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Abstract

Background: Scientific data and research results are being published at an unprecedented rate. Many database
curators and researchers utilize data and information from the primary literature to populate databases, form
hypotheses, or as the basis for analyses or validation of results. These efforts largely rely on manual literature surveys for
collection of these data, and while querying the vast amounts of literature using keywords is enabled by repositories
such as PubMed, filtering relevant articles from such query results can be a non-trivial and highly time consuming task.

Results: We here present a tool that enables users to perform classification of scientific literature by text mining-based
classification of article abstracts. BioReader (Biomedical Research Article Distiller) is trained by uploading article corpora
for two training categories - e.g. one positive and one negative for content of interest - as well as one corpus of
abstracts to be classified and/or a search string to query PubMed for articles. The corpora are submitted as lists of
PubMed IDs and the abstracts are automatically downloaded from PubMed, preprocessed, and the unclassified corpus
is classified using the best performing classification algorithm out of ten implemented algorithms.

Conclusion: BioReader supports data and information collection by implementing text mining-based classification of
primary biomedical literature in a web interface, thus enabling curators and researchers to take advantage of the vast
amounts of data and information in the published literature. BioReader outperforms existing tools with similar
functionalities and expands the features used for mining literature in database curation efforts. The tool is freely
available as a web service at http://www.cbs.dtu.dk/services/BioReader

Keywords: Database curation, Text mining, Machine learning, Biological databases, Literature survey, PubMed,
Document classification

Background
The “big data problem” currently facing the biomedical
sciences is due to large volumes of raw biological data,
such as genomic sequences, proteomics measurements,
and transcriptomic and metagenomic profiles exceeding
our analytical capacity. A similar trend is observed in the
biomedical literature, which currently consists of more
than 27 million articles and grows by almost a million
new publications each year. Even within niche topics of
the scientific literature, the number of article can be

unmanageable: at the time of writing, there are more than
91,000 articles in PubMed about the tumor suppressor
gene p53 alone (search term “p53” on August 25, 2018) –
a body of literature overwhelming even to domain experts.
The “big literature” problem is amplified by the procyclic
effect of cited articles receiving more attention and in turn
more citations, which results in a large body of mostly
uncited and possibly unread articles. Only approximately
0.5% of articles published in 2010 had a 5-year impact fac-
tor above 30, 84% had a 5-year impact factor below 5, and
approximately 15% will most likely never be cited (data
from http://opencitations.net [1], see Fig. 1).
Regardless of citation metrics, many articles contain

potentially valuable information and several scientific
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projects are based on manual curation of databases as-
sembled by extraction of data and information from the
primary literature to compile highly useful databases, in-
cluding MetaCyc – a curated database of experimentally
elucidated metabolic pathways [2], the Immune Epitope
Database (IEDB) [3], and the Tumor T cell Antigen data-
base [4]. Specific use cases include searching for T cell
epitope sequences [5–7] for peptide vaccination, or mo-
lecular surface marker expression measurements [8] use-
ful for in silico cancer immunotherapy target selection
[9]. The typical curation process is outlined in Fig. 2:
first, a preliminary literature search is performed using
basic or advanced search functions of literature data-
bases such as PubMed. This yields a list of articles po-
tentially containing the data or information of interest.
Upon manual inspection, a proportion of these articles
will be determined relevant and mined for their content,
whereas a proportion will reveal itself to be irrelevant.
These corpora can then be used to refine the search
methodology moving forward, by forming a training set
for classification of future searches. This has been
proven to vastly speed up the curation process by min-
imizing the number of irrelevant articles that curators
spend their time on [5–7]. The training data set is ex-
panded with each iteration of classification, thus improv-
ing the performance of the classification algorithm.
Article classification techniques thus facilitate system-

atic knowledge extraction from the entire corpus of bio-
medical literature. To enable the broader community to
benefit from this workflow, we have implemented the
relevant methods from text mining, machine learning,
and bioinformatics in a web service for article classifica-
tion and retrieval, which outperforms simple keyword
search functions native to PubMed, Google Scholar, etc.
To illustrate the utility of BioReader in achieving a better

and more fine-grained classification, we compared its
performance against the closest resembling existing web
service, MedlineRanker [10], and discuss a number of
use case for which we have utilized the method for data-
base curation.

