and dermoscopic
features, such as globules, blue-white areas, and atypical
pigment network. However, automated border detection
is a challenging task especially among the lesions with a)
fuzzy borders, b) low contrast between lesion boundary
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and surrounding skin, c) low color and texture variations,
and d) existence of artifacts such as sweat, hair, and blood
vessels.

In the USA approximately 3.5 million people are diag-
nosed with skin cancers in a year. Skin cancer is rarely fatal
except for melanoma, which is malignancy of melanocytes
[2]. In its January 2017 report, American Cancer Society
estimates that in the U.S. 87,110 adults will be diag-
nosed with melanoma, and approximately 9730 cases are
expected to be fatal [2]. Since melanoma develops in
melanocytes, which are special cells on epidermis, it can
be detected by visual inspection of skin. Early diagnosis
and treatment of melanoma are key to increase chances
of survival [3]. However, high rate of false-negative
diagnosis in melanoma cases poses challenge for early
treatments [3].
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Dermoscopy is an effective and noninvasive imaging
modality in diagnosis of skin cancers, especially for pig-
mented lesions. It enables clinicians to closely examine
predefined diagnostic features that are not seen other-
wise. For this very reason, accurate skin lesion border
detection is key to extract important dermoscopic fea-
tures of the lesion. These features are evaluated to detect
melanoma and other skin diseases [4—7]. It is shown that
dermoscopy increases accuracy of naked eye examination
of clinicians [8]. There are various methods used to seg-
ment skin lesions [9]. One of these methods is using the
algorithm of active contour.

Active contour based methods (a.k.a. snakes) are widely
used in image segmentation. These methods are also used
in lesion segmentation [10-13]. Active contours can be
categorized into two main groups: edge-based methods
[14] and region-based methods [15]. The former employs
edge information [14] while the latter selects a region fea-
ture to adjust the movement of active contour toward the
boundary of object(s) to be segmented [16, 17]. Active
contour methods start with a curve around the region of
interest (ROI) to be detected, the curve moves toward its
interior normals and has to stop on the boundary of the
ROIL. While some parameters control the smoothness of
the contour, others attract the contour toward the cen-
ter of the ROIL The most optimum state of the contour
is selected using an iterative process, in which internal
and external energy functions reach equilibrium and stop
the further iterations. Edge based active contours use
level sets and have the advantage of handling complicated
shapes. However, their parameters are not naturally con-
nected to visual features; therefore, very difficult to use
for naive users. The edge based active contours are found
more suitable for lesion boundary detection [10, 11]. On
the other hand, for border detection of skin lesions, active
contours were reported [13] to have slower computation
time since they require to solve the underlying optimiza-
tion problem. In general, for an active contour method to
achieve high accuracy for skin lesion detection, the lesion
is expected to have strong edges to stop at the border.

Edge-based active contour methods suffer from poorly
defined edges, whereas region-based methods are sensi-
tive to inhomogeneity of image intensities. For the images
with weakly formed object boundaries (e.g., skin lesions
with fuzzy borders), the edge-stop function (ESF) fails to
cease the curve move and as a result contour leaks through
the object border [18]. Thus, they suffer in skin lesion seg-
mentation when morphological and color variations exist.
Specifically, for the cases where skin lesion doesn’t have a
strong border (e.g., fuzzy borders, or insufficient contrast
between lesion boundary and surrounding skin), active
contour methods fail to find lesion borders accurately.
One of the main contributions of this study is to overcome
this failing point. The proposed method of segmentation
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starts with a novel local edge extraction algorithm using
smoothed particle hydrodynamics (SPH). Using the edge
information coming from SPH, object border is strength-
ened using geodesic distances that involves probability
of pixels (whether they are foreground, background, or
border pixels). Later we give the object edge informa-
tion into active contours to accurately detect skin lesion
borders. Due to the additional edge information given to
active contours, they become robust to leaks.

