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Abstract

Background: Non-co-linear (NCL) transcripts consist of exonic sequences that are topologically inconsistent with
the reference genome in an intragenic fashion (circular or intragenic trans-spliced RNAs) or in an intergenic fashion
(fusion or intergenic trans-spliced RNAs). On the basis of RNA-seq data, numerous NCL event detectors have been
developed and detected thousands of NCL events in diverse species. However, there are great discrepancies in the
identification results among detectors, indicating a considerable proportion of false positives in the detected NCL
events. Although several helpful guidelines for evaluating the performance of NCL event detectors have been
provided, a systematic guideline for measurement of NCL events identified by existing tools has not been available.

Results: We develop a software, NCLcomparator, for systematically post-screening the intragenic or intergenic
NCL events identified by various NCL detectors. NCLcomparator first examine whether the input NCL events are
potentially false positives derived from ambiguous alignments (i.e., the NCL events have an alternative co-linear
explanation or multiple matches against the reference genome). To evaluate the reliability of the identified NCL
events, we define the NCL score (NCLscore) based on the variation in the number of supporting NCL junction reads
identified by the tools examined. Of the input NCL events, we show that the ambiguous alignment-derived events
have relatively lower NCLscore values than the other events, indicating that an NCL event with a higher NCLscore has a
higher level of reliability. To help selecting highly expressed NCL events, NCLcomparator also provides a series of
useful measurements such as the expression levels of the detected NCL events and their corresponding host genes
and the junction usage of the co-linear splice junctions at both NCL donor and acceptor sites.

Conclusion: NCLcomparator provides useful guidelines, with the input of identified NCL events from various
detectors and the corresponding paired-end RNA-seq data only, to help users selecting potentially high-confidence
NCL events for further functional investigation. The software thus helps to facilitate future studies into NCL events,
shedding light on the fundamental biology of this important but understudied class of transcripts. NCLcomparator
is freely accessible at https://github.com/TreesLab/NCLcomparator.
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Background
Transcriptome-wide analyses of high-throughput RNA
sequencing (RNA-seq) have discovered a large amount
of ‘non-co-linear’ (NCL) transcripts, in which the exonic
sequences are topologically inconsistent with the refer-
ence genome in an intragenic fashion (circular or intra-
genic trans-spliced RNAs) or in an intergenic fashion
(fusion or intergenic trans-spliced RNAs) [1–4]. Al-
though NCL transcripts were reported to be generally
expressed at a rather low level compared with co-linear
mRNAs, some NCL transcripts may be even more highly
expressed than their corresponding co-linear isoforms
[5] or evolutionarily conserved across species [6]. Accu-
mulating evidence shows their biological importance in
gene regulation and disease diagnosis [4, 7–9]. For fu-
sion transcripts, some were demonstrated to correlate
with malignant hematological disorders and sarcomas
[10–13]. BCR-ABL1, a prominent example of fusion
gene, was shown to be important in adult acute lympho-
blastic leukemia cases and served as an effective biomarker
for chronic myeloid leukemia [14–17]. For trans-spliced
RNAs, some may play a role in anti-apoptotic function [3,
18, 19] and prostate cancer [3, 20]. A trans-spliced long
non-coding RNA, tsRMST, can regulate pluripotency
maintenance of human embryonic stem cells (hESCs) by
repressing WNT5A [7, 21]. For circular RNAs (circRNAs),
they are ubiquitous and have been observed in diverse spe-
cies [5, 22–27]. The most famous function of circRNAs is
their regulatory role in microRNA sponges [6, 28–32]. In
addition, circRNAs can regulate their parent genes [4, 8,
33–35], or play a regulatory role in development [26, 36,
37], the aging nervous system [38], and cancer growth/me-
tastasis [32, 39].
Nowadays, numerous RNA-seq-based NCL event de-

tectors have been developed and employed to identify
thousands of NCL transcript candidates in diverse spe-
cies [40–50]. However, detection of NCL events is still
hampered by the potentially false calls arising from se-
quencing errors, ambiguous alignment, and in vitro arti-
facts, which leads to great discrepancies in the detection
results among tools [4, 51–53]. In addition, the biogen-
esis and functions of circRNAs and trans-spliced RNAs
are mostly unclear. Even if the computationally identi-
fied NCL events are in vivo, it remains debatable
whether most of them are merely side-products of im-
perfect pre-mRNA splicing [24, 54]. As accumulating
NCL events are detected, the reliability and function of
the identified NCL events become an unavoidable ques-
tion for further investigation. Although several studies
have provided helpful guidelines for evaluating the per-
formance of various NCL event-detection tools [1, 4, 51,
55, 56], a systematic guideline for measurement of NCL
events identified by different tools has not been avail-
able. To reduce the cost of further validation and

