Rezazadegan and Reidys BMC Bioinformatics (2018) 19:543

https://doi.org/10.1186/512859-018-2497-3

BMC Bioinformatics

RESEARCH ARTICLE Open Access

Degeneracy and genetic assimilation in

RNA evolution

Reza Rezazadegan'™ ® and Christian Reidys'

@ CrossMark

Abstract

Background: The neutral theory of Motoo Kimura stipulates that evolution is mostly driven by neutral mutations.
However adaptive pressure eventually leads to changes in phenotype that involve non-neutral mutations. The
relation between neutrality and adaptation has been studied in the context of RNA before and here we further study
transitional mutations in the context of degenerate (plastic) RNA sequences and genetic assimilation. We propose
quasineutral mutations, i.e. mutations which preserve an element of the phenotype set, as minimal mutations and

study their properties. We also propose a general probabilistic interpretation of genetic assimilation and specialize it
to the Boltzmann ensemble of RNA sequences.

Results: We show that degenerate sequences i.e. sequences with more than one structure at the MFE level have the
highest evolvability among all sequences and are central to evolutionary innovation. Degenerate sequences also tend
to cluster together in the sequence space. The selective pressure in an evolutionary simulation causes the population

pressure to the contrary.

to move towards regions with more degenerate sequences, i.e. regions at the intersection of different neutral
networks, and this causes the number of such sequences to increase well beyond the average percentage of
degenerate sequences in the sequence space. We also observe that evolution by quasineutral mutations tends to
conserve the number of base pairs in structures and thereby maintains structural integrity even in the presence of

Conclusions: We conclude that degenerate RNA sequences play a major role in evolutionary adaptation.

Keywords: RNA, Evolution, Degeneracy, Quasineutrality, Genetic assimilation, Plasticity

Background

An RNA molecule is a linear polymer in the nucleotides
Adenine, Cytosine, Guanine, Uracil. RNA molecules play
various vital roles in the cell ranging from working as
messengers mediating between genes and the protein
that the genes encode (coding RNA) to functioning as
enzymes (non-coding RNA) [1, 2]. Moreover many of
the common viruses such as SARS, Zika, Ebola and HIV
are self replicating RNA molecules that evolve rapidly
[3]. The nucleotide bases of an RNA molecule can
form hydrogen bonds with each other. These bonds give
the molecule a 3-dimensional folded structure which is
believed to determine the function of non-coding RNAs
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[4]. Since RNA embodies both genetic code as well as
biological function, it can be thought of as incorporat-
ing both a genotype (RNA sequence) and a phenotype
(RNA structure). This way, RNA serves as a microcosm
for studying the properties of evolution in general and
of RNA viruses in particular. For example the study of
RNA virus adaptation from host to host is under heavy
investigation [5-7].

Since accurate prediction of this 3-dimensional struc-
ture is unfeasible at present [4], one instead studies the
RNA secondary structure which is given by the pairs
of bases that form hydrogen bonds with each other.
The most widely used method for predicting RNA sec-
ondary structure in silico is the thermodynamic model
[8] in which a free energy E(o,S) is associated to each
pair consisting of a sequence o and a structure S. For
a sequence o the structure with minimum free energy
(MFE) is proposed as the structure to which o folds.
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There are efficient dynamical programming algorithms
and software for computing the MFE structure (as well
as the suboptimal structures and their energies) from
the primary sequence. These include the Vienna RNA
package [9] which we used for our computations in this
paper.

The folding map which sends a sequence to its asso-
ciated secondary structure can thus be regarded as the
genotype-to-phenotype map for RNA. It exhibits a high
degree of redundancy meaning that for each structure
(satisfying a few conditions such as lack of isolates base
pairs) there are many different sequences folding into
it. Two RNA sequences are said to be neutral if they
fold to the same structure. In general about 30% of
one point mutants of an RNA sequence of length 100
are neutral. The set of all sequences folding to a struc-
ture S is called the neutral network of S. Neutral net-
works of different structures vary greatly in their sizes
with some structures (usually natural structures) dom-
inating vast portions of sequence space [10]. In gen-
eral the distribution of RNA neutral networks is nearly
log-normal [11-13].

This feature of RNA folding map is in perfect accord
with Motoo Kimura’s neutral theory of evolution [14].
According to this theory, evolution is driven by neutral
mutations and it is the accumulation of such mutations
which results in the occurrence of beneficial mutations.
This is in contrast with the selectionist view of evolution
in which most mutations are either deleterious of benefi-
cial. Neutral networks imply robustness for RNA pheno-
types under mutations while at the same time increasing
the number of other phenotypes to which one can evolve.
Mutational robustness means that, due to the significant
number of neutral neighbors for most sequences, RNA
phenotypes are resilient under mutations of their under-
lying phenotypes. Therefore starting from a sequence in
a neutral network and randomly mutating it, its struc-
ture stays the same for a period of time, as long as the
mutations are neutral.

At the same time the large sizes of neutral networks
result in a high degree of intertwining between various
networks. In other words there are many different phe-
notypes to which a given one can evolve. However, as
mentioned before, different RNA shapes differ in the size
and shape of their neutral networks. To quantify these
phenomena one defines the mutational robustness of a
sequence to be the fraction of its one point mutants that
fold into the same structure. Sequences of high robustness
lie in the “interior” of a neutral network while those of low
neutrality lie closer to its interface with other networks.
The evolvability of a sequence which is the number of
structures (counted without multiplicity) to which its one
point mutants fold. Mutational robustness and evolvabil-
ity of sequences correlate negatively [15], however there
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is evidence that these two quantities averaged over the
sequences in a neutral network (called the robustness
and evolvability of the associated phenotype respectively)
correlate positively [16].

