
METHODOLOGY ARTICLE Open Access

A statistical framework for detecting
mislabeled and contaminated samples
using shallow-depth sequence data
Ariel W. Chan1* , Amy L. Williams2 and Jean-Luc Jannink3

Abstract

Background: Researchers typically sequence a given individual multiple times, either re-sequencing the same DNA
sample (technical replication) or sequencing different DNA samples collected on the same individual (biological
replication) or both. Before merging the data from these replicate sequence runs, it is important to verify that no
errors, such as DNA contamination or mix-ups, occurred during the data collection pipeline. Methods to detect
such errors exist but are often ad hoc, cannot handle missing data and several require phased data. Because they
require some combination of genotype calling, imputation, and haplotype phasing, these methods are unsuitable
for error detection in low- to moderate-depth sequence data where such tasks are difficult to perform accurately.
Additionally, because most existing methods employ a pairwise-comparison approach for error detection rather
than joint analysis of the putative replicates, results may be difficult to interpret.

Results: We introduce a new method for error detection suitable for shallow-, moderate-, and high-depth
sequence data. Using Bayes Theorem, we calculate the posterior probability distribution over the set of relations
describing the putative replicates and infer which of the samples originated from an identical genotypic source.

Conclusions: Our method addresses key limitations of existing approaches and produced highly accurate results in
simulation experiments. Our method is implemented as an R package called BIGRED (Bayes Inferred Genotype
Replicate Error Detector), which is freely available for download: https://github.com/ac2278/BIGRED.
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Background
A researcher may choose, for a number of reasons, to
sequence an individual multiple times, performing technical
replication, biological replication, or both. Because sequen-
cing experiments involve many steps and errors can occur
during any part of the workflow, one motivation for
sequencing an individual more than once is to allow
researchers to compare these replicates, identify outlier
samples, and evaluate how well a sequencing pipeline is
executed. This is particularly important for plant breeders,
as they require ongoing estimates of their program’s error
rates. Further discussion of reasons for intentional replica-
tion appear elsewhere [1]. In short, the three aspects of
replication—sequencing read depth, technical replication,

and biological replication—each play different roles in miti-
gating errors that are introduced in the experimental pipe-
line. Increasing sequencing read depth allows for improved
variant calling while technical and biological replicates
allow for optimization of bioinformatic filters [1]. Replica-
tion can also arise unintentionally as a result of human
error or naming inconsistencies, and it is in a researchers
best interest to make full use of the data, merging the
replicate records rather than discarding them.
Before merging the data from biological or technical

replicates or using them to inform quality filter thresholds,
it is important to verify that no erroneous samples exist
among the putative replicates (i.e. verify that all putative
replicates derived from an identical individual). Existing
methods for error detection include performing pairwise
identity-by-state and –by-descent estimation [2], calculat-
ing the correlation between pairs of samples, and
examining a heat map of a realized genomic relationship
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matrix. These approaches require some combination of
genotype calling, imputation, and haplotype phasing,
making them unsuitable for low- to moderate-depth,
high-throughput sequence (HTS) data [3]. And because
these methods employ a pairwise-comparison approach
for error detection rather than joint analysis of the
samples, results may be inconsistent when more than two
replicates exist. To illustrate, the general protocol for heat
map analysis involves starting off with some collection of
sequenced samples (including the replicates of interest),
calling genotypes, filtering based on percent missing,
imputing missing genotypes, calculating the additive
genomic relationship matrix, and finally plotting a heat
map of the putative replicates. This method can work well
on deeply sequenced samples, but complications arise
when applying this method to shallow-depth sequence
data. Firstly, it requires genotype calling, which is difficult
to do accurately when we have low read depth. Secondly,
it requires imputation, raising issues in regards to
reference panel and imputation method selection. Fur-
thermore, results from imputation vary depending on
which samples were jointly imputed, which in turn,
affects downstream analyses that use the imputed
data. Finally, a third limitation of this method—com-
mon among existing error detection methods—is that
it relies on pairwise comparisons of the putative repli-
cates, rather than joint analysis of the replicates. For
example, suppose we have three putative replicates,
A, B, and C. It is possible that A and B are highly
correlated, A and C are highly correlated, but B and
C are only moderately correlated. In situations such
as this, deciding if all three samples are replicates is
not straightforward.
Considering these issues, we propose a method that

addresses key limitations of existing approaches. The
proposed method detects errors by estimating the
conditional posterior probability of all possible relation-
ships among the putative replicates (Fig. 1). We call our
algorithm BIGRED (Bayes Inferred Genotype Replicate
Error Detector). BIGRED requires no genotype calling,
imputation, or haplotype phasing, making it a suitable
tool for studies relying on shallow-depth HTS data. We
examined the effect of read depth, the number of sites
analyzed (L), and minor allele frequency (MAF) at the
L sites on algorithmic performance, using both real and
simulated data. In this paper, we used BIGRED as a
tool to verify reported replicates; however, we also
envision individuals using our algorithm to test unre-
ported but suspected replicates. Under this scheme,
researchers would use some initial screening method,
such as examination of the genomic relationship
matrix, to identify cryptic replicates among their
collection of samples and then test these suspected
replicates using BIGRED.