Process flow of skin lesion border detection with Local
Edge-Enhanced Active Contour (LEEAC) is as follows (see
Fig. 1). We first apply intermeans thresholding [19] on
the given dermoscopy image. This leads us to coarsely
locate lesion pixels and background pixels to extract sam-
ple patches which will be used for background/foreground
probability map. Then we perform image filtering using
Perona-Malik [20] denoising method to eliminate active
contours trapped at relatively strong edges at the back-
ground pixels. Later, SPHs are calculated to find local
edges of an image. We incorporate Probability Maps in
to SPH kernels in order to make the lesions’ edges even
stronger. In this study, it is proven that probability maps
incorporated with SPH kernels are robust edge indica-
tor functions that eliminate unwanted leakage problems
[18] encountered in active contours. This novel SPH based
robust edge indicator function is then solved using Level
Sets [14], which in turn generates accurate skin lesion
border detection even for lesions with fuzzy borders.

Methods

This section reviews the developed computational core
for lesion segmentation. Figure 1 shows its processing
steps. Each of these steps are detailed in the following
subsections.

Filtering

We use Perona-Malik filtering [20] method that aims to
smooth noises while preserving significant information,
in our case edges. Perona-Malik filtering is chosen since
it preserves edges. Formal representation of this filtering
method is as follows;

1
gvV(l)) = —— (1)

2
1+ 1+ 50

where gV(I) represents the diffusion coefficient, V(I) gra-
dient map of the image I. As can be inferred from the
Eq. 1, V(I) and g are inversely proportional to maintain the
notion of Perona-Malik method. y is a constant to con-
trol the sensitivity against gradients on the image domain.
Diffusion process will be declined at the regions where
| VI |> y. Without smoothing, initial contour is trapped
by noise(s) (weak edges) and cannot delineate the lesion
border. After denoising completed, SPH kernel is used to
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Fig. 1 LEEAC takes the original dermoscopy image and generates
segmented lesion as shown in the second row. It represents
computational pipeline where LEEAC takes image creates
background and foreground patches, denoises image, extracts local
edge features with SPH, generates probability maps to further
eliminate leaking problem, applies active contour, and finally

Geodesic Prob- J

generates the final segmented image using level sets

overcome active contour leaking problems, especially for
the fuzzy borders of skin lesions.

A new local edge extraction method: SPH

SPH is an interpolation method which is used for
numerically solving diffusion equations. It is used in
various applications such as highly deformable bodies
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simulations, lava flows, and computational fluid dynam-
ics. Its principle is based on dividing the fluid (medium)
into a set of discrete elements which are called particles.
Equation 2 describes this interpolation where h is the
length of smoothing function W, and r is the descriptor of
the medium entity, r’ is the adjacent entities in the range
of h. There are many kernel functions defined in the lit-
erature [21, 22]. One of them is Monoghan’s cubic spline
[21] as given in Eq. 2 that provides the temperature (in its
specific case) A, at position r relying on the temperatures
of all particles in a radial distance h.

Ay(r) = f AC)W(Ir — |, hjdr’ @)

In Eq. 2, the contribution of a particle to a physical prop-
erty are weighted by their proximity to the particle of
interest and its density. Commonly used kernel functions
deploy cubic spline and Gaussian functions. Cubic spline
is exactly zero for particles located at a distance equals
two times of the smoothing length, 2h. This decreases
the computational cost by discarding the particles’ minor
contributions to the interpolation.

To expand the representation of SPH kernel in physics,
let us take another particle j and associate it to a fixed
volume AV; with a lump shape, which leads determining
the computational domain with a finite number of parti-
cles. Concerning the mass and density of the particle, the
lump volume can be rewritten as the ratio of mass to den-
sity m;/p; [23]. Mathematical representation is given in
the following equation,

A(r) = Zm,éWﬂr -7
;b

) ) ®3)

where A is any quantity at r; #; is the mass of particle j; A;
is the value of the quantity A for particle j; p; is the density
of particle j; r is spatial location; and W is the kernel func-
tion. The density of particle i, p; can be expressed as in the
Eq. 4.

pi = (p(ry) = ijgw (|r 7
' j

]
=Y mW(r—r
j

). 1)
4)

), i)

where the summation over j covers all particles. Since m is
a scalar, gradient of a quantity can be found easily by the
derivative V as seen in Eq. 5.