Implementation
Abstract retrieval
The webserver offers a simple interface where users are
prompted to upload two lists of PubMed IDs: two lists
for the training categories (e.g. positive and negative for
content of interest) as well as one list of PubMed IDs
corresponding to abstracts to be classified as belonging
to one of the two groups. The abstracts are retrieved
using NCBI’s Entrez programming utilities, E-utilities.

Text pre-processing and corpus formation
Once abstracts are retrieved, the three text corpora are
generated and the following operations are performed
on the text: lowercase transformation, stop word re-
moval, punctuation removal, word stemming, and white-
space stripping. As many gene names contain numeric
characters, numbers found in conjunction with letters
are not removed. All of the above operations are per-
formed using the “NLP” and “tm” [11] packages for R.

Document-term matrix formation and classifier training
After corpus formation, the texts are tokenized in docu-
ment term matrices (DTM), which are essentially feature
vectors of word counts for all words in all documents in
the corpus. Word counts are background corrected by
term frequency-inverse document frequency (Tf-Idf )
transformation [12], which offsets the count of a given
word, by the number of documents in the corpus it oc-
curs in, thereby reducing the importance of words that
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Fig. 1 Histogram of the 5 year impact factor of biomedical articles published in 2010. Data was retrieved from http://opencitations.net/
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appear more frequently in general. Terms in the trans-
formed DTMs are then reduced to the top terms differ-
entiating the two training classes, as determined by a
Mann-Whitney U test [13]. The resulting training cor-
pora DTMs are used to train and test ten different clas-
sification algorithms (support vector machine [14],
elastic-net regularized generalized linear model [15],
maximum entropy [16], scaled linear discriminant ana-
lysis, bagging [17], boosting [18], random forest [19],
k-nearest neighbor [20], regression tree [21], and naïve
Bayes classifiers) to accommodate corpora of different
size and complexity [22]. The best performing algorithm
is determined by five-fold cross-validation on the
training set and the documents to be classified are

subsequently assigned positive or negative for content of
interest using this algorithm.

Output
The output consists of performance metrics from the
five-fold cross-validation on the training data and two lists
of article titles, corresponding to the classification of the
test set. The input list is ranked by descending probability
of abstracts falling within the two categories. In addition
to the result lists, the top 50 terms with most differential
frequency between the two training classes (25 for each
class) are visualized by a word cloud, enabling users to re-
fine their PubMed search term based on the terms in each
class. The class separation is visualized in a PCA plot, with
the newly classified articles highlighted.

Performance evaluation data
To evaluate the performance of BioReader, we used two
curated abstract sets from the IEDB curation procedure
[5]. One corpus consists of 1000 abstracts of articles
containing epitope-specific data or epitope structure as
well as 1000 abstracts of articles that does not contain
epitope relevant data and information. The other corpus
consists of 1000 abstracts of articles related to infectious
diseases and 1000 abstracts related to non-infectious dis-
eases (allergy, autoimmunity, cancer, etc.). Both corpora
were randomly subdivided into sets of 1500 abstracts for
training (including five-fold cross-validation and con-
struction of learning curves) and 500 abstracts for per-
formance evaluation.

Comparison to MedlineRanker
MedlineRanker [10] enables users to input a single list
of relevant literature, which is then used to rank publica-
tions from PubMed – either a randomly chosen subset,
articles published within a data range, or a specific sub-
set of articles. As an advanced option, MedlineRanker
also enables classification based on two lists: 1) a list of
articles of interest (positive list), and 2) a background list
of irrelevant articles (negative list). We here compare
the performance of BioReader to the advanced function
of MedlineRanker.