Methods
The proposed method
We describe the proposed method using a case study,
individual I011206 from the Next Generation (NEXT-
GEN) Cassava Breeding Project [4]. I011206 is
recorded to have been sequenced k = 3 times by
NEXTGEN (Additional file 1). We index the putative
replicates using the variable d. The task is to verify that
samples d = 1, d = 2, and d = 3 are in fact replicates of the
same individual, checking all possible combinations of
replicate and non-replicate status. We know that the
DNA samples from these three runs can be related in one
of five possible ways (Fig. 1):

1. All three samples originate from one source;
2. Samples d = 1 and d = 2 originate from one source

while d = 3 originates from a different source;
3. Samples d = 1 and d = 3 originate from one source

while d = 2 originates from a different source;

Fig. 1 The set of relations describing the three putative replicates of an
individual and the corresponding source vectors. BIGRED calculates the
posterior probability distribution over the set of relations describing the
putative replicates and infers which of the samples originated from an
identical genotypic source. The source vector S= (1,2,1) represents the
scenario where sample d= 1 and d= 3 originate from an identical
source. Crossed out boxes represent samples without any replicate
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4. Samples d = 2 and d = 3 originate from one source
while d = 1 originates from a different source;

5. All three samples originate from different sources.

We use “source vectors” to represent these relations
and enumerate all possible source vectors for k = 3 on
the right panel of Fig. 1. By convention: (1) source
vectors are labeled vectors, e.g., the first, second, and
third element of a given source vector describes the
status of sample d = 1, d = 2, and d = 3, respectively,
and (2) the first element of a source vector always
takes on the value 1. Vector elements with the same
value are indicated to be from the same source.
BIGRED detects errors by estimating the conditional

posterior probability of each source vector S, given:

1. Estimates of population allele frequency at L
randomly sampled biallelic sites, sampled at the
genome-wide level and

2. The k putative replicates’ allelic depth (AD) data at
the L sites. A site is only sampled if each putative
replicate has at least one read at that site.

We make three simplifying assumptions:

1. The species is diploid;
2. Each polymorphic site harbors exactly two alleles,

allele A and allele B, i.e. all polymorphisms are
biallelic;

3. Sites are independent. BIGRED allows the user to
specify a minimum distance, in base pairs, between
any two sampled sites. The user may also filter sites
based on linkage disequilibrium, although this is not
a functionality of BIGRED.

Defining a likelihood function for G

Let XðvÞ
d and GðvÞ

d denote the observed AD data and the
underlying (unknown) genotype at site v for putative
replicate d, respectively. The AD data records the
observed counts of allele A and B at site v for sample

d: XðvÞ
d ¼ ðnðv;dÞA ; nðv;dÞB Þ . Given observed data XðvÞ

d and
fixed sequencing error rate e, we compute the likeli-

hood for genotype GðvÞ
d ¼ g at site v for sample d using

a binomial model as follows, where g ∈ AA, AB, BB:

P X vð Þ
d jG vð Þ

d ¼ g; e
� �

¼ n v;dð Þ
A þ n v;dð Þ

B

n v;dð Þ
B

 !
1−pBð Þn v;dð Þ

A pBð Þn v;dð Þ
B

pB ¼
e;

0:50;
1−e;

when
when
when

8<
:

g ¼ 0 or AA
g ¼ 1 or AB
g ¼ 2 or BB

ð1Þ

Defining a likelihood function for S
We walk through the procedure of defining the likeli-
hood function for S when k = 3, continuing with individ-
ual I011206 as an example:

1. Enumerate all possible source vectors of length
k = 3 (Fig. 1).

2. Enumerate all labeled genotype vectors consistent
with each source vector (Fig. 2). For instance, there
are three genotype vectors consistent with source
vector S = (1,1,1): (AA, AA, AA), (AB, AB, AB), and
(BB, BB, BB). There are nine genotype vectors
consistent with S = (1,1,2): (AA, AA, AA), (AA, AA,
AB), (AA, AA, BB), (AB, AB, AB), (AB, AB, AA),
(AB, AB, BB), (BB, BB, BB), (BB, BB, AA), and (BB,
BB, AB).

3. Define a likelihood function for S as a function of
genotype likelihoods, defined previously in Eq. 1:

P X vð ÞjS
� �

¼
X
G vð Þ

P X vð Þ;G vð ÞjS
� �

¼
X
G vð Þ

P X vð ÞjG vð Þ
� �

P G vð ÞjS
� �

¼
X
G vð Þ

Yk

d¼1

P X vð Þ
d jG vð Þ

d

� �" #
P G vð ÞjS
� �

ð2Þ
The function P(G(v)| S) is the probability that the k

samples have genotype vector GðvÞ ¼ ðGðvÞ
d¼1;G

ðvÞ
d¼2;…;

GðvÞ
d¼kÞ given that source vector S describes how the k

samples are related. We define P(G(v)| S) using the
(user-supplied) population allele frequency of allele B at
site v and assuming Hardy-Weinberg Equilibrium
(HWE; Fig. 2). For samples that are encoded as identical
in source vector S, we treat their genotypes as a single
observation and all non-identical genotypes are modeled
as independent (Fig. 2).

Estimating P(S| X)
Once we compute P(X(v)| S) at all L sites, we compute
P(S| X) jointly across all L sites using Eq. 3 and assuming
a uniform prior on S:

YL
v¼1

P X vð ÞjS
� �

¼ P XjSð Þ

P SjXð Þ ¼ P XjSð ÞP Sð ÞP
S P XjSð ÞP Sð Þ½ �

ð3Þ
One may wish to compare the posterior probability of

two assignments of S, and when doing so via the
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posterior odds-ratio, both the denominator and P(S)
cancel from the two posteriors (since the denominator
acts as a normalizing constant and we assume a uniform
prior on S). The ratios of the posteriors are, therefore,
equal to the ratios of the likelihoods.