In 1985 Manfred Eigen [17] proposed the theory that,
at any given time, natural selection does not result in
a unique fit (or wild type) species, but a distribution of
species that are closely related by mutations and whose
fitness is close to one another. He termed such a dis-
tribution a quasispecies. Around the same time as the
publication of the quasispecies theory, Gillespie [18] pro-
posed an algorithm for the probabilistic simulation of the
interactions between molecular species in a flow reactor.
Even though the physics behind molecular interactions in
chemistry and mutations and natural selection in biology
may be very different, Gillespie’s approach can be applied
to studying both [19]. Gillespie’s method was adopted
by Fontana and Schuster [19] for simulating RNA evolu-
tion. Such a simulation starts with a population of RNA
sequences that are chosen at random. At each step a
member of the population is chosen randomly to repli-
cate. As in actual replication in cells there is a probability,
called the error rate that a base is changed (mutated) dur-
ing replication, resulting in a mutant copy of the original
sequence. One uses a fitness function to decide which
members are given more chance to replicate. Fontana
and Schuster use three different fitness functions: the
structure distance to a given natural structure [20], min-
imum free energy and a sigmoid function derived from
the number of helices and the number of their arcs in the
structure [19].

One of the main observations of [20] is that if the fit-
ness function is given by structure distance to a target
structure, most of the time the population is in steady
intervals in which the majority of the population folds to
the same structure (called the dominant structure). Such
plateaus are interspersed by times in which the dominant
structure undergoes a significant change and therefore the
distance to target drops, see Fig. 1. This observation gives
a computational verification of the theory of punctuated
equilibria [21].

One major caveat of the discussion thus far is hav-
ing ignored the possibility that multiple phenotypes can
be associated to the same genotype. Phenotypic plasticity
is when different environmental conditions result in the
association of more than one phenotype to a given geno-
type. It exists in biological as well as molecular species
[22] and is believed to have a major role in evolution-
ary diversification [23]. Structural promiscuity is a closely
related phenomenon in which a genotype, such as an
enzyme, exhibits more than one function. However, unlike
phenotypic plasticity, no change in the environment is
needed for the extra, “promiscuous’; functions to exhibit
themselves [24].
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Fig. 1 The percentage of degenerate sequences as a function of sequence length. 10° random sequences of each length were used to obtain this
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Phenotypic plasticity results in a mode of evolu-
tion called genetic assimilation (often confused with the
Baldwin effect [25]). Genetic assimilation was defined by
Conrad Waddington as a process “by which a phenotypic
character, which initially is produced only in response to
some environmental influence, becomes, through a pro-
cess of selection, taken over by the genotype, so that
it is formed even in the absence of the environmental
influence which had at first been necessary” [25].

Genetic assimilation has been explained in terms of
natural and artificial selection [26]. There is also a
qualitative description of assimilation using dynamical
(“layered”) genotype networks [27, 28]. Here, inspired by
the Boltzmann ensemble of RNA (discussed below), we
give a probabilistic interpretation of assimilation and then
specialize it to RNA molecules. We postulate that all the
phenotypes that a genotype can possibly have via either
structural promiscuity or phenotypic plasticity belong to
the abstract phenotype space of that genotype. For a fixed
environmental condition, each element of the phenotype
space has a specific probability of occurrence, with the
most fit (wild type) being the most probable. However
changes in the environment alter these probabilities. Such
changes can either keep the wild type fixed (neutrality) or
cause it to be replaced with another phenotype. However
even in the former case, the probabilities of suboptimal
(promiscuous) phenotypes can change. Note that the idea
of a probabilistic phenotype space is somewhat similar to
phenotype-genotype correlation analysis in medicine, see
e.g. [29].

In this framework Waddington’s experiment can be
interpreted as follows. Under normal circumstances the

unusual cross-veinless phenotype exists in the pheno-
type space of drosophila with a small probability. The
heat shock results in the probability of this phenotype to
increase while still keeping the wild type fixed. However
after a few generations the change in the environment
results in a neutral evolution of the genotype to one in
which both the wild type and the cross-veinless have sim-
ilar probabilities. (Neutrality in the context of genetic
assimilation has been discussed before, as cryptic genetic
variation [30].)

We call a genotype with more than one most prob-
able (wild type) phenotype, degenerate. (This terminol-
ogy is somewhat different from the use of this word
in biology literature.) Since in the intermediate stage of
genetic assimilation a genotype (or, in our interpreta-
tion, a population of neutral genotypes) exhibits more
than one wild-type phenotype, this genotype is bound to
be degenerate or at least nearly degenerate in the given
environment.

For RNA, the phenotype space is already given to us
as the Boltzmann ensemble [31]. The Boltzmann ensem-
ble of a sequence contains all the secondary structures
compatible with it, each with a given probability given by
a Boltzmann probability distribution [31]. These proba-
bilities reflect the amount of time the molecule spends
in a given folded configuration. This is in contrast with
the (still prevalent) point of view that an RNA molecule
has a single folded structure. The probability of a given
structure is in reverse proportion with its folding (free)
energy and so the structure with the minimum free energy
(MFE) is the most probable one. Therefore it is often
regarded as the structure to which the molecule folds.
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However, oftentimes the MFE structure is just slightly
more probable than the structure(s) with the second
highest probability. The dependence of the phenotype
probabilities on the environment is reflected in the depen-
dence of Boltzmann probabilities on temperature [32].
A special case of this phenomenon is RNA thermome-
ters whose structures change as a response to changes in
temperature [33].

Figure 2 gives a schematic depiction of our probabilistic
interpretation of genetic assimilation in the case of RNA.
In this interpretation a change first encountered in the
Boltzmann ensemble later manifesting itself as a change
in the genotype. This can be thought of as a special case of
the duality between the sequence space and the structure
space [34, 35].