functional analysis, it is essential to systematically evalu-
ate the reliability of the detected NCL events.
To provide useful guidelines on screening the NCL

events identified by various detectors for users, we de-
velop an analysis package, NCLcomparator, for system-
atic comparisons of the outputs from different detectors.
First, for each input NCL event, NCLcomparator concat-
enates the sequence flanking the NCL junction and then
examines whether this NCL event is potentially false
positives derived from ambiguous alignments by aligning
the concatenated sequence against the reference gen-
ome. Next, on the basis of the number of the supporting
NCL junction reads derived from the tools compared,
NCLcomparator defines the NCL score, NCLscore, to
evaluate the reliability of the input NCL events. To help
selecting highly expressed NCL events, NCLcomparator
provides expression levels of NCL events and their cor-
responding co-linear host genes and calculates the ratio
of the number of reads spanning the NCL junction to
that spanning the co-linear splice junctions at both NCL
donor and acceptor sites. NCLcomparator further esti-
mates the frequencies of occurrence of the co-linear
junctions at the NCL donor and acceptor splicing sites
in the host genes to examine the usage of the NCL junc-
tions. NCLcomparator also provides the number of the
mapped paired-end read with a read spanning outside
the identified intragenic circle, which can be regarded as
a good indicator for discrimination between circRNAs
and intragenic trans-spliced RNAs [4]. Taken together,
NCLcomparator is helpful not only for selecting highly
confident and highly expressed NCL events but also for
further investigating biogenesis and function of this im-
portant but understudied class of transcripts. Of note,
NCLcomparator analyzes both intragenic and intergenic
NCL events, allowing researchers for comparisons
among circRNA detectors and among gene-fusion
detectors.

Implementation
The flowchart of the NCLcomparator pipeline is listed
in Fig. 1a. The input data include the identified NCL
events from various detectors and the corresponding
paired-end RNA-seq data. The input data for each tool
should include the coordinates of the detected NCL
donor/acceptor sites and the number of reads spanning
the NCL junction (NNCL). NCLcomparator only con-
siders the detected NCL events in which splice junctions
agree to well-annotated junctions (co-linear) for compar-
isons for two reasons. First, such events were reported
to be more reliable [2, 7, 40, 49] and second, some tools
only detect NCL donor/acceptor sites at known
co-linear exon boundaries (e.g., NCLscan [1] and URO-
BORUS [57]). To reduce possible alignment errors
around the splice junctions among tools, an NCL event
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Fig. 1 The NCLcomparator process. a Flowchart of NCLcomparator. b Examples of NCL events derived from ambiguous alignments with an
alternative co-linear explanation (top) and multiple hits (bottom). For the top panel, the host gene (RP11-545 J16.1) includes two alternatively
spliced transcripts (ENST00000540229.1 with 16 exons and ENST00000381541.7 with 14 exons). The concatenated sequence of the intragenic NCL
event (E11-E7; ENST00000540229.1) has an alternative co-linear explanation (E11 of ENST00000540229.1 and E7 of ENST00000381541.7). For the
bottom panel, the concatenated sequence of the intragenic NCL event (E4-E4; SCD) mapped to multiple positions (2 hits). c Schematic illustration
of the NCL junction and the corresponding co-linear junctions at both NCL donor (D1 and D2) and acceptor (A1 and A2) sites. The mapped read
spanning within (circRNA isoform) or outside (trans-spliced isoform) a detected intragenic circle is illustrated. E, exon. NNCL, number of reads
spanning the NCL junction
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is recorded when the distance between the known
co-linear junction and junction identified by the tested
tool is equal to or less than 5 bp, in which the coordi-
nates of the NCL junction is adjusted to those of the
well-annotated boundary.
Since repetitive sequences or paralogous genes often