Evaluating BIGRED
We examined how changes in mean read depth, L, and
MAF at the L sites affect the accuracy of BIGRED. For
simulation experiments, we used a fixed sequencing
error rate of 0.01 and sampled sites such that no two
sites fell within 20 kb from one another. In addition to
accuracy, we evaluated the sensitivity of the algorithm.
We used high-depth whole-genome sequence (WGS)
data from 241 Manihot esculenta individuals to simulate
a series of data sets. Filtering the data (e.g., removing
sites with extremely low minor allele frequency and
discarding regions prone to erroneous mapping) should
be done prior to applying BIGRED to remove potentially
spurious variants. We refer the reader to the section
“Alignment of reads and variant calling of cassava haplo-
type map (HapMapII)” of [5] for a description of how
the data was generated and the quality filters applied.

The data
The WGS data consist of both AD data and called geno-
types for 241 individuals. To detect the presence of any
population structure, we performed principal component
analysis (PCA) using the called genotypes for the 241
individuals. We generated a pruned subset of SNPs that
are in approximate linkage equilibrium with each other
and then performed a PCA using this pruned subset of
SNPs (Fig. 3). We performed LD-based SNP pruning
and PCA using R packages SNPRelate() and gdsfmt()
with a LD threshold of 0.40 [6]. The 241 individuals
clustered into roughly three groups. The 206 individuals
shown in orange represent cultivated cassava. We used
these 206 individuals to estimate population allele
frequencies at sites and 15 individuals, previously found
to be genetically distinct [7], to simulate AD data for
experiments. We limited our simulation experiments to
these 15 members to ensure that all individuals truly
represent distinct genotypes rather than only nominally
distinct.

Simulation experiments to evaluate the impact of mean
read depth and MAF on accuracy
We first evaluated the effect of mean read depth λ and
MAF on the algorithm’s accuracy, holding L constant at
1000 sites. We outline the procedure to simulate AD
data for the scenario where k = 3 and S = (1,2,1):

1. Enumerate all possible pairs of genotypes, where
order does not matter (n = 15(14) = 210).

Fig. 2 Defining P(G(v)| S) for k = 3. We first enumerate all possible
source vectors of length k = 3 (left) then enumerate all labeled
genotype vectors consistent with each source vector (right). Each
path in a given tree corresponds to a genotype vector given source
vector S. For instance, if the three samples are related by source
vector (1,1,2), the genotype vector can take one of nine values. We
compute the probability of each genotype vector (given S) by
traversing each path and taking the product of the probabilities
associated with the edges of the path. Note that genotype vectors
not consistent with S have probability zero (we omit these paths
from the figure). Edge probabilities are defined using user-supplied,
population allele frequencies and assuming HWE
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2. Sample one genotype pair.
3. Randomly assign the status ‘source 1’ to one of the

two genotypes. Assign the remaining genotype
‘source 2’ status.

4. Randomly sample L = 1000 sites (genome-level)
with a specified MAF.

5. Simulating XðvÞ
d¼1: Sample Y alleles (with

replacement) from the pool of allele reads belonging
to source 1 at that site, where Y~Poisson(λ).

6. Simulating XðvÞ
d¼2: Sample Y alleles (with

replacement) from the pool of allele reads belonging
to source 2 at that site, where Y~Poisson(λ).

7. Simulating XðvÞ
d¼3: Sample Y alleles (with

replacement) from the pool of allele reads belonging
to source 1 at that site, where Y~Poisson(λ).

8. Feed the algorithm the simulated AD data and the
population allele frequency of allele B at the L sites.

9. Record the conditional posterior probability of
S = (1,2,1).

10. Repeat steps 2 through 9, 100 times. When
repeating step 2, only sample from those genotype
pairs that have not been sampled previously.

Note that evaluating scenario S = (1,2,1) is equivalent
to evaluating scenarios S = (1,1,2) and S = (1,2,2). We

performed a full factorial experiment for the source
vectors associated with k = 2, k = 3, and k = 4, where
λ = {1,2,3,6,15} and where we sampled sites with a
given MAF falling in one of five possible intervals
(0.0,0.1], (0.1,0.2], (0.2,0.3], (0.3,0.4], and (0.4,0.5].
Note that in these simulation experiments, all puta-
tive replicates of a given individual had identical
mean read depths. We later tested the scenario
where mean read depths varied among the samples.

Simulation experiments to evaluate the impact of L on
accuracy
To assess the impact of L on accuracy, we repeated
simulation experiments for S = (1,2,1) and S = (1,2,3),
sampling sites with MAFs falling in (0.2,0.3] and
testing seven values of L: 50, 100, 250, 500, 1000,
2000, and 5000.

Simulation experiments to evaluate BIGRED’s sensitivity
We next evaluated the algorithm’s sensitivity by simu-
lating the scenario where S = (1,1) and corrupting
(i.e., contaminating) p percent of sites in sample d = 2
with a second, randomly sampled genotype source.
We tested five values of p (10, 20, 30, 40, 50%) at five
mean depths (1x, 2x, 3x, 6x, and 15x). We repeated

Fig. 3 PCA on 241 Manihot esculenta genotypes, using a subset of SNPs in approximate linkage equilibrium. The x-axis and y-axis in this figure
represents the first and second eigenvector, respectively. The 241 individuals clustered into roughly three groups. We used cultivated cassava
(orange and black) to evaluate BIGRED in simulation experiments. We used 15 individuals (black) to simulate AD data and all 206 (orange and
black) individuals to estimate population allele frequencies at sites
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this procedure 100 times for each depth and p
combination.