A degenerate RNA sequence is one which has more
than one structure at its MFE level and thus all those
structures have the same (highest) probability. Exam-
ples of (nearly) degenerate RNAs include: Riboswitches,
Leptomonas collosoma spliced leader RNA [36] and the
untranslated leader RNA of HIV-1 virus [37]. See also
Fig. 3. Degenerate sequences have high evolvability and
tend to cluster together in the sequence space, see Figs. 4
and 5. As illustrated in Fig. 6, the percentage of sequences
which are degenerate increases as a function of the length
of the chain so that for length 1000 and longer almost

Page 4 of 17

all sequences are degenerate. Degenerate RNA sequences
were computationally studied in [38]. In [38] we also stud-
ied quasineutrality which is intimately related to our inter-
pretation of genetic assimilation in the case of RNA. Two
sequences are quasineutral if they have a phenotype (MFE
structure) in common and similarly a mutation relating
two such sequences is called a quasineutral mutation.
Such a mutation is nontrivial (non-neutral) only if one
of the two sequences is degenerate. In [38] we observed
that quasineutral walks i.e. walks in the sequence space
in which each new sequence is a quasineutral mutant
of the last, resemble neutral walks in the short run and
random walks in the long run. Such walks were able to
reach their targets solely by means of genetic assimilation
(see also the “Results” section on quasineutral simula-
tions). This result provides computational evidence for
the genetic assimilation theory in the context of RNA
evolution.

We propose the following as a possible demonstration
of genetic assimilation in natural RNA. It pertains to the
messenger RNA associated to the clIII gene in bacterio-
phage A. The structure of the 5 end of this mRNA, of
length 58, is important in the regulation of translation of
the associated gene [39]. In [39, 40] it is demonstrated
that this mRNA posesses two different conformations
(structures) referred to as A and B, see Fig. 3. When the
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Fig. 3 A schematic depiction of genetic assimilation through degeneracy for RNA. The vertical lines represent the energy scale in the Boltzmann
ensemble of individual sequences. This means that the higher up a structure is, the higher its free energy and therefore the lower its Boltzmann
probability. Thus the lowest structure is the MFE structure of the sequence. The label Ns denotes the neutral network of S. A nondegenerate RNA
sequence (left) which has structure S at MFE level is forced by selective pressure to neutrally (cryptically) evolve into a degenerate sequence folding
to two RNA structures S, S (center). Further selection causes the sequence to enter the neutral network of " and discard its original phenotype S.
This way the acquired phenotypic character ' becomes inherent to the genotype

environment temperature is increased the ratio of the
two structures is shifted towards A. The authers analyse
the one point mutants of this mRNA and realize that
in mutants which resulted in overexpression, structure
B predominates, whereas in most of the low-expression
mutants, A is favored. This is because in structure B, the
Shine-Dalgarno-AUG region is unpaired and, hence, more
accessible for ribosome binding, whereas it is occluded in
structure A. Some of these mutants have the same MFE-
structure as the natural sequence and so can be regarded
as being quasineutral to it.

We therefore know that increasing the temperature
has almost the same effect as mutating a few of the
bases (and the similarly for lowering the temp). We can
re-interpret this phenomenon as fluctuations in the
temperature forcing the B-sequences to turn the A-
structure from a suboptimal structure to an optimal one
via point mutations, thereby resulting in the degenerate
mRNA.

We also investigate the effect of plasticity on evolu-
tion in the case of RNA. Whether plasticity speeds up
evolution is subject to debate [41]. In [41] it is con-
cluded that “adaptive plasticity that places populations
close enough to a new phenotypic optimum for direc-
tional selection to act is the only plasticity that predictably
enhances fitness and is most likely to facilitate adap-
tive evolution” For RNA this has been further verified
experimentally [42] and computationally [43]. (The result
of [42] pertains to cryptic genetic variation however in
the light of [43] it can be interpreted in terms of plastic-
ity.) However in [15] Ancel and Fontana use simulations
utilizing a fitness function obtained by averaging the fit-
nesses of suboptimal structures in a truncated Boltzmann
ensemble to study the effect of plasticity on RNA evolu-
tion. They conclude that such a “plastic fitness function”
results in the vanishing of plasticity in the population and
prevents it from reaching its target. We note that from a

mathematical point of view this fitness function is impos-
sible to satisfy and the decrease in plasticity is the result
of comparing a (truncated) Boltzmann ensemble with a
single target structure.

To remedy this problem we use a fitness function which
is given by the maximum of the fitnesses of the MFE struc-
tures of a sequence. Using the maximum gives advantage
to the phenotype with higher fitness and accelerates adap-
tation by means of genetic assimilation which in this case
is moving through the degenerate boundary of two neu-
tral networks. As opposed to [15] our simulations reach
their target. We also show that even in simulations with
a simple fitness function, considering only a single MFE
structure, the number of degenerate sequences rises well
above the average percentage of degenerate sequences in
sequence space. We show that this increase is a result
of the selection pressure since degenerate sequences are
highly evolvable.

We also observe that even if mutations are restricted
to being quasineutral, i.e. restricting evolution only to
genetic assimilation through degenerate sequences, the
population still reaches its target.