VA() =Y mVW ([r=rj]), h) (5)
j

Kernel approximation
A feasible kernel must have two following properties,

/ W(r,h) =1 (6)
Q
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and
;llin% W(r, h) = §(r) (7)
where § is the Dirac Delta function.
o0, ifa=
8(r) = { 0, otherw1se } (8)

Kernel must be an even function and greater than zero
all time [23]. These cases are expressed formally as in the
following;

W(r,h) >0 and W(r,h) = W(—r,h) (9)

Several kernels for SPH are proposed including Gaus-
sian, B-Spline, and Q-spline [21, 22, 24]. Even though,
Q-spline is considered the best in [24] in terms of accu-
racy, it is computationally expensive due to the square root
computations. We propose to use 6 degree polynomial
kernel suggested by [24] as the default kernel, which is
expressed below,

315 2 N2
Wdefault(r: h) = m(l’l — 7] ) (10)
with the gradient,
945 9 N2
VWdeﬁmlt(r»h) = m(k —|r| ) (11)

Once SPH is applied to dermoscopy images, it generates
all local edge features. Figure 2 illustrates edge features
derived by SPH on a dermoscopy Image. In our exper-
iments, we empirically selected 1 for h, and 6t degree
kernel for interpolation. Obtained SPH map will be used
as the edge indicator function in the lesion border seg-
mentation. Formal representation of the edge indicator
function is given as in the Eq. 12,

1

= =1,2
$ 1 VGesn P?

where [ is the image, G is denoising function, and | V(G *
I) |P is the edge map produced by image gradients. In

(12)
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this paper, we used SPH formulations that are to calculate
surface normals, instead of image gradients. Edge indica-
tor functions are commonly represented by g as shown in
Eq. 12. Next subsection reviews the mathematical pipeline
that robustly minimizes the obtained g function.

Probability map for stronger edges

Probability map

To address the drawback seen at traditional ESFs in edge-
based AC, this study introduces a computational pipeline
which is based on constructing a robust ESF that utilizes
probability scores (between 0 — 1) rather than predicted
class labels provided by a classifier as given in [18]. Prob-
ability scores indicate whether a pixel is foreground or
background pixel. These scores are computed in O(n)
where n is the number of pixels. Whereas Pratondo et al.
[18] uses fuzzy KNN or SVM classifiers to predict whether
a pixel is a foreground or background pixel in O(#?%). Clas-
sifier scores (between 0 — 1) at boundary pixels tend to
be close to zero. So far, considerable amount of work has
been done to have ESF collaborate with the likelihood
of pixels (whether a pixel belongs to background, fore-
ground, or edge) to avoid contour leakages through the
border. Pratondo et al. [18] extended methods of [25, 26]
that rely on only class probability using Bayes rule, by uti-
lizing the probability scores from fuzzy KNN and SVM
classifiers.

We adopted the image segmentation approach studied
in [27] that combines pixels’ Gaussian probability distri-
bution (in terms of being a foreground or background
pixel) with their geodesic distances to patches selected
on foreground and background. Even though this method
fails in the dermoscopy images displaying lesion with
weak or fuzzy edges, it provides reliable results for map-
ping probability of pixels that estimates whether they are
background or foreground. We approach this feature of
[27] such that we minimize the probability matrix where
lesion edges are located. Then, we multiply the minimized

segmentation

Fig. 2 a A dermoscopy image; as can be seen in b, Blue lines represent normals of edges on the image, which later used for lesion border
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matrix with the edge indicator function generated by SPH
to have a more robust edge indicator function in the seg-
mentation. In our case, object (foreground) is skin lesion
and the background is healthy tissue. Figure 3 shows a
comparison of segmentation results of methods which
use conventional gradients [28], the approach proposed in
[18], and our approach to form edge indicator function,
respectively.

First step of the probability map generation is to have the
regions (boxes) from foreground and background. Boxes
(patches) in size of (average) 70x90 collect pixel samples
from foreground (lesion) and background (healthy tissue)
to create the color models. Pixels on an image will have
a value from 0 to 255 at any channel. In probability com-
putation, each of these values is assigned to a probability
range between 0 and 1, and the sum of these probabili-
ties for each pixels should be 1. Formal representation is
shown as in the Eq. 13,

pUxy) =k) (13)

where p represents the probability that the pixel has an

intensity of k. Hence, all these can be expressed by a sum
as in the Eq. 14.