Simulation experiments to evaluate the scenario where
mean read depths vary among the k putative replicates
We simulated data for three source vectors S = (1,1),
S = (1,2), and S = (1,2,1). For S = (1,1) and S = (1,2),
we varied the mean read depth of sample d = 2 while
keeping the mean depth of sample d = 1 constant at
1x. We tested five different λ values for sample d = 2:
1, 2, 4, 6, and 12. For S = (1,2,1), we varied the mean
read depth of sample d = 3 while keeping the mean
depth of samples d = 1 and d = 2 constant at 1x. We
again tested five λ values for sample d = 2: 1, 2, 4, 6,
and 12. We held L constant at 1000 across all
experiments and tested the same five MAF intervals
as before.

Comparing results to hierarchical clustering
To compare results from BIGRED and hierarchical
clustering, we used genotyping-by-sequencing (GBS)
data [8] collected by three of the four breeding pro-
grams collaborating on the NEXTGEN Project: the
International Institute of Tropical Agriculture (IITA),
the National Crops Resources Research Institute
(NaCRRI), and the National Root Crops Research
Institute (NRCRI). We refer the reader to the section
“Data generation and variant calling” of [9] for a
description of how the data were generated and fil-
tered. We estimated non-replicate rates for these
three programs. Additional files 2, 3, and 4 list the
names of the k putative replicates associated with a
given genotype from IITA, NaCRRI, and NRCRI,
respectively. The Euler diagram below shows the
number of cases where a given genotype has k > 1
sequence records, for each breeding institution
(Fig. 4). We found k = 9 samples associated with
TMEB419, a genotype used in breeding efforts at
both IITA and NRCRI, and excluded this genotype
from our analysis due to the computational demands
for cases where k > 7. Additional file 5 plots the
number of source vectors associated with k for
k ∈ {1,…, 8}. We also removed putative replicates
with a genome-wide mean read depth below 0.5
(Additional file 6 lists the samples removed). We ran
BIGRED using L = 1000 randomly sampled sites
across cassava’s 18 chromosomes with MAFs falling
between (0.4,0.5]. No two sites fell within 20 kb from
one another, and we assumed a fixed sequencing
error rate of 0.01 when calculating genotype
likelihoods.
We compared results from BIGRED to results

obtained from hierarchical cluster analysis. Results from
[10] show that hierarchical clustering is an effective tool

for matching accessions from farmers’ fields to corre-
sponding varieties in an existing database of known var-
ieties, a problem very similar to the one being addressed
in this paper. We performed hierarchical clustering on
the k putative replicates of each genotype. To do this,
we first calculated the realized additive relationship
matrix for the 1215 sequenced samples from IITA using
sites harboring biallelic SNPs. Sites were filtered using
criteria based on MAF and percent missing. Sites with a
MAF falling within the interval (0.1,0.5] and with < 50%
missing data across the 1215 samples were kept, leaving
us with 46,862 sites (out of 100,267) to analyze. We
calculated the realized additive relationship matrix using
the A.mat() function from the R package rrBLUP [11].
We used a matrix of genotype dosages as input and
imputed missing dosage values using the “mean” option.
We then calculated a distance matrix between the rows
of the additive relationship matrix using Euclidean
distance as the distance measure. We performed
complete-linkage hierarchical clustering using the
hclust() function and the distance matrix as input [12].
For each genotype, the hclust() function returns a tree
structure with k leaves, each leaf representing a putative
replicate. We determined the underlying relationship
among each genotype’s putative replicates by cutting
each tree at a height of 0.5. We refer to this relationship
as the “source vector” to keep terminology consistent
with that of BIGRED’s. We compared results from the

Fig. 4 A Euler diagram showing the number of cases (n) where a
given genotype has been sequenced more than once. We found n
= 475 genotypes (excluding TMEB419) within the IITA germplasm
collection that have each been sequenced k > 1 times. Entries falling
at the intersection of IITA and NRCRI (black) represent cases where
IITA submitted DNA for k-x sequence runs of a given genotype and
NRCRI submitted DNA for the remaining x runs. There were 146
such cases. We found n = 173 genotypes within the NRCRI
germplasm collection that have each been sequenced k > 1 times.
We found n = 119 genotypes within the NaCRRI germplasm
collection that have each been sequenced k > 1 times
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complete-linkage cluster analysis to results from
BIGRED. For BIGRED, we set a posterior probability
threshold of 0.99, i.e., BIGRED would only return an
inferred source vector if that source vector had a
posterior probability of at least 0.99. This minimum
posterior probability threshold was met in all cases,
i.e., we were able to infer a source vector in all
cases. We repeated this procedure for NaCRRI (299
sequenced samples and 48,712 sites) and NRCRI
(415 sequenced samples and 48,320 sites).
For each breeding institution, we categorized the insti-

tution’s genotypes into groups based on the number of
putative replicates (k) each genotype had. We then calcu-
lated a mean non-replicate rate μk separately for each k.
To calculate this, we computed a non-replicate rate for
each individual that has k putative replicates (when k = 2,
this rate is 1 - P(S = (1,1)|X)), and then averaged these
values across all individuals of a given k.