Results

Comparison of the MFE-set and single-MFE simulations

In all our simulations the target is the Phenylalanine
tRNA and fitness of a genotype is given by the sec-
ondary structure distance of its folded structure(s) to
the target. MFE-set simulations take all the MFE struc-
tures of a sequence into account for measuring dis-
tance whereas single-MFE simulations use only the one
picked by the ViennaRNA package, as in [20], see
“Methods” section. The reason for considering two types
of free simulation is to compare what we propose as more
natural (MFE-set simulations) to the ones in literature
[20]. In Fig. 1 we see the plots of various quantities asso-
ciated with these two types of free runs. One of the first
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Fig. 4 Free simulation with the single-MFE fitness function (top) and MFE-set fitness (bottom): the x-axis is scaled by square root. The quantities
depicted are as follows. The distance of the dominant structure of the population to the target (black curve). The mean energy and mean number of
base pairs in the population (the blue and purple curves respectively). The number of degenerate sequences and the number of sequences folding
to the dominant structures respectively, each divided by 20 to fit in the picture (the yellow and red curves). Transitions of the dominant structure
(step-wise orange curve). This curves goes up one step each time the dominant structure is changed (normalized to end at 50). The degeneracy of
the parent of the current dominant structure (gray curve)

the target after the average of 5.7 x 10° steps. The stan-
dard deviations for the two quantities were 5.5 x 10°

things we observe in Fig. 1 is that the MFE-set simulation
reaches the target much faster than the single-MFE run.

To analyze this phenomenon further, we ran 40 simula-
tions of either type and on average single-MFE runs took
7.3 x 10° steps to finish whereas MFE-set runs reached

and 3.8 x 10° respectively with the t-test p-value being
0.09. This difference can be explained as follows. Since
the single-MFE fitness function neglects all but one of the
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MEE structures of degenerate sequences, the single-MFE
fitness of a sequence is always less than or equal its MFE-
set fitness, see the inequality displayed in (2). In others
words the latter can observe fitness in situations where the
former cannot.

Only 2.6% of all non-neutral mutations in single-
MEE simulations were quasineutral. However among the
beneficial mutations (i.e. mutations that decrease the dis-
tance to the target structure, see Methods) 3.7% were
quasineutral. Paired student t-test for the two quantities
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sequence fold. The blue bars depict the distribution for all the 10° inverse folds and the yellow bars show the degenerate sequences. We observe
that as degenerate sequences lie at the intersection of two (ore more) quasineutral networks, they tend to have higher evolvabilities: the mean
evolvability of all the inverse folds is 111 while that of degenerate inverse folds is 143. Additionally most high-evolvability sequences are degenerate.
The highest evolvability for our sample was 495. The inset shows the distribution of single-MFE evolvability, see Methods for details




Rezazadegan and Reidys BMC Bioinformatics (2018) 19:543

yielded a p-value of 0.06. This suggests that quasineutral
mutations play a larger role in adaptation compared to
their share of all mutations.

The spikes in the distance of the dominant structure to
the target in the MFE-set run are the result of degenerate
sequences dominating the population and hence two or
more structures, to which these sequences fold, compet-
ing for dominance. This of course does not happen in the
single-MFE runs.

In both types of simulation, the drops in the distance to
the target coincide with drops in the number of sequences
folding to the dominant structure. This happens when a
beneficial mutation starts becoming established and the
population begins to migrate to a new neutral network.

Dominance of degenerate sequences in free simulations

In Fig. 1 we observe that the number of degenerate struc-
tures in the population is zero at the beginning however
it then increases to dominate the population for a signif-
icant portion of the run time in either simulation. This
happens in spite of the fact that degenerate sequences con-
stitute only 21% of all sequences of the length 73 used in
the simulations, see Fig. 6.

In order to understand this phenomenon better we ran
40 runs of each type. The highest number of degenerate
sequences during each MFE-set run was at least 940. In
the single-MFE runs this number was at least 700 in all
but four of the runs. Thus in almost all simulations of
either type, degenerate sequences dominate the population
at least at one point during the run.

We next show that the surge in the number of degen-
erate sequences is a meaningful signal instead of random
noise. To this end we ran simulations without a fitness
function, called non-adaptive runs. In such a simulation
all sequences have the same fitness, see Methods. In each
of the non-adaptive runs the mean number of degenerate
sequences was close to 210 which agrees with the percent-
age of the degenerate sequences in the sequence space of
length 73.

The difference is seen when comparing the highest
number of degenerate sequences during a run, between
single-MFE and non-adaptive runs. The t-test yielded a
p-value of less than 2.2 x 10716 with the averages for the
two types of run being 912 + 146 and 412 + 64 respectively.
(We chose the single-MFE runs since they have a smaller
number of degenerate sequences, as seen above, and ther-
efore less likely to demonstrate a significant difference.)
This suggests that it is the selection pressure that forces the
population to move towards areas of the sequence space
with higher concentration of degenerate sequences.

The role of degenerate sequences in transitions
We next investigate the reason behind the surge in the
number of degenerate sequences in simulations. We show
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that degenerate sequences contribute to transitions more
than their share of the population.

To this end we studied the number of dominant struc-
tures with degenerate parents. Note that not all benefi-
cial mutations result in a transition, since the result of
such a mutation may die before becoming dominant. We
thus recorded the degeneracy (the number of MFE struc-
tures) of the parent of each dominant structure. Note
that a structure may be born and die several times before
becoming dominant. Thus by the parent of such a struc-
ture we mean the last sequence that gave birth to it (i.e.
introduced it to the current pool of structures) before it
becoming dominant.

In Fig. 1 we see that for the majority of the length of
single-MFE run and a significant portion of the MFE-set
run, the parent of the dominant structure is degenerate. In
general the percentage of dominant structures birthed by
degenerate sequences, averaged over 40 single-MFE and
MFE-set runs was 27% £ 13% and 56% + 18% respec-
tively. This means that, even in single-MFE runs degener-
ate sequences contribute to shape innovation (transitions)
more than their 21% share of the population. The differ-
ence is much more pronounced for MFE-set simulations
as they take advantage of the full MFE-set of degenerate
sequences.