masquerade as NCL events due to ambiguous align-
ments of short RNA-seq reads [1, 25, 58–60], NCLcom-
parator checks the alignment ambiguity of the input
NCL events and removes such potentially false positives.
To this end, for each input NCL event, NCLcomparator
concatenates the exonic sequence flanking the NCL
junction (within − 100 nucleotides to + 100 nucleotides
of each NCL junction) and then aligns the 200 bp
concatenated sequence against the reference genome
and well-annotated transcripts using BLAT [61]. Of
note, the concatenated sequence may be shorter than
200 bp if the flanking exonic circRNA sequence is
shorter than 200 bp. A concatenated sequence is
regarded as false positives derived from ambiguous
alignments, if it contains at least an alternative co-linear
explanation (the sequence similarity of the alternative
co-linear explanation is more than 80% identical to that
of the non-co-linear one; Fig. 1b, top) or maps to mul-
tiple positions with similar BLAT mapping scores (differ-
ence of BLAT-mapping scores < 3; Fig. 1b, bottom).
To extract the reads spanning the co-linearly spliced

junctions at both NCL donor and acceptor sites
(Fig. 1c) according to the adjusted NCL junctions, the
paired-end RNA-seq reads are aligned against the ref-
erence genome using STAR with the ‘chimeric align-
ment’ model [62]. The reads mapping outside the
identified intragenic circle are also extracted, which is
often employed to distinguish between trans-splicing
and circRNA events [4] (Fig. 1c). In addition, to evalu-
ate the variation in NNCL identified by the tools com-
pared, we define τNCL as.

Xn

i¼1

1−
log NNCL ið Þ þ 1ð Þ

log Max NNCLð Þ þ 1ð Þ
� �� �

n−1
ð1Þ

where n is the number of tools compared, NNCL(i) indi-
cates NNCL of the NCL event of interest identified by
Tool i, and Max(NNCL) is the highest NNCL of the NCL
event across all examined tools. Of note, τNCL of an
NCL event is defined as the heterogeneity of its NNCL

value provided by the tools compared, which ranges
from 0 to 1 with higher τNCL values indicating greater
variation (or higher tool-specificity) in NNCL. The meas-
urement of τNCL value is similar to that applied for
evaluating sample specificity of DNA methylation level
[63]. The NCL score, NCLscore, is then defined as.

log10
Median NNCLð Þ2 þ κ

τNCL þ κ
ð2Þ

where Median(NNCL) is the median NNCL of an NCL
event across all examined tools and κ is a pseudocount
arbitrarily set as 0.01 to avoid the occurrence of un-
defined values. A higher NCLscore of an NCL event indi-
cates a greater median NNCL with a smaller variation
(τNCL) in NNCL among tools compared, suggesting a
higher level of confidence. To quantify the abundance of
each detected NCL event as compared with that of its
corresponding co-linear isoform(s), we calculate NCL ra-
tio (RNCL) [59] and circular fraction (CF) [24] using
NNCL and the number of reads spanning the co-linearly
spliced junctions at both NCL donor (ND) and acceptor
(NA) sites. RNCL and CF are defined as

2NNCL

2NNCL þ ND þ NA
and

NNCL

NNCL þ ND þ NA þ 1
ð3Þ

respectively. Noteworthily, both RNCL and CF range
from 0 to 1, with RNCL > 0.5 or CF > ~ 1/3 indicating a
higher expression level in a NCL isoform than in its cor-
responding co-linear isoform. To quantify the usage of
the co-linear junctions at both NCL donor and acceptor
splice sites in the corresponding host gene, we also de-
fine PD and PA as

ND

all co‐linear junction reads
and

NA

all co‐linear junction reads

ð4Þ
respectively. “all co-linear junction reads” means the
sum of reads spanning the co-linearly spliced junctions
at all well-annotated splice sites in the host gene. For
comparison, the median frequency (Pmedian) of occur-
rence of all well-annotated splice sites (co-linear) in the
host gene is also provided. The expression levels of NCL
events are determined as the number of supporting
reads per million raw reads (RPMraw) or per million
uniquely mapped reads (RPMmapped) [64]; those of the
corresponding co-linear host gene are estimated by tran-
scripts per million (TPM) and fragments per kilobase of
transcript per million mapped reads (FPKM) using
RSEM [65]. Since synonymous constraint elements
(SCEs) were suggested to be important in RNA second-
ary structures, RNA splicing, microRNA binding, and
nucleosome positioning [66, 67], we also determine
whether the NCL donor and acceptor junctions are lo-
cated within SCEs. The union of the detected NCL
events from the compared tools is exported into two
tab-delimited text files (intragenic and intergenic results,
respectively), in which the related information stated
above is included. The figures representing coverage of
identified NCL events among the compared tools and
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distribution of the number of supporting tools are also
provided.