Y oplEy =k =1 (14)

To perform background subtraction, let us label the

boxes as /; and [, respectively, where /; is from back-

ground £2; and /3 is from foreground €2 of the image 1. We

can approximate the probability density function (PDF)
using a Gaussian fitting function shown as in the Eq. 15,

0 = e
X) = e 20
P V2mo

where, 1 and o represent mean and standard deviation,
respectively, estimated on the histogram of data stored in
the [; and /5. Figure 4 shows histogram of background and
foreground patches obtained from the image displayed in
Fig. 5. Using the generic formula given in Eq. 16, the like-
lihood (in terms of being foreground or background) of a
pixel x on the channel C is given in the Eq. 16.

(15)
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P (Ci(x))

- : (16)
P (Ci) + p; (Ci(x))

Pglz(x) =

where p; represents the PDF of w; on channel C, i is the
channel number, and in our case j = 1 and 2 since we
have only two labels (foreground and backgorund). Addi-
tionally, a weight can be assigned to each channel, then
probability of a pixel x assigned to /; can be computed as
in Eq. 17.

N
Plo) =P (xeh) =) wP,w]
i=1

(17)

where W' represents the weights which are to impose the
channel (i € N;) capacity in terms of abstracting the fore-
ground from background, and N, represents the channel
number.

However, image segmentation merely relies on PDF
since probability map is potent to fail. As seen in Fig. 5,
pixel X, which locates inside of the object of interest, has
similar intensity features with the background. In order to
address this problem, [27] combined the PDF distribution
with geodesic distances of each pixels to these boxes. Fol-
lowing subsection reviews the geodesic distances concept
offered by [27].

Geodesic distances

Geodesic distances are weighted distances. To expand,
assume that going to city of B from city of A takes two
hours, and distance between A and B is 100 km. Whereas,
going to city of C from city of A takes four hours while
the distance between A and C is only 50 km. Since C is
a city of another country, traveling from A to C requires
more effort. Hence, the weight of passing a country border
increased the travel time from city A to city C.

Likewise, weighted geodesic distance of each pixels to
background and foreground boxes can be computed by
Eq. 18 where W is the weight, s; and sy represent the
boxes, and d represents all possible distances from pixel
X to background and foreground boxes (see Fig. 4). If the
weight W is high, then the distance 4 will be high.

= —
a ‘

ele e

Fig. 3 Contribution of attaining a robust edge indicator function is shown. The blue rectangle in a marks automatically placed initial contour for
each segmentation method. Red line represents the dermatologist drawn ground truth lesion border. Results for Li et al. [28] Pratondo et al. [18],
and our method in b, ¢, d are displayed, respectively, where can be seen that LEEAC outperforms others
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Fig. 4 Red and blue curves represent the paths from pixel X to the
foreground and background boxes

d(s)(s1,82) = min C

51,52

Wi, (18)

Cops

Here, pixel assignment to background or foreground is
performed by comparing the minimum distance to the
background and the minimum distance to the foreground.
Let us select a pixel X; if this pixel’s minimum distance to
the background is less than the minimum distance to the
foreground, then this pixel is assigned to background, or
vice versa.

Geodesic image segmentation selects the gradient of
PDF, VPr p(x), as the weight W. That means, spatial con-
nectivity between observed pixels and pixels of boxes, is
constrained by the change of probability (see Fig. 4) as
given in Egs. 19 and 20.

(19)
(20)

—
W = |VPpp(x).C's 5]
Dy(x) = min d(s,x),l € {F, B}
SEQl

For instance, if VPrp(x) applies more weight, which
means more probability change along the path, in Eq. 19,

Fig. 5 A dermoscopy image displaying a lesion with fuzzy borders
and also its interior (as can be seen in pixel X) has similar color
features with the background. Border detection for these kinds of
lesions is very challenging for most of the methods
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that yields increase in distance and decrease the possi-
bility of being foreground. Consequently, pixel labeling
is conducted by comparing minimum of the distances of
Dr(x) (foreground) and Dpg(x) (background) which are
represented in Eq. 20. All of these computations toward
generating the probability map are performed in linear
time. Interested readers are referred to [27], for more
details.