The spread and evolvability of degenerate sequences

In the last subsection we demonstrated that degenerate
sequences contribute to transitions more and this was
possibly the reason for the surge in their numbers in the
population. In this section we verify this by studying their
neutrality and evolvability as well as their spread in the
sequence space. In Fig. 4 we demonstrate how likely it
is for a sequence of degeneracy k to be a neighbor of a
sequence of degeneracy /. This plot is obtained by folding
the one-point mutants of 10> random sequences of length
73 (the same length as Phe-tRNA). We can see that it is
most likely for a sequence to be a neighbor of a sequence of
the same degeneracy, except for sequences of degeneracy
5,7,9,... which are most likely to have non-degenerate
neighbors. This implies that degenerate sequences clus-
ter together and possibly form networks in the sequence
space. As a consequence once the number of degenerate
sequences in the population starts to increase, it teds to
accelerate.

What causes the number of degenerate sequences to
start to increase? In Figs. 7 and 5 we plot the distribu-
tions of neutrality and evolvability in the neutral network
of Phenylalanine tRNA as a representative for natural
structures. We observe that degenerate sequences have
the highest evolvability and lowest neutrality compared to
the non-degenerate sequences. This is to be expected as
degenerate sequences are on the “outposts” of the neutral
network and are more “exposed” to other adjacent neutral
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networks. The evolvability in Fig. 5 is computed by taking
all the MFE structures of each sequence into account (see
“Methods” section for details). As we just demonstrated
degenerate sequences have more degenerate neighbors
and thus one may argue that their evolvabilities are tau-
tologically high. However the inset in Fig. 5 depicts the
distribution of evolvability computed using a single MFE
structure per sequence, as done in the literature. We see
that even subject to this condition, degenerate sequences
exhibit maximal evolvability.

Quasineutral simulations

In quasineutral simulations only quasineutral mutations
are allowed during replication, see “Methods” section for
the technical details. In other words quasineutral simula-
tions demonstrate how evolution would work under the
minimalist constraint of having a phenotype in common
in each mutation. In Fig. 8 we see plots of quasineutral
runs with error rates p = 0.001 and p = 0.01. Because
of the quasineutrality condition, in order to pass from
one neutral network to another, the population has to go
through the degenerate boundary between the two neutral
networks. Therefore the number of degenerate sequences
spikes before each transition.

Note that most quasineutral mutations are actually neu-
tral (92% for length 100 [38]) and thus it takes much
longer for a quasineutral simulation to reach its target.
Moreover the ratio of the beneficial to deleterious muta-
tions is smaller in quasineutral runs compared to the
(MFE-set) free runs: 0.03 versus 0.08. We can see that in
quasineutral simulations the number of sequences folding
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to the dominant structure is much more stable compared
to the free runs.

We analyze the genotypic and phenotypic diversity of
the elements of the population. There are different ways to
quantify phenotypic diversity. One such quantification is
to count the number of structures to which the sequences
in the population fold. However degenerate sequences
fold into more than one structure, therefore it is more suit-
able to consider the number of neutral networks in the
interior of which at least one sequence lies. This is equiv-
alent to counting the number of structures to which the
non-degenerate sequences in the population fold. For the
free run depicted in Fig. 1 the mean of this number is 25.7
with the maximum being 61. For the quasineutral run in
Fig. 8 (top), the mean and maximum are 0.34 and 5 respec-
tively. This shows that in a quasineutral run the sequences
are more clustered and are far less spread out compared to
free simulations. Moreover in the quasineutral simulation,
for long periods of time all sequences are degenerate and
therefore no sequence lies in the interior of any neutral
network.

As a measure of the genotypic diversity of the pop-
ulation we consider the number of sequences folding
to the dominant structure counted without multiplic-
ity. (Note that several copies of the same sequence
may exist in the population.) For the quasineutral run
the mean of this number over time was 41.2 while
for the free MFE-set run it was 30.2. This may be
attributed to the fact that in quasineutral runs the
sequences can only exit a neutral network through the
minority degenerate sequences and thus they evolve
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Fig. 7 Frequency distribution of the neutrality of inverse folds of Phenylalanine. The same set of sequences is used as in Fig. 6. The x-axis is scaled by
the square root. We compute the percentage of neutral neighbors of each such sequence with respect to Phe-tRNA i.e. the percentage of one point
mutants that have Phe-tRNA structure in their MFE sets (blue bars). The distribution of neutral neighbors for the degenerate inverse folds of
Phe-tRNA is depicted by the yellow bars. Most of the inverse folds of low neutrality are degenerate
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neutrally inside a neutral network more than in free
simulations.

Non-adaptive runs and structure networks

A question remains at to what extent the properties of
quasineutral and free runs depend on the fitness func-
tion or in other words on the selective pressure. In [20],
Fontana and Schuster define a weighted directed net-
work structure on the set of RNA secondary structures in
which edge weights indicate the likelihood for the inverse
folds of one structure to mutate into a sequence fold-
ing into another given structure, see Methods for details.
These edge weights govern the dynamics of simulations
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when there is no selective pressure. Fontana and Schuster
observe that the unlikely transitions between two struc-
tures for which the edge weight is minuscule, are induced
by the selective pressure. Such transitions result in a
significant decrease in the distance to the target.

In the “Methods” section we define the analogue
of this network for quasineutral mutations which we
call quasineutral structure network. We also introduce
probabilities p(S,S’) and p4(S,S’) that inform us how
likely it is for an inverse fold of S to mutate to a sequence
folding to S’ freely and quasineutrally, respectively.

The consequences of the absence of selective pressure
can be studied via simulations which have no specific
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target and therefore all sequences have the same fitness.
We refer to such simulations as “non-adaptive runs’, see
“Methods” section. We ran 10 free as well as quasineu-
tral non-adaptive runs, to observe the intrinsic differences
between the two types, i.e. differences that are not caused
by the selective pressure. Each such run starts with a
population of 1000 random sequences.