Results
NCLcomparator is applied to an rRNA depleted
RNA-seq of HeLa cells (SRR1637089). Nine intragenic
and six intergenic NCL detectors are selected and run
independently with default parameters or the parameters
suggested by the authors (Additional file 1: Table S1).
Some tools can simultaneously detect intragenic and
intergenic NCL events (e.g., NCLscan, Segemehl [68],
and MapSplice [69]). These tools totally identified
17,313 intragenic and 766 intergenic NCL events (i.e.,
the input NCL events; Additional file 2: Table S2).
NCLcomparator first checks the alignment ambiguity of

the input NCL events. Of the 17,313 intragenic NCL
events, 269 events contain alternative co-linear explana-
tions and 792 events map to multiple positions with
similar BLAT mapping scores (Table 1). Of the 766
intergenic NCL events, 184 and 69 events have alterna-
tive co-linear explanations and multiple hits, respectively
(Table 1). We can find that the proportions of false posi-
tives derived from ambiguous alignments vary among
the compared tools and are generally higher in inter-
genic NCL events than in intragenic NCL events (Fig. 2a
and b), reflecting previous reports that many intergenic
NCL events may arise from false positives (sequencing/
alignment errors or in vitro artifacts) [7, 42]. Particularly,
more than 50% of intergenic events identified by CRAC,
ericscript, and SOAPfuse are derived from ambiguous
alignments. Of note, the NCLscan results have the low-
est percentages of false positives derived from ambigu-
ous alignments among the results of the compared tools;
such percentages are consistently low (~ 1%) in both in-
tragenic and intergenic NCL event detections (Fig. 2a
and b). This result consists with previous reports that
NCLscan has the highest precision compared with other
tools [1, 51]. The NCL events that are determined to be
derived from ambiguous alignments (designated as “am-
biguous NCL events”) are removed. Therefore, a total of
16,252 intragenic and 513 intergenic events (designated
as “non-ambiguous NCL events”) are retained for the
following comparisons (Table 1).
In addition to tab-delimited text files (e.g., Additional

file 2: Table S2), NCLcomparator provides figures for
comparison of identification results from different tools
(see Fig. 3a and b for intragenic events and Fig. 3c and d
for intergenic events). Here we take the result of intra-
genic NCL events as an example. We can find quite a

A B

Fig. 2 Distributions of (a) intragenic and (b) intergenic NCL events derived from ambiguous alignments with an alternative co-linear explanation
and multiple hit(s) among various tools on the rRNA depleted RNA-seq data of HeLa cells (SRR1637089)

Table 1 The number of intragenic and intergenic NCL events
before and after screening

Number of NCL
events

Intragenic NCL events

Before screening 17,313

Alignment ambiguity (ambiguous NCL events) 1061

Alternative co-linear explanation 269

Multiple hit 792

After screening (non-ambiguous NCL events) 16,252

Intergenic NCL events

Before screening 766

Alignment ambiguity (ambiguous NCL events) 253

Alternative co-linear explanation 184

Multiple hit 69

After screening (non-ambiguous NCL events) 513
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Fig. 3 (See legend on next page.)
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large variation in numbers of detected events among
tools; every tool identifies a considerable proportion of
tool-specific intragenic NCL events (Fig. 3a, top). More
than 40% (6450 events) of the intragenic NCL events are
exclusively identified by a single tool (Fig. 3a, bottom).
Particularly, even though the intragenic NCL events
(205 events) detected by all the nine tools compared, the
number of supporting NCL-junction reads (NNCL) vary
among the compared tools (Fig. 3b). These observations
reflect great discrepancies in the detection results (in-
cluding the number and NNCL values of identified
events) among tools. Such great discrepancies are much
more remarkable in intergenic events than in intragenic
ones. We can find that except for SOAPfuse and eric-
script every tool identifies more than 30% of
tool-specific intragenic NCL events (Fig. 3c, top), more
than 83% (426 out of 513) of intergenic events are exclu-
sively identified by a single tool (Fig. 3c, bottom), and
the NNCL values highly vary among the compared tools
(Fig. 3d). In addition, comparisons of the cumulative dis-
tribution of τNCLshow that τNCL values are significantly
higher in intergenic events than in intragenic ones (P
value < 2.2e-16 by the Kolmogorov-Smirnov test; Fig. 3e).
These observations highlight the importance of a careful
screen for the NCL events, especially for intergenic
events, identified by currently available NCL event
detectors.
Importantly, NCLcomparator provides two measure-