Comparing the consistency of BIGRED and hierarchical
clustering
To compare the consistency of BIGRED and hierarchical
clustering, we performed a set of experiments using the
GBS data from the 475 IITA individuals with 1 < k < 7
putative replicates. The basic premise of these experi-
ments is that an analysis based on a larger set of sites is
likely to be correct. The first step in these experiments
is to perform error detection on an individual’s putative
replicates using the data at a large number of sites and
to set the inferred source vector as the “truth”. The
second step is to perform error detection once more on
the individual’s replicates, this time using the data at a
smaller number of sites disjoint from the initial set. To
obtain a measure of consistency, we compare the results
from the first (larger) analysis with results from the
second (smaller) analysis.
To evaluate the consistency of hierarchical clustering,

we first filtered the data, retaining samples with a
genome-wide mean read depth of ≥0.5 and sites with
MAFs within the interval (0.3,0.5] and with < 50% miss-
ing data across the filtered samples. This left 1215
samples and 16,926 sites for analysis. As before, we
called genotype dosages using the observed allelic read
depth data and imputed missing values at a given site
with the site mean. We then performed hierarchical
clustering on each of the 475 individuals, using data
from 2000 randomly sampled sites. We set the output of
these analyses as the “truth”. We then performed hier-
archical clustering on each of the individuals a second
time, sampling L sites disjoint from the initial 2000, and
compared the inferred source vector with the “true”
source vector. We tested five values of L: 50, 100, 250,
500, and 1000. We repeated the experiment 10 times for
each value of L and calculated a mean concordance rate

between the “true” source vector and the source vector
inferred from the L sites across the 10 runs and 475
cases for each L.
To evaluate the consistency of BIGRED, we first

filtered the data, keeping samples with a genome-wide
mean read depth of ≥0.5 and sites with MAFs within the
interval (0.3,0.5]. As with hierarchical clustering, we de-
fined the truth using 2000 randomly sampled sites. We
used a fixed sequencing error rate of 0.01 and sampled
sites such that no two sites fell within 20 kb from one
another. We followed the same procedure as the one
used to evaluate the consistency of hierarchical cluster-
ing, in particular, testing with the same five values of L.

Applying a pairwise-comparison approach to real data
Methods that employ a pairwise-comparison approach
for error detection rather than joint analysis of the sam-
ples might produce ambiguous results when more than
two putative replicates exist. To demonstrate, we applied
a pairwise-comparison method to IITA’s data, specifically
we calculated the Pearson correlation between all pairs
of putative replicates. We refer to this method as the
“correlation method”. Before calculating the Pearson
correlation between replicate pairs, we filtered the data,
retaining samples with a genome-wide mean read depth
of ≥0.5, sites with MAFs within the interval (0.3,0.5],
and with < 50% missing data across the filtered samples.
This left 1215 samples and 16,926 sites for analysis. We
called genotype dosages using the observed allelic read
depth data and imputed missing values using glmnet [9].
We then calculated the Pearson correlation between all
pairs of putative replicates using the cor() function [12].
For simplicity, we limited our analysis to the 154
cases where k = 3. Correlations ranged from 0.02 to
0.93, so we selected 0.85 as the replicate-call thresh-
old (i.e., two putative replicates with a correlation
≥0.85 are considered true replicates). We also applied
a replicate-call threshold of 0.80 to examine how
results changed.

Run time
We measured computation time as the number of
central processing unit (CPU) seconds required to run
BIGRED. All jobs were submitted to the Computational
Biology Service Unit at Cornell University, which uses a
112 core Linux (CentOS 7.4) RB HPC/SM Xeon E7
4800 2 U with 512GB RAM.

Results
Evaluating the accuracy and run-time of BIGRED
To evaluate the algorithm’s accuracy and run-time, we
performed a full factorial experiment where we simu-
lated data for each of the source vectors associated with
k = 2, 3, and 4, varying the mean read depth of samples
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and the MAF of the L = 1000 sites sampled by the algo-
rithm. We use the term “accuracy” to refer to the
median posterior probability of the true source vector.
For these experiments, we simulated the situation where
all k putative replicates had identical mean read depths
but later tested the scenario where mean read depths
varied among the k samples (refer to the section “Evalu-
ating BIGRED’s accuracy when mean read depths vary
among the k putative replicates”). We observed qualita-
tively similar results for k = 2, 3, and 4, so we present
only the results for k = 3 in the main text (Fig. 5). We
present the results for k = 2 and 4 in Additional file 7.
When no erroneous samples were present among the k
putative replicates, the algorithm performed consistently
well across all mean read depths and MAF intervals,
assigning a median posterior probability of one to the
true source vector (Fig. 5a). We observed a common
trend for the remaining two source vectors: for a given
MAF interval, accuracy monotonically increased as
mean read depth increased. We observed this trend in

all cases except for interval (0.0,0.1], whose median
accuracy stayed constant at zero across all depths for
S = (1,2,1) and S = (1,2,3) and intervals (0.3,0.4] and
(0.4,0.5], whose median accuracies stayed constant at
one across all depths for S = (1,2,1) and S = (1,2,3)
(Fig. 5b and c). In addition to recording the posterior
probability of the true (simulated) source vector, we
also recorded the posterior probability assigned to all
other source vectors. We present the plots for S
= (1,2,1) and S = (1,2,3) experiments in Additional file
8. These plots recapitulate the behavior observed in
Fig. 5 but do so at a higher resolution: for a given
MAF interval, with the exception of (0.0,0.1], BIGRED
shifts the probability away from S = (1,1,1) towards
the true (simulated) source vector as the mean read
depth of samples increases. The algorithm takes, on
average, approximately three seconds to analyze all
possible source vectors when the true source vector is
S = (1,1,1) for all pairwise combinations of sample
mean read depth and site MAF interval (Fig. 5d).
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Similarly, the algorithm takes, on average, approximately
four seconds to analyze all possible source vectors when
the true source vectors were S = (1,2,1) and S = (1,2,3) for
all pairwise combinations of sample mean read depth and
site MAF interval (Fig. 5e and f).
To assess the impact of L on the algorithm’s accuracy,

we repeated simulation experiments for S = (1,2,1) and
S = (1,2,3), this time varying values of L and looking only
at sites with MAFs falling in (0.2,0.3]. We tested the
(0.2,0.3] interval since median accuracy was one for all
earlier experiments using intervals (0.3,0.4] and (0.4,0.5].
We tested seven values of L: 50, 100, 250, 500, 1000,
2000, and 5000. Median accuracy drastically increased
when L increased from 100 to 250 for S = (1,2,1) at 2x
mean depth (Fig. 6a). At a given mean read depth, we
observed little to no change in median accuracy when
increasing L for S = (1,2,3) (Fig. 6b).