Note that resulting probability maps are used to further
strengthen edge indicator function using the formulations
given in [18]. Therefore, the edge indicator function will
be more robust for the active contour guided image seg-
mentation. Next subsection reviews how we minimize the
obtained pixel probability matrix.

Minimizing probability matrix

Pixels probability matrix suggests that probability values
which are close to 0 and 1 represent background and fore-
ground, respectively; whereas probability values which are
close to 0.5 represent edges according to [18]. Pratondo et
al. [18] also tries to have more robust edge indicator func-
tion to avoid leaks. They applied three different formulas
on probability matrix to minimize the values which rep-
resent the edges. Finally, they multiplied the minimized
probability matrix with their edge indicator function gen-
erated from image gradients. In terms of minimizing
probability matrix in the edge pixels, we adopt the follow-
ing formula expressed in Eq. 21 from [18] and replace 0.5
with 0.7 based on our experiments in dermoscopy images.

prob(s) = (2(s — 0.7)%))

where s represents the probability matrix for foreground.
And new edge indicator function, gy, can be obtained as
in the following equation, Eq. 22,

(21)

Gnew = g * prob (22)

The equations given in Eqgs. 21 and 22 help us minimize
the edge indicator function even at the poorly defined
object boundaries for the active contours guided segmen-
tation. Therefore, contour evolution will terminate at the
desired boundaries.

Figure 6 illustrates the obtained edge map which is a
matrix in the image size and will be passed to energy
function in the active contours configuration. Note that
Fig. 6e and f show more robust edges compared to Fig. 6¢
and d. Figure 6e and f are created using geodesic probabil-
ity map. Figure 6b is the conventional edge map that relies
solely on image gradients. The enhancement provided
by geodesic probability map can be realized qualitatively
by naked eye, we also proved it quantitatively using 100
images and displayed the results in the results section.
Moreover, training KNN and SVM for the results dis-
played in Fig. 6¢ and d are computationally heavy; while
in our case, we used geodesic probability map which is



Bayraktar et al. BMC Bioinformatics 2019, (Suppl ):91

Page 93 of 149

P

thresholding on e to make edges stronger

s

Fig. 6 a A dermoscopy image with skin lesion, b represents a g map obtained using only image gradients, € represents a g map obtained using SYM
and 0.5 in Equation 16, d represents a g map obtained using KNN and 0.5 in Equation 16, e represents a g map obtained using geodesic probability
map and 0.5 in Equation 16, f represents the edge map obtained by geodesic probability map and 0.7 in Equation 16. Additionally we applied a

. l
|

obtained in linear time. Average time on generating new
edge indicator function for the used data is also discussed
in the results section. It is arguable that we continued seg-
mentation after obtaining the outcome shown in Fig. 6e
and f. Notably, it is not a binary image that can be used as a
segmentation result, and still requires to be processed for
abstracting the lesion from background. To address this
challenge, we solved the segmentation function (in the
spirit of active contours) using level sets. Next subsection
reviews the level set evolutions.

Level set configuration

A level set function (LSF) ¢ (x,y,t) can represent a pla-
nar closed curve as in the implicit fashion given in
Equation 23,

CR(t) = (x»y)|¢(x»% t) =0. (23)

where CR is curve; ¢ is time; and x and y are spatial coor-

dinates of the given curve. The evolution of the implicit
function ¢ can be written as in Eq. 24.

3¢
— +F|¢|=0
o TEI]

(24)
where F represents evolution speed and V is gradient
operator.

Caselles et al. [14] employed the curve evolution
expressed in Eq. 24 for image segmentation. Notion of
Caselles’ method relies on constraining curve propaga-
tion by image features (commonly gradients). Equation 25

TF T T T T T E=|
*
6 * 4
5L 4
* *
A * 4
*
3 4
¢ *
¥ “
¥ *
2 % ? ? 7
“ x
% X *
1+ % i " 4
*
o == — —
1 1 1 Il 1
LEEAC Mete et. al Zhang et. al Liet al Pratondo et. al SVM  Pratondo et. al. KNN