ments, τNCL and NCLscore (see Eqs. (1) and (2), respect-
ively) to help users selecting potentially high- plausible
NCL events. Since NNCL values vary remarkably between
tools depending on the level of strictness of the filtering
steps used [51, 60] (see also Fig. 3b and d), we speculate
that high-confidence NCL events tend to have a large
NCLscore (in other words, a large median NNCL with a
small τNCL). Since ambiguous NCL events can be
regarded as false positives, we examine τNCLand NCLscore
values of ambiguous and non-ambiguous NCL events.
Indeed, we find a significantly negative correlation be-
tween these two measurements, in which τNCL values
are significantly higher in ambiguous NCL events than
in non-ambiguous ones (Fig. 4a and b), whereas the re-
verse trends are observed for NCLscore values (Fig. 4a
and c), regardless of whether the events are intragenic or

intergenic (both P values < 2.2e-16 by the
Kolmogorov-Smirnov test). For example, for τNCLτNCL,
more than 95% of ambiguous events are filtered out, if
we set the thresholds as < 0.6 and < 1 for intragenic and
intergenic events, respectively (Fig. 4b). Meanwhile, for
NCLscore, more than 95% of ambiguous events are re-
moved, if we set the thresholds as > − 1 and > − 2 for in-
tragenic and intergenic events, respectively (Fig. 4c).
These results reveal that NCLscore is a good indicator for
selecting NCL events with high level of confidence, sug-
gesting that NCL events with a large NCLscore may be of
high reliability and considered to take priority over the
other for further experimental validation and functional
analysis.

Discussion
There are several major challenges for detection of NCL
events. In addition to false positives arising from align-
ment ambiguity and biased identification of NCL events
from different bioinformatics approaches as stated
above, identification of NCL events is often hampered
by in vitro artifacts, particularly template switching dur-
ing reverse transcription (RT) [2, 7, 42, 45, 59, 70, 71].
Actually, to minimize potential RT-artifacts, it would be
better to confirm identified NCL events using both RT-
and non-RT-based experiments (e.g., Northern blot or
RNase protection assay [72]). However, it is required to
develop a method for systematic identification of NCL
events with controlling for experimental artifacts. While
a study successfully detected a huge number of experi-
mental artifacts based on Drosophila hybrid mRNAs (D.
melanogaster females vs. D. sechellia males) and a mixed
mRNA-negative control sample [42], this approach
would not be applied to human studies. Alternatively, it
has been demonstrated that RTase-dependent RNA
products are likely to be RT artifacts [2, 4, 7, 73, 74].
RT-based artifacts can be detected by comparisons of
different RTase products, which was shown to serve as
effectively as RTase-free validation [2, 7]. On the basis of
comparisons of Avian Myeloblastosis Virus- and Molo-
ney Murine Leukemia Virus-derived RTase products, a
recent study successfully applied this concept to human
samples and systematically identified NCL events with
controlling for experimental artifacts [59].

(See figure on previous page.)
Fig. 3 Variation in number of detected events and NNCL among various tools. Of note, the analysis is based on the non-ambiguous NCL events.
a The coverage of identified intragenic NCL events between the compared tools (top) and the distribution of the number of supporting tools
(bottom). b Boxplot representing the number of the supporting NCL-junction reads (NNCL) of the intragenic NCL events (205 events) that are
identified by all nine examined circRNA detectors. c and d representing the results of intergenic NCL events identified by 6 gene-fusion detectors,
related to the intragenic cases in (a) and (b), respectively. For (d), boxplot represents the 87 intergenic NCL events identified by at least two gene-
fusion detectors. A zoom-in view for NNCL of SOAPfuse, ericscript, CRAC, MapSplice2, and NCLscan is shown the middle panel of (d). The identified
intragenic and intergenic NCL events by various tools are listed in Additional file 2: Table S2. e Comparisons of cumulative distribution of τNCL for the
non-ambiguous intragenic and intergenic NCL events. P value is determined by the Kolmogorov-Smirnov test
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Moreover, NCL junctions can be generated during
post-transcriptional processes (trans-spliced or circular
RNAs) or by genetic rearrangements (fusion RNAs) at
the DNA level. Thus, discrimination between post-tran-
scriptional NCL events and genetic rearrangements pre-
sents another challenge to detection/analysis of NCL
events. Since NCL events that are observed in multiple
biological samples or conserved across multiple species
are less likely to be formed by somatic recombination,
post-transcriptional NCL events may be extracted by
this simple rule [2, 7]. A more efficient approach is to
analyze both RNA-seq data and whole genome sequen-
cing (WGS) data from the same sample. Some system-
atic pipelines have been developed, which integrated
WGS-based rearrangement detection with RNA-seq-
based NCL detection to identify fusion RNAs, and suc-
cessfully applied to analysis of functionally recurrent
gene fusions in human diseases [75–80]. While many
studies have focused on identification/analysis of fusion
RNAs that consist of sequence fragments from different
genes, transcribed rearrangements in an intragenic fash-
ion is relatively less investigated.
With more and more NCL events are identified, the