One major difference between the non-adaptive free
and quasineutral runs is the size of the pool of the domi-
nant structure. Note that the sequence space of length 73
has more than 8.9 x 10*3 elements and thus it is unex-
pected for a simulation starting from a random initial
population to evolve into a clustered population. How-
ever it follows from general properties of stochastic pro-
cesses [44] that the population indeed forms clusters.
In quasineutral non-adaptive runs the size of the pool
of the dominant structure is much larger than in free
non-adaptive runs: an average of 890 sequences for the
quasineutral run as opposed to 82 for the free run.

Discussion
We saw that during an evolutionary simulation of a
population of RNA sequences, the number of degener-
ate sequences rises well above their average number in
sequence space, both in free and quasineutral simula-
tions. This might be attributed the to fitness function
fs (see “Methods” section) that uses the minimum dis-
tance to the target of all the structures in the MFE-
set of a sequence, thereby giving an implicit advantage
to degenerate sequences. However as we saw in the
“Results” section, the rise in the number of degenerate
sequences happens even in free simulations with the fit-
ness function f; which uses only one MFE-structure per
sequence, i.e. the one chosen by the Vienna RNA pack-
age. This implies that such a rise is an intrinsic property
of the simulations, even of the simulations performed
in [20], and indicates that degenerate sequences play a
major role in adaptation. We also argued in Background
that quasineutral evolution through degenerate sequences
resembles genetic assimilation, see Fig. 2.

We attribute this over-representation of degenerate
sequences in transitions and therefore their prominent
role in adaptation to the following two facts:

e degenerate sequences have more degenerate
neighbors compared to nondegenerate sequences,

e degenerate sequences are more evolvable than
nondegenerate sequences.

The first fact is explained in Fig. 4 which shows us
how likely it is for a sequence having k structures at
its MFE level to have a neighbor with / MFE-structures.
This plot indicates that degenerate sequences tend to
have more degenerate neighbors. Therefore once the
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simulation population reaches an area of sequence space
with a high density of degenerate sequences, the mutants
are more likely to be degenerate themselves.

The second and more prominent fact is demonstrated in
Figs. 7 and 5. We can see in those two figures that degener-
ate sequences have the highest evolvability and the lowest
neutrality among the sequences in the neutral network of
Phenylalanine tRNA. This implies that it is plausible for
the surge in the number of degenerate sequences to be
due to their higher evolvability. We however note that this
surge is not observed in the “non-adaptive” simulations
i.e. the ones in which all sequences have the same fit-
ness and therefore there is no selective pressure. We thus
conclude that the increase in the number of degenerate
sequences is a result of both selective pressure and higher
evolvability. Further experimental research is needed to
fully understand the role of degenerate sequences in evo-
lution.

Models of evolution involving genotype-phenotype
maps [10] typically associate a unique phenotype to a
genotype. RNA folding associating a unique minimum
free energy structure to an RNA sequence is a paradig-
matic example in this context. A degenerate sequence,
by definition, realizes multiple phenotypes and thus has
more representations and possibilities to preserve struc-
ture. This raises the question of whether the observed
increase in evolvability and robustness is solely a conse-
quence of this multiplicity.

Remarkably degenerate sequences exhibit high evolv-
ability even if we consider only one MFE structure
per sequence, see the inset in Fig. 5. Even though
degenerate sequences realize multiple phenotypes and
thus have more representations and possibilities to pre-
serve structure, we can see in Fig. 7 that their neu-
trality (robustness) is low compared to non-degenerate
sequences. Our finding concerning the observed speedup
of the evolutionary optimization runs (see the “Results”
section) as well as their characteristic phenotypic and
genotypic diversities suggest that degenerate sequences
are distinctively different from nondegenerate sequences,
as they are located in the boundaries of neutral networks.

Another conclusion drawn from Fig. 5 is that ignor-
ing the MFE-set and taking only one MFE structure into
account rules out a great portion of structures that are
available from a given shape by means of a mutation: the
mean evolvability of sequences folding to Phenylalanine
structure is 111 when using the MFE-set and is 54.4 when
using a single MFE.

We saw in the “Results” section that the population in a
quasineutral simulation is more genotypically diverse (i.e.
has more sequences in the pool of the dominant structure,
counted without multiplicities) than in a free run, while
being less diverse phenotypically. We moreover observed
that in the absence of the selective pressure, the pool of the
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dominant structure is much larger in quasineutral simu-
lations. Some insight is provided by comparing the prob-
ability distributions p and p, (see Methods” section) for
structures to which the inverse folds of Phenylalanine are
likely to mutate, see Fig. 9. We can see that the initial part
of the probability distribution for free mutants is much
more flat compared to the distribution for quasineutral
mutations. In other words in the quasineutral case there
are a few select structures that dominate the distribution.
This results in a much lower rate of shape innovation.

It is important to note that the choice of secondary
structure metric plays a role in the behavior of simula-
tions. To demonstrate this, we ran simulations in which
the base pair distance was used to measure the dis-
tance of structures to the target. The base pair distance
between two structures S and S’ is given by the num-
ber of base pairs present in S; but not in Sy plus the
number of ones present in Sy but not in S;. So one can
expect that in a simulation using this metric, the series
of dominant structures connecting the initial structure
So to the target St is given by removing the arcs that
are in Sp and not in St and adding the arcs that are
in S7 and not in Sy. We observe that this is indeed the
case and in 18.5% of the 10® free simulations using base
pair distance, the average MFE of the population drops
to zero, i.e. the open chain becomes dominant. How-
ever the quasineutral runs even with base pair distance

Page 12 of 17

avoided this phenomenon. This can be attributed to the
fact that quasineutral mutations tend to maintain the
number of base pairs, see Fig. 10. Quasineutral mutations
thus preserve the integrity of the structures involved even
when there is a strong pressure to reduce the number of
base pairs.