Fig. 7 In border error assessment, our method outperformed again with the score of (mean=standard deviation) 0.1989 + 0.1428, while Mete et al.
[13] reads 0.2273 £ 0.09, Zhang et al. [31] reads 0.406 £ 0.2726, Li et al. [33] reads 0.4061 £ 0.2726, Pratondo [18] reads 0.4079 £ 0.6417 for SVM, and
Pratondo [18] reads 0.6276 =+ 0.6288 for KNN
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Table 1 Evaluation of Segmentation Methods with respect to
the Ground Truth

Method Dice Jaccard P-value

LEEAC 0.8866 £0.0944 0.8074 £0.1339 8.16e-14
Zhang etal. [31] 0.8640 £0.1453 0.7838 £0.1856 7.33e-11
Lietal. [33] 0.8565 £0.1681 0.7779 £0.2021 2.01e-11
Mete et al. [13] 0.8692 £0.0652 0.7743 £0.0985 1.08e-14

Pratondo et al. [18] with SVM  0.8395 £0.1609 0.7511 £0.1985 3.99e-08
Pratondo et al. [18] with KNN 0.5914 £0.3564 0.5038 £0.3392 8.36e-04

governs the formulations offered by Caselles et al. [14]

o =101 div (g0
t | Vo |
where g is the edge indicator function, and v represents
a constant coefficient that is to be used for adjusting
curve speed. Recall that traditional representation of the
g function is given in Eq. 12. Furthermore, we obtained
Znew using geodesic probability map. Consequently, we
can now plug our new edge indicator function to level set
formulations. Equation 26 is offered by [29] as

) Fug| Ve D) (25)

0
9 _ Ldivdy(| Vo )+

ar
Vo

(26)
Ap (¢)dlv (gnew> + ,Bgnewpe(¢)

[ Ve |

where d,, is obtained from a potential function derived as
dy(s) = p'(s)/s, 8c is the Dirac delta function, and u, A and
B are constants to weight data terms in Eq. 26. The first
term on the right side of Eq. 26 is the distance regular-
ization term, the second term represents the length term,
and the third term is the area term.

Even though Eq. 26 is able to handle topology changes,
that requires re-initialization of level sets, we have
adopted a way to tackle re-initialization [30] problem of
level set method by using Reaction Diffusion (RD) based
Level Set Evolution (LSE) [31]. This method is consisted
of two steps such that it first iterates the LSE equation,
then solves the diffusion equation. The second step is to
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regularize the level set function obtained in the first step
to remove computationally expensive reinitialization pro-
cedure from LSE and to ensure numerical stability in the
process of solving Eq. 20. Equation 27 formulizes RD in
discrete form as

@™ 7 = ¢" + 11 ((k + guew?) + V")

27)
¢n+1:¢n+t2A¢n (

where, ¢ represents the level set function, ¢” equals to

¢”+% (for the second raw), t; and 1y are time steps of the
gradient descent which is to solve the Eq. 27, « is curva-
ture of the level set function, |V¢”| is magnitude of the
gradient of the level set function, A¢” is Laplacian of the
level set function, gy, is the new edge indicator func-
tion, and v is a constant to adjust propagation velocity of
the level set function. Next section presents the results of
our segmentation method including the comparisons with
state-of-the art methods.

Results and discussion

We tested our novel skin lesion border detection method
(LEEAC) on the data set that has 100 dermoscopy images
provided by [32]. Note that we kept the images in their
original sizes to avoid data losses due to down-sampling.
We utilized the level set implementation given in [31].
To segment an image, our method requires two patches
(boxes); one for background and one for foreground.
Then probability map is generated based on the pixels
bounded by these rectangular areas. Other algorithms
[18, 31, 33] used Gaussian filtering to denoise the data set
in their applications, which requires adjusting the stan-
dard deviation of Gaussian filter in order to avoid leakages
(small values of standard deviation) and long delays in
border detection (large values of standard deviation). In
this context, delay refers that the initial contour trapped
by artifacts in dermoscopy images such as hairs and/or
sweat/bubble, ruler markings etc., which cast strong edges
on the images.