Evaluating the sensitivity of the algorithm
To evaluate the algorithm’s sensitivity, we first simu-
lated the scenario where S = (1,1) then contaminated
p percent of sites in sample d = 2 with a second geno-
typic source. We then assessed how much probability
the algorithm assigned to source vector S = (1,1) in
light of these contaminated sites. We tested five
different values of p in combination with five sample
mean read depths. The algorithm showed greater sen-
sitivity to increases in p as the mean read depth of
the samples increased (Fig. 7).

Evaluating BIGRED’s accuracy when mean read depths
vary among the k putative replicates
We next evaluated the algorithm’s accuracy when the
read depths vary among the k samples. For these experi-
ments, we examined three source vectors S = (1,1), S

= (1,2), and S = (1,2,1) and used L = 1000 sites. And as
before, we examined the impact of MAF at the 1000
sites. When simulating data for source vectors S = (1,1)
and S = (1,2), we varied the mean read depth of sample
d = 2 while keeping the mean depth of sample d = 1
constant at 1x. We tested five different read depth values
for sample d = 2 (λ = 1, 2, 4, 6, and 12). When simulating
data for source vector S = (1,2,1), we varied the mean
read depth of sample d = 3 while keeping the mean
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Fig. 6 The impact of L on accuracy. The two plots show estimates of the median posterior probability of the true source vector (y-axis) as a
function of mean read depth of samples (x-axis) for different values of L (legend). We sampled sites whose MAFs fell in the interval (0.2,0.3]

Fig. 7 Algorithm’s sensitivity as a function of the mean read depth of
samples. We assessed the impact of mean read depth on the
method’s sensitivity. The plot reports estimates of the median posterior
probability of the true source vector S = (1,1) (y-axis) as a function of
the percentage of contaminated sites (p) in sample d = 2 (x-axis) and
mean read depth of putative replicates (legend). In these experiments,
samples d = 1 and d = 2 have identical mean read depths
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depth of samples d = 1 and d = 2 constant at 1x. We
tested five different read depth values for sample d = 3
(λ = 1, 2, 4, 6, and 12). We obtained results comparable
to those from simulation experiments where all k puta-
tive replicates had identical mean read depths. For S
= (1,1), the algorithm performed consistently well across
all read depth differences and MAF intervals, assigning a
median posterior probability of one to the true source
vector (Fig. 8a). For S = (1,2) and S = (1,2,1), the algo-
rithm performed consistently well across all read depth
differences when analyzing sites with MAFs falling in
(0.3,0.5] and consistently poorly across all read depth
differences when analyzing sites with MAFs falling in
(0.0,0.2] (Fig. 8b and c). For MAF interval (0.2,0.3],
median accuracy monotonically increased as the differ-
ence between sample read depths grew, i.e. as the mean
read depth for sample d = 2 in S = (1,2) and d = 3 in S
= (1,2,1) increased (Fig. 8b and c).

Estimating NEXTGEN non-replicate rates
We estimated non-replicate rates μk for IITA, NaCRRI,
NRCRI, and the germplasm used by both IITA and
NRCRI, respectively (Table 1).
For each institution, we categorized genotypes into

groups based on the number of putative replicates each
genotype had. Grey rows show the number of genotypes
in each group nk for each breeding institution. We then
calculated the mean non-replicate rate among genotypes
of a given k μk by calculating the mean probably of no
errors then subtracting this value from one.

Method comparison
We compared results from BIGRED to results obtained
from complete-linkage hierarchical cluster analysis. The
two methods reported 28, 2, and 15 conflicting results

for IITA, NaCRRI, and NRCRI, respectively (Fig. 9), all
of which were cases where hierarchical clustering
reported an error among putative replicates while
BIGRED reported no error, with the exception of one
NRCRI individual UG120041. Both methods reported an
error for UG120041 but reported different errors:
BIGRED inferred a (1,2,3) relationship while hierarchical
clustering inferred a (1,1,2) relationship.
We compared the consistency of BIGRED with that of

hierarchical clustering. Table 2 presents the mean con-
cordance rate between the “true” source vector and the
source vector inferred from L sites among 475 cases
across the 10 runs of hierarchical clustering and
BIGRED. BIGRED had a higher concordance rate than
hierarchical clustering at every L, suggesting that
BIGRED is a more consistent estimator than hierarchical
clustering.
To evaluate the consistency of the two methods, we

performed error detection on an individual’s putative
replicates using the data at 2000 sites and set the
inferred source vector as the “truth”. We then
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sampled sites (legend)

Table 1 A table summarizing the mean non-replicate rate μk of
each breeding institution