Results and discussion
The performance of BioReader depends heavily on the
size of the training set, how well the training set cap-
tures the differences between classes, and the inherent
ability of a given set to be separated into the desired
classes. Here we demonstrate that BioReader can suc-
cessfully predict whether articles contain epitope-specific
data or epitope structure, and from a separate corpus,
which articles relates to infectious diseases vs.
non-infectious diseases (allergy, autoimmunity, cancer,
etc.) [23].

Fig. 2 Workflow of a typical database curation process involving
data extraction from the primary literature. First, an initial search
using a publication search engine such as PubMed is performed,
after which corpora of both relevant and irrelevant articles are
defined. These corpora are then used to train a text mining classifier,
which is applied in subsequent searches to minimize time spent
reading irrelevant articles. With each iteration of data extraction, the
size of the corpora increases, thus increasing the performance of the
classification algorithm
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Use case 1: Classifying articles for disease type and
epitope content
Figure 3A shows a learning curve for five-fold cross-
validated performances of BioReader utilizing a lasso and
elastic-net regularized generalized linear model (glmnet)
[15], which proved to be the best performing of the ten
implemented classifiers for the disease example corpus. The
classifier was trained on sets ranging from 50 to 1500
abstracts (in intervals of ten abstracts with equal distribution
of categories). The learning curve shows that a glmnet clas-
sifier trained on 280 abstracts performs very similar to the
same algorithm trained on 1500 (accuracy = 0.78 and 0.83
on the small and full training set respectively). Figure 3B
shows ROC curves of the performance of BioReader and
MedlineRanker trained on 1500 abstracts, and classification
of a set of 500 abstracts excluded from the training. Both
tools perform well with AUC of 0.971 and 0.912, respect-
ively. The remaining 9 BioReader algorithms also performed
reasonably well, with a total of 6 of the 10 implemented
algorithms outperforming MedlineRanker (Additional file 1)
It should also be noted that BioReader successfully retrieved
all the input abstracts (1500 for training and 500 for evalu-
ation), whereas MedlineRanker only retrieved 450 of the
evaluation abstracts (the proportion of training abstracts
successfully retrieved by MedlineRanker is unknown).
Achieving such high performance is highly dependent on
training set balance (i.e. equal number of abstracts in the
two training classes). Figure 3C shows the F1 scores for
BioReader classification of the two categories at different
positive to negative article list ratios, and it is apparent that
predictive performance decreases significantly when uneven
ratios of the two categories are used for training.
For the epitope content example, the corpus of 2000

abstracts for which the articles were manually curated to be
positive for epitope content was subsequently manually
classified for infectious disease vs. non-infections disease

content. In this example, the glmnet also proved to be
superior in five-fold cross-validation on 1500 abstracts, and
the learning curve (Additional file 2) indicated that a train-
ing set of around 600 abstracts (300 in each category)
resulted in near optimal performance. Training on the full
training corpus and subsequent testing on 500 abstracts
excluded from the initial training yielded an AUC of 0.953,
and 0.941, 0.854, and 0.898, in specificity, sensitivity, and
accuracy, respectively.

Use case 2: Classifying articles for surface protein
expression data
Throughout the history of molecular biology researchers
have been accumulating information about cells, including
their functions, molecular composition, development from
stem cells, and role in disease. Many of these studies rely on
immunophenotyping using molecular surface markers to
distinguish cells, diseases, or developmental stages of interest.
The dynamic surface marker profiles of cells have been
extensively used as biomarkers indicative of different bio-
logical states (e.g. developmental stage, disease state, etc.), for
cell sorting, and for therapeutics, where specific surface
markers are used to direct therapeutic agents to diseased
cells, using either monoclonal antibodies or cell-based ther-
apies. Traditionally, studies revealing new knowledge about
cells, their surface markers, and the complex dynamic rela-
tionship between the two have been communicated and
shared almost exclusively in the primary scientific literature.
We utilized BioReader and manual data extraction to