line represents the ground truth border of the skin lesion

Fig. 8 a Blue line shows the segmentation result of our method b shows the segmentation result of Mete et al. [13] in yellow. Both in (a) and (b) red
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In SPH map, we used 67 polynomial kernel and selected
the smoothing range, h as 1. The default parameter val-
ues for level set scheme are set as 71 = 0.3, which is
the time-step for level set evolution equation; 75 = 0.01,
which is the time-step of the equation for diffusion reg-
ularization; and v = 0.7, which is to adjust the speed
of curve evolution toward the skin lesion boundary. Iter-
ation loop is stopped when polygon area of the closed
contour does not show change more than 10 units com-
pared to area of the contour in previous iteration. In
order to conduct a fair comparison, we changed the seg-
mentation configuration given in [18] from [28], to [14],
otherwise nested iterations in the implementation of [28]
increases computational time drastically. The algorithm of
[28] generates inaccurate segmentation results. Note that,
in region based segmentation [31, 33] output may contain
regions which are not part of the lesion; however, these
regions are represented by similar intensity features to the
skin lesion. This ultimately decreases their segmentation
accuracy. While evaluating our method, we did not take
any post-segmentation action such as removing irrelevant
connected components (dilation & eroding) far from the
lesion to abstract the lesion alone.

To perform evaluation, we adopted commonly used
quantitative measurements, i.e., Dice Coefficient (DC),
Jaccard Index (JI), and Border Error (BE). Let us say O and
G are the results of segmentation and the ground truth,
respectively, DC is calculated by 2 | ONG ) /(] O | + |
G |),andJlis by (ON G) /(OU G). BE is calculated as in
the Eq. 28.

__ FalseNegative + FalsePositive (28)

" TrueNegative + TruePositive

FN pixels refer to pixels falsely detected as background, FP
pixels refer to the pixels falsely segmented as foreground
(lesion), TN pixels refer to pixels correctly detected as
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background, TP pixels correctly segmented as foreground.
Figure 7 shows the BE evaluations in the box-plot repre-
sentation. Table 1 shows comparisons between the promi-
nent segmentation methods [13, 18, 31, 33] and ours. Note
that [31, 33] fall in the category of region based active
contours, and segmentation functions are governed in the
spirit of local binary fitting. Figure 8 includes a gallery that
displays qualitative results of our method and competitor
methods. Since Pratondo et al. [18] is the only competitor
method which is also edge based like ours, our results are
especially compared against that method (see Table 1).

Mete et al. [13] is a clustering based segmentation
method. It is parameter dependent (radius of evolving
clusters) and does not incorporate with local informa-
tion while finding the lesion border. Thus, its segmenta-
tion result cannot precisely separate non-lesion patches
from lesion if both have similar color values (e.g. fuzzy
borders). In Figs. 8 and 9 display qualitative compar-
isons of our method to competitors [18, 31, 33]. Figure 7
shows the border error evaluations in the box-plot
representation.

We have observed that selection of noise filtering tech-
nique has a tremendous impact on the duration of seg-
mentation. If we consider images with their actual sizes,
methods of [18, 31, 33] used merely Gaussian filtering for
denoising purpose and average time for segmenting an
image with the size of 484x737 takes more than 10 min.
Average time for training KNN and SVM in the approach
of [18] is almost an hour. Segmentation method of Mete
et al. [13] involves density based clustering, hence it
is very sensitive to parameters and computationally
expensive.

Conclusions
This study introduces an accurate skin lesion border
detection method based on active contours. One of the

Fig. 9 a A dermoscopy image of a skin lesion, b represents our method (in blue) vs. ground truth (always in red in this figure) lesion border drawn
by an expert dermatologist, € represents Pratondo et al. [18] using SVM (in yellow) vs. ground truth , and d represents Pratondo et al. [18] using KNN
(in yellow) vs. ground truth (in blue),e represents Zhang et al. [31] (in magenta) vs. ground truth,f represents Li et al. [33] vs. ground truth
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main problems of active contours is leaking problem. This
problem becomes especially visible in dermoscopy images
when there are fuzzy lesion borders and/or dermoscopic
artifacts, such as hair and water. When such features exist,
active contour is not able to properly find skin lesions
or region of interest. We overcome these problems by
introducing SPH kernels and probability maps into active
contours (called LEEAC). This in turn removed leaking
problems and increased accuracy of segmentation. We
tested our approach on 100 dermoscopy images and com-
pared our results with the state of the art methods. LEEAC
outperforms other prominent methods as reported in the
“Results and discussion” section.
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