Institution k = 2 k = 3 k = 4 k = 5 k = 6

nk IITA 272 154 37 11 1

μk IITA 0.21 0.16 0.14 0.27 1

nk NaCRRI 58 61 0 0 0

μk NaCRRI 0.05 0.21 – – –

nk NRCRI 128 31 5 8 1

μk NRCRI 0.37 0.32 0.40 0.25 1

nk IITA & NRCRI 101 31 5 8 1

μk IITA & NRCRI 0.33 0.32 0.40 0.25 1
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performed error detection a second time using a
smaller number of sites (L) disjoint from the initial
set. We compared the “true” source vector with the
source vector inferred from L sites. For each IITA
individual, we tested five values of L and repeated
the experiment 10 times for each value of L. We
then calculated the mean concordance rate between
the “true” source vector and the source vector
inferred from L sites across the 475 cases and across
10 runs.
One motivation for BIGRED’s joint analysis frame-

work is that pairwise-comparison methods might
produce ambiguous results for cases of more than
two putative replicates. We introduced a hypothetical
example of this in the Background section and found
real examples of these inconsistencies when applying
a pairwise-comparison method to IITA’s data. More
specifically, when examining cases of k = 3 and using
a replicate-call threshold of 0.85, we found 80 cases
(out of 154) where the pairwise method awarded any
pair of samples (of an individual) replicate status. Of
these 80 cases, we found 10 cases where the method
produced ambiguous results (Additional file 9). When
we decreased the call threshold to 0.80, we found 146
cases where the method inferred at least one true
replicate pair but six of these cases had ambiguous
results (Additional file 10).

Discussion
Researchers may choose, for a number of reasons, to
sequence a given individual more than once. Regardless
of intent, it is important to identify potentially mis-
labeled or contaminated samples before using the data
(e.g. merging the data from replicate sequence runs or
using the data to optimize bioinformatics quality filters).
Unfortunately, existing methods to detect such errors
are ad hoc and ill suited for use in shallow-depth HTS
data since they require some combination of genotype
calling, imputation, and haplotype phasing. We have
introduced a new probabilistic framework for error
detection that addresses key limitations of existing
methods. Using Bayes Theorem, we calculate the poster-
ior probability distribution over the set of relations
describing the putative replicates (i.e. the set of source
vectors), allowing us to infer which of the samples origi-
nated from an identical genotypic source.
We examined the impact of mean read depth, L,

and MAF at the L sites on the accuracy of the pro-
posed method through a series of simulation experi-
ments. We found that the algorithm is most accurate
when analyzing sites whose MAFs fall in the range
(0.3,0.5], consistently across all mean read depths
when L = 1000 (Fig. 5). Sites with MAFs falling in the
interval (0.0,0.1] relay little information to the algo-
rithm. When analyzing these sites, BIGRED assigns a
median posterior probability of one to S = (1,1,1),
regardless of the true source vector. Thus BIGRED
appears to be biased towards inferring no error
among putative replicates when analyzing sites with
low MAF. One reason for this bias is our definition
of P(G(v)|S) (Fig. 2). Given a site that has a reference
allele frequency of 0.1, when k = 3, the probability of
G(v) = (AA,AA,AA) given S = (1,1,1), i.e. no erroneous
samples among the putative replicates, is 0.12,
whereas the probability of G(v) = (AA,AA,AA) given
any other source vector is ≤0.14. This bias is
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Fig. 9 Comparing results from complete-linkage hierarchical clustering and the proposed method. Above are three two-way contingency tables
comparing the results from complete-linkage hierarchical cluster analysis and the proposed method for IITA (a), NaCRRI (b), and NRCRI (c).
Conflicts between the two methods are shown in red. The 146 genotypes shared between IITA and NRCRI (Fig. 4; black) are represented twice in
our results: once with the 329 genotypes unique to IITA and once with the 27 genotypes unique to NRCRI

Table 2 A table comparing the consistency of BIGRED and
hierarchical clustering using the 475 IITA individuals with 1
< k < 7 putative replicates

Method L = 50 L = 100 L = 250 L = 500 L = 1000

BIGRED 0.9832 0.9895 0.9958 0.9973 0.9981

Hierarchical clustering 0.8322 0.9088 0.9488 0.9640 0.9771
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compounded by the fact that we estimated allele
frequencies from a set of 206 individuals but ran
simulation experiments using a subset of 15. Some
loci that had low but non-zero MAF among the 206
individuals appeared monomorphic among the 15
individuals, making the 15 individuals look more
similar than they actually are in reality. We found
that 47.14 and 5.29% of sites with MAFs in the
(0.0,0.1] and (0.1,0.2] interval, respectively, became
monomorphic among the 15 individuals.
To evaluate the impact of L on the algorithm’s accur-

acy, we repeated simulation experiments for S = (1,2,1)
and S = (1,2,3) using different values of L and looking
only at sites with MAFs falling in (0.2,0.3]. Surprisingly,
we observed little to no change in median accuracy at a
given depth when increasing the number of sampled
sites. The only exception was S = (1,2,1) at 2x mean
depth, where we observed a drastic increase in accuracy
when increasing L from 100 to 250 (Fig. 6). For S
= (1,2,3) at 2x and 3x, we observed a median accuracy of
zero even when sampling 5000 sites. We observed an
increase in median accuracy only after increasing the
mean read depth of samples to 4x. These results indicate
that the mean read depth of samples contributes more
to accuracy than the number of sampled sites. In these
simulation experiments, all k putative replicates of a
given genotype were assigned identical mean read
depths. These results, however, were robust to samples
with varying mean read depths (Fig. 8).
We also assessed the sensitivity of the algorithm as a