reliability and function of such a large number of NCL
events remains an open question worthy of further in-
vestigation. To reduce the cost of subsequent validation
and functional analysis, carefully evaluating the reliability
of detected NCL events with considering all abovemen-
tioned challenges awaits further development.

Conclusion
Dozens of RNA-seq-based detectors have been devel-
oped and successfully identify thousands of NCL tran-
script candidates (circular, trans-spliced, or fusion RNA)
in diverse species. However, there are great discrepancies
in the identification results (including the number of
NCL events and the number of the supporting NCL
junction reads of the identified events) among tools, in-
dicating a considerable proportion of potentially false
positives in the results. NCLcomparator screens out po-
tentially false positives originating from ambiguous
alignments and provides a series of useful measure-
ments, including NCL score (NCLscore), NCL ratio
(RNCL), circular fraction (CF), the usage of the co-linear
junctions at both NCL donor and acceptor splice sites in
the corresponding host gene (PD, PA, and Pmedian), and
the expression levels of NCL events (RPMraw and

RPMmapped) and their corresponding co-linear host
genes (FPKM and TPM), for users to screen the NCL
events from various detectors. On the basis of the
NCLcomparator-provided information, users can easily
select potentially high-plausible NCL candidates with a
high expression level and/or a low variation of support-
ing NCL junction reads from multiple NCL detectors.
The software, a post-processing tool for screening identi-
fied NCL events from existing detectors, thus help to fa-
cilitate future studies into NCL events, shedding light on
the fundamental biology of this important but under-
studied class of transcripts.

Availability and requirements
Project name: NCLcomparator.
Project home page: https://github.com/TreesLab/

NCLcomparator
Operator system(s): Linux-like environment (Bio-Linux).
Programming language: shell script.
Other requirement: None.
License: None.
Any restrictions to use by non-academics: None.
Data: The tested RNA-seq data was derived from

HeLa cells with rRNA depletion, which was downloaded
from the NCBI Sequence Read Archive (SRR1637089) at
https://trace.ddbj.nig.ac.jp/DRASearch/
run?acc=SRR1637089. All parameter settings and identi-
fication results of intragenic/intergenic NCL detectors
tested in this study are reported in Additional file 1:
Table S1 and Additional file 2: Table S2, respectively.

Additional files

Additional file 1: Table S1. Parameter settings of intragenic/intergenic
NCL detectors tested in this study. (DOCX 34 kb)

Additional file 2: Table S2. The totally identified 17,313 intragenic and
766 intergenic NCL events by the 9 intragenic and 6 intergenic NCL
detectors on the RNA-seq data of HeLa cells (XLSX 6083 kb)
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circRNA: Circular RNA; FPKM: Fragments per kilobase of transcript per million
mapped reads; NCL: Non-co-linear; RNA-seq: RNA sequencing;
SCEs: Synonymous constraint elements; TPM: Transcripts per million;
WGS: Whole genome sequencing
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Fig. 4 Comparisons of τNCL and NCLscore between ambiguous and non-ambiguous NCL events. a Correlation between τNCL and NCLscore for
intragenic (left) and intergenic (right) NCL events. The black and red dots represent non-ambiguous and ambiguous NCL events, respectively. The
correlation coefficient r and P values are determined by Pearson’s r test. b and c Comparisons of cumulative distribution of (b) τNCL and (c)
NCLscore for the ambiguous and non-ambiguous NCL events in intragenic (left) and intergenic (right) detections. In (c), a zoom-in view is shown in
the lower right panel. P values are determined by the Kolmogorov-Smirnov test
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