Methods
Secondary structure metrics

Secondary structure metrics are used for measuring the
dissimilarity of structures of the same length. Let s be

the dot-bracket notation of a secondary structure. To s
we associate a vector v; as follows. First define f (i) to be
zero if s[i] is a dot, ﬁ if s[i] is the start of an arc that

ends at / and :11 if s[i] is the end of an arc that started
at location /. One associates a vector to s whose k’th
entry is given by v[ k] = 3, f (k). The weighted Motzkin
(or Mountain) distance [45] between two structures is

then given by

dwm(ss) =Y If@)]. (1)

In contrast to the Motzkin distance, the dwy-distance
between the open chain and any structure with only one
arc is the same. Tree edit distance is widely used for
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Fig. 9 The probabilities p (black) and ps (blue) for structure neighbors of Phenylalanine. Fifty thousand inverse folds of Phenylalanine were used to
compute these probabilities. Both axes are scaled logarithmically. The rank 1 structure, the structure into which Phenylalanine is most likely to
mutate, either freely (black curve) or quasineutrally (blue curve) is the same for the two curves. However the probability to mutate quasineutrally to
this structure, py, is 29 times higher than its free probability p. This explains why in free simulations, at the time of a transition the population splits
between different neutral networks, whereas for quasineutral ones the transition is rapid and without much splitting
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comparing secondary structures such as in the simula-
tions done by Fontana and Schuster. However it is slow
to compute as one needs to find the shortest edit path
connecting the trees associated to the two structures.
According to [45] dwas and the tree-edit distance exhibit
similar distributions of (normalized) distances between
random structures. Therefore dy,s represents a suitable
alternative to the tree-edit distance when comparing a
large number of secondary structures.

Degenerate sequences and quasineutrality
Following [38], an RNA sequence o is degenerate if it
has more than one structure at the minimum free energy

level. The set of MFE-structures is called the MFE-set
of the sequence and denoted by MFE(o). The cardinal-
ity of this set is the degeneracy of the sequence. In the
ViennaRNA package [9], one element of the MFE-set is
chosen at random and called the MFE-structure of the
sequence. We denote the latter by MFE,. Two sequences
are called quasineutral if their MFE-sets have non-empty
intersection, or in other words if they share a phenotype.
They are called neutral if their MFE-sets are identical.
A quasineutral mutation of o is a sequence ¢’ of Ham-
ming distance one to o which is quasineutral to o. For
example two sequences with MFE-sets {S} and {S, S’} are
quasineutral but not neutral.
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We call the set of all sequences which have a structure S
in their MFE-sets the neutral network of S and denote it by
Ns. We refer to the set of non-degenerate and degenerate
sequences in Ns as the interior and the boundary of
the neutral network!. By construction the sequences in
the boundary of Ns belong to (the boundaries of) other
neutral networks as well.

Neutrality and evolvability

The neutrality (or mutational robustness) of an RNA
sequence o is the percentage of its one point mutants
that fold into the same structure as o. Since in this paper
we take the multiplicity of MFE-structures into account,
as in [38] we consider neutrality with respect to a given
structure S. This means that both o and its mutant have
S in their respective MFE-sets. The evolvability of o is
on the other hand is the number of all structures two
which the one point mutants of ¢ fold. These structures
are counted without multiplicity i.e. a structure appearing
in the MFE-sets of several one point mutants is counted
only once.

For the purpose of comparison we also consider the
single-MFE evolvability i.e. instead of all the elements
of the MFE-set, only the one chosen by the Vien-
naRNA package as the MFE-structure is counted for each
sequence.

Free and quasineutral simulations

We conducted two different types of population simula-
tions: free simulations similar to those of [20] in which
there is no restriction on mutations and the quasineutral
simulations in which mutations are restricted to quasineu-
tral ones. For all our simulations the Phenylalanine tRNA
(of length 73) is the target. The initial pool of sequences is
populated by 1000 copies of a randomly chosen sequence.

In an experimental setting the fitness of an RNA geno-
type may be assessed by its binding capacity to a target
site or, in the case of RNA viruses, its adaptability to a new
host. Here however, as in [20], our goal is to study evo-
lutionary trajectories instead of the end result. Therefore
we consider fitness to be given by the secondary structure
distance to a given target structure. Thus whether a muta-
tion is deleterious or beneficial depends on whether it
reduces the distance to the target or increases it. As in [20]
we only consider point mutations and ignore additions
and deletions. This way, by restricting the simulations to
sequences of the same length, we keep the techniques
simple while retaining enough of the complexity of the
problem at hand.

For the free runs two different types of fitness function
were considered: the single-MFE fitness and the MFE-set
fitness functions. In both cases the fitness of a member
o of the population is defined to be the reciprocal of the
secondary structure distance d of its MFE-structure to the
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target structure. One has a choice of whether to take all
the structures in the MFE set MFE(o0') of a sequence o into
account for measuring this distance or not. In the former
case fitness of a sequence is defined to be the maximum
fitness of its MFE-structures:

-1
fg(0)=|: min d(S,Phe)i| .
SeMFE(a)

We refer to this fitness function as the MFE-set fitness
function. The reason for using the maximum is that a
degenerate sequence lies at the intersection of the neu-
tral networks of all the structures in its MFE-set and so is
able to mutate to a sequence in each one of them.? In the
latter case, as in [20] one only employs the ViennaRNA
MFE-structure MFEy (o) to measure fitness:

fi(0) = [d(MFEy (0), Phe)] .