assemble a comprehensive data set of human hematopoietic
cells and their corresponding quantitative or qualitative pres-
ence (depending on availability) of known molecular surface
markers. Utilizing over 6000 data points across 305 CD mol-
ecules on 206 cell types, we characterized the “human
hematopoietic CDome” and found that surface markers
provided a higher resolution functional classification of
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Fig. 3 Results pertaining to classification of articles relating to infectious diseases vs. non-infectious diseases (allergy, autoimmunity, cancer, etc.)
using a glmnet classifier. a) BioReader learning curve for five-fold cross-validation with glmnet on corpora ranging from 50 to 1500 abstracts in
intervals of 10 abstracts (average over 100 iterations). b) ROC curves of performance of BioReader and MedlineRanker trained with 1500 abstracts
and evaluated on 500 abstracts excluded from the training. c) BioReader F1 scores for positive and negative abstract classification at varying
proportions of training set size (total 750 abstracts) for each category in intervals of 10 abstracts (average over 100 iterations). The classifier was
applied to a balanced test set of 500 abstracts
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hematopoietic cellular function than transcriptome-wide
expression analyses [8].

BioReader features
In addition to outperforming existing tools, BioReader also
adds features to the biomedical text mining toolbox. Most
notable is the implementation of multiple machine learning
algorithms to cater for corpora of different size and com-
plexity. As see in Fig. 3B, the training of multiple machine
learning algorithms and subsequent selection of the best
performing as determined by five-fold cross-validation on
the training data, is indeed a useful strategy: 6 out of the 10
implemented algorithms outperformed MedlineRanker,
whereas 4 did not. Thus, relying on a single algorithm for
all corpora is likely an inferior strategy, as corpora can vary
in size, composition, and complexity. Comparison of BioR-
eader features to two similar tools, MedlineRanker and
MScanner [24] is shown in Table 1.

Conclusion
We have created a flexible implementation of a number of
well-known and established text mining tools, designed to
cater to a variety of classification tasks with biomedical lit-
erature. We have demonstrated that with a relatively small
set of manually categorized articles, users can classify up
to 1000 PubMed articles per run (and no limits on the
number of runs). BioReader outperforms existing tools for
classification tasks and offers new and improved features.

Availability and requirements
Project name: BioReader
Project home page: http://www.cbs.dtu.dk/services/

BioReader
Operating system(s): Platform independent
Programming language: R, Perl
Other requirements: None
License: GNU GPL.
Any restrictions to use by non-academics: License

needed.

Additional files

Additional file 1: Performance of all 10 BioReader algorithms and
MedlineRanker classifying articles relating to infectious diseases vs.
non-infectious diseases (allergy, autoimmunity, cancer, etc.). (DOCX 47 kb)

Additional file 2: Results of classification of articles containing epitope
data using a glmnet classifier. (DOCX 96 kb)
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DTM: Document term matrix; Tf-Idf: Term frequency-inverse document
frequency
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Table 1 Feature comparison of BioReader, MedlineRanker, and MScanner

Feature BioReader MedlineRanker MScanner

Positive class input Yes Yes Yes

Negative class input Yes Yes No

Classification list input Yes Yes No

Training features All words (stemmed to consolidate counts), MeSH, journal, authors Nouns MeSH, journal

Classification
algorithm(s)

support vector machine, elastic-net regularized generalized linear model,
maximum entropy, supervised latent Dirichlet allocation, bagging, boosting,
random forest, k-nearest neighbor, regression tree, and naïve Bayes classifiers

Naïve Bayes classifier Naïve Bayes
classifier

Output Ranked lists, term signature (positive and negative), separation
visualization (PCA), performance metrics

Ranked lists, term signature
(positive), performance metrics

Ranked list

Standalone source
code available

Yes No (but offers API) Yes
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