way to gauge how the proportion of exogenous DNA af-
fects the algorithm and how allelic sampling bias impacts
results. The GBS protocol uses methylation-sensitive re-
striction enzymes (REs) to avoid sampling highly repetitive
regions of the genome. One potential complication when
using methylation-sensitive REs is allelic sampling bias of
a marker or unequal sampling and sequencing of homolo-
gous chromosomes, resulting from differential methyla-
tion in a region. ApeKI, the RE employed by NEXTGEN,
for instance, will not cut if the 3′ base of the recognition
sequence on both strands is 5-methylcytosine. To test the
impact of imperfect marker “heritability”, we simulated
the scenario where S = (1,1) and corrupted p percent of
sites in sample d = 2 with a second genotype source. We
tested the cases where p = {10,20,30,40,50%} for five differ-
ent sample mean depths (λ = {1,2,3,6,15}) and found that
the algorithm was robust to increases in p for lower values
of λ (Fig. 7). Not surprisingly, the method assigned higher
probability to S = (1,2) as p and mean depth increased. As
mean depth increases, the algorithm grows increasingly
confident that differences at sites reflect true biological
differences rather than sampling variation or error.
When applying BIGRED and hierarchical clustering on

real data, we found a relatively high concordance rate

between the two methods (Fig. 9). Although this com-
parison does not directly tell the reader which of the
two methods is more accurate, the comparison and the
analyses in this paper demonstrate the benefits of using
BIGRED over hierarchical clustering. Firstly, we found
that BIGRED is a more consistent estimator relative to
hierarchical clustering (Table 2). Secondly, BIGRED
employs a probabilistic framework to tackle the problem
of error detection rather than a heuristic one like hier-
archical clustering, making BIGRED a more statistically
rigorous and neatly packaged method. Hierarchical clus-
tering requires the user to make many (arguably arbi-
trary) decisions throughout the protocol, whereas
BIGRED requires the user to make one decision at the
very end, i.e. the probability at which to “call” a source
vector. Our results also highlight one of the major flaws
of methods like hierarchical clustering: results can
change depending on what samples were included in
the analysis, specifically during imputation. There
are 146 genotypes that are used in both IITA’s and
NRCRI’s breeding programs, and these 146 geno-
types appear in both institutions’ data (Fig. 4). We
performed hierarchical clustering on these individ-
uals a total of two different times: once in combin-
ation with the 329 genotypes unique to IITA and
once in combination with the 27 genotypes unique
to NRCRI. Ideally, the duplicate runs of an individ-
ual would produce identical results, regardless of
what other samples where included in each analysis.
Of the 146 cases, however, we found three cases
where the hierarchical clustering-based duplicate
analyses produced conflicting results: one case where
the two analyses reported differ errors and two cases
where the IITA analysis reported no error but the
NRCRI analysis reported an error. These conflicts
likely resulted from the imputation component of
the cluster analysis procedure since sample compos-
ition is known to affect imputation. These issues
highlight the benefits of our approach: when we ran
BIGRED on these 146 individuals twice, we found
that all duplicate runs produced identical results.
In our simulation experiments, we estimated allele

frequencies from WGS data. Users of BIGRED will likely
not have this option and will need to estimate allele fre-
quencies using low- to moderate-depth sequence data.
Although such frequency estimates will in general con-
tain noise, we showed that BIGRED is robust to imper-
fect estimates of allele frequency. We estimated allele
frequencies from a set of 206 individuals but ran simula-
tion experiments using a subset of 15 individuals and
were able to recover the true underlying source vector
when analyzing sites with MAFs falling in the (0.3,0.5]
interval (Fig. 5). We also suggest that a user perform
preliminary analyses (e.g., with PCA) to detect the
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presence of population structure, and when structure is
evident, we recommend analyzing subpopulations separ-
ately, estimating allele frequencies from samples of a
given subpopulation then running BIGRED on the
samples from that subpopulation.
The number of possible source vectors increases

exponentially as k increases (Additional file 5). For
this reason, we do not recommend using BIGRED
on cases where k > 7. We, however, do not anticipate
many scenarios where a researcher would have
sequenced a given individual more than seven times,
but if this scenario does occur, one could either ran-
domly select seven putative replicates to analyze or
divide the replicates into sets of no more than seven
samples. If using the latter scheme, one would run
BIGRED on each set, merge the true replicates
within each set (discarding the erroneous samples),
then combine the sets of merged samples before
running BIGRED once more. By using a Poisson dis-
tribution to simulate AD data, we make the assump-
tion that reads are uniformly distributed across the
genome. While read data will often be more highly
dispersed than these analyses, if at least L of the
sites in those data have read depth of lambda or
above, BIGRED will perform at least as well as in
our analyses with these same parameters.
A motivation for BIGRED’s joint analysis frame-

work is that pairwise-comparison methods might
produce ambiguous results when more than two
putative replicates exist, and we did, in fact, run into
cases of this when applying the correlation method
to real data. Of the cases where the method reported
the presence of replicates when applying a replicate-
call threshold of 0.85 and 0.80, 12.50 and 4.11%
contained pairwise inconsistencies, respectively. By
decreasing the call threshold, one lowers the number
of ambiguous cases returned but doing so also
increases the number of false positives returned.
And although it may occur at low frequency, the
possibility of pairwise inconsistencies exists and
would be a problem for all methods that employ a
pairwise-comparison approach.

Conclusions
In this study, we introduced a statistical framework
for detecting mislabeled and contaminated samples
among putative replicates. Our method addresses key
limitations of existing approaches and produced
highly accurate results in simulation experiments even
when applied to samples with low read depth. Our
method is implemented as an R package called
BIGRED, which is freely available for download:
https://github.com/ac2278/BIGRED.
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