We call this function the single-MFE fitness function.
This method is equivalent to choosing an MFE structure
from the MFE set at random and measuring its distance to
the target. By construction for each sequence ¢ holds

fs(o) = fi(0). (2)

A sufficient condition for equality is non-degeneracy of
o i.e. having only one structure at the MFE level. This con-
dition is however not necessary. As we will see fs results
in more efficient simulations.

At each step a member o of the population is chosen at
random to replicate. The members are always ranked by
their fitness and the likelihood to be chosen is linearly pro-
portional to rank. As in [20] we chose the replication error
ratetobe p = 1073, meaning that during replication, each
base is mutated with the probability of 1073, A mutation
from a sequence o to o’ is called beneficial if o' is more fit
thano.

In free runs no condition is imposed on this (possibly
mutated) copy. However in the quasineutral simulations
we only want the quasineutral mutations to contribute
to evolution therefore, after a sequence is chosen for
replication, it is replicated until a quasineutral mutant is
obtained. Only this quasineutral mutant is added to the
pool. For quasineutral runs we use the MFE-set fitness
function Fs only.

By the number of steps we mean the number of
replications in the simulation. In the quasineutral runs
the (rejected) non-quasineutral mutations do not count
towards the number of steps. After each replication a
random member of the population (regardless of its fit-
ness) is removed to keep the population constant. At
any given step the structure pool of the population is
the set of all structures (counted without multiplicity) to
which the population folds. In the fjs-simulations all the
MEE-structures of each sequence contribute to the pool
whereas in the fiy runs only the Vienna MFE-structure
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contributes. The dominant structure is the one into which
the majority of the population folds. Note that in fy-
runs, degenerate sequences can cause the majority of the
population to fold to more than one structure at once.
A transition is a step at which the dominant structure
changes to a structure which has not been dominant
before.

Simulations terminate as soon as the target structure
becomes the dominant structure.

Non-adaptive simulations

To see whether the increase in the number of degener-
ate sequences is caused by adaptive pressure or not, we
ran non-adaptive simulations. The free or quasineutral
non-adaptive simulations are the same as the free and
quasineutral simulations discussed above except that in
the former all members of the population have the same
fitness. This means that a population of RNA sequences
mutates freely (in free simulations) or quasineutrally (in
quasineutral simulations) and choosing for replication is
completely random. The population is kept constant as in
targeted simulations.

Free and quasquasineutral networks of structures
In [20] Fontana and Schuster consider a directed edge-
weighted network whose vertices are given by RNA struc-
tures of a given length. The edges and their weights are
constructed as follows: for a structure S one considers a
sample X of inverse folds of S and list all the structures to
which the one point mutants of the elements of X fold. If
S’ is a structure obtained in this way then they consider
the weight 5 (S, S’) which is the fraction of the inverse folds
o € X that have at least one one-point mutant that folds
into §'.

For each S they then sort these structures S’ according
to their weights

1S5 S5, ... (3)

0(S,S)) as a function of n drops very fast and they choose
a threshold € and consider a directed edge from S to each
S! for which p(S,S}) > €. We refer to this directed graph
as the free structure network.

They use these likelihoods to decide whether a tran-
sition in a simulation is continuous or discontinuous: a
transition from S to S’ is continuous if the weight of the
edge from S to §' is large compared to the other edges
emanating from S. In practice in [20] continuity of a tran-
sition is decided by whether the new sequence already
existed in the structure pool before the transition or not.
This is because if S, existed in the pool when S; was dom-
inant then it is likely that the mutants of the sequences
folding to S; fold to Sy and vice versa.

In [20] the authors compute the outward star (the char-
acteristic set) of the Phenylalanine tRNA in this graph.
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Moreover it is observed in [20] that the majority of edges
are given by lengthening or shortening a stack or destroy-
ing a whole stack element. The edge weights in this graph,
between structures S and &', give us the likelihood that a
free simulation would move from being dominated by S to
being dominated by §'.

In this paper we consider a variant of this graph in
which the edge weights, denoted by p.(S, '), are given by
the fraction of inverse folds of S which have at least one
quasineutral one-point mutant which folds into S’. One
then uses the same method as above to discard structures
S’ of low weight and build a directed graph which we call
quasineutral structure network.

Note that since only a fraction of one-point mutants of
a sequence are quasineutral (on average 8% for length 100
[38]), for a given pair of structures S, S', p.(S,S) is usually
much smaller than p(S,S’). In order to compare the two
quantities we take the quotient

p(S,S)

SS)=="-—-.
g Zsu&s p(S,S")

Weset p(S,S) = 0.In contrast to p, thesum ) ¢ p(S,S")
equals one and so p(S,S’) computes the probability of
entering the neutral network of §’, by means of one-point
mutations, when leaving the neutral network of S.

We obtain p,(S,S’) from p,(S,S’) in a similar way. Since
Y g p(5,8) =g p«(S,S) = 1, we can compare p(S,S’)
and p. (S, S’) to see how the likelihood of passing from S to
S’ by means of a single free vs quasineutral mutation are
different. Note that since most quasineutral mutations are
neutral (about 92% for sequences of length 100), in general
0«(S,S) is much larger than p(S, S).

Conclusion

We showed that degenerate sequences have the highest
evolvability among all sequences and are central to evolu-
tionary innovation. This is important given that the multi-
plicity of folded structures of RNA sequences is generally
ignored.

The selective pressure in an evolutionary simulation
causes the population to move towards regions with more
degenerate sequences and this causes the number of such
sequences to increase well beyond the average percent-
age of degenerate sequences in the sequence space. We
conclude that degenerate RNA sequences play a major
role in evolutionary adaptation and further experimental
research is needed to better understand this role.
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