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Abstract

Background: Identifying local recurrences in breast cancer from patient data sets is important for clinical research
and practice. Developing a model using natural language processing and machine learning to identify local recurrences
in breast cancer patients can reduce the time-consuming work of a manual chart review.

Methods: We design a novel concept-based filter and a prediction model to detect local recurrences using EHRs. In the
training dataset, we manually review a development corpus of 50 progress notes and extract partial sentences that
indicate breast cancer local recurrence. We process these partial sentences to obtain a set of Unified Medical Language
System (UMLS) concepts using MetaMap, and we call it positive concept set. We apply MetaMap on patients’ progress
notes and retain only the concepts that fall within the positive concept set. These features combined with the number
of pathology reports recorded for each patient are used to train a support vector machine to identify local recurrences.

Results: We compared our model with three baseline classifiers using either full MetaMap concepts, filtered MetaMap
concepts, or bag of words. Our model achieved the best AUC (0.93 in cross-validation, 0.87 in held-out testing).

Conclusions: Compared to a labor-intensive chart review, our model provides an automated way to identify breast
cancer local recurrences. We expect that by minimally adapting the positive concept set, this study has the potential
to be replicated at other institutions with a moderately sized training dataset.
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Background
Breast cancer is one of the most prevalent cancers
amongst women. In order to improve breast cancer out-
comes, many research groups have focused on develop-
ing new treatment strategies [1, 2], identifying new
biomarkers [3], and studying related risk factors [4–8].
Carrying out these studies requires a direct and effective
outcome measure. Local recurrences in breast cancer, or
ipsilateral recurrences, refer to cases in which the malig-
nancy occurs at the original site after a lumpectomy or

in the chest wall area after mastectomy. When evaluat-
ing local therapies, such as radiation or breast conserva-
tion surgery, local recurrence-free survival is an
efficacious endpoint for outcome measurement [9].
There have been significant developments in maintain-

ing electronic health records (EHRs) within the last dec-
ade, which has made clinical data increasingly available
in electronic form. Compared to prospective studies, the
abundant data extracted from EHRs is an attractive
resource for retrospective research, such as low-cost
case-control studies. This resource has allowed re-
searchers to conduct large cohort studies to answer
various clinical questions. Furthermore, biopsies and
tumors stored in biobanks can be linked to the EHR
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by matching patient identifiers, which makes it pos-
sible to study genetic and phenotypic patterns simul-
taneously [10–12].
Clinical data such as signs and symptoms, and disease

status and severity are often recorded in narratives in
EHRs. For example, progress notes are a record of
events during a patient’s office visit or hospitalization
that communicate opinions, findings, and plans between
healthcare professionals. A well-documented progress
note is complete, accurate, and concise for the care de-
livered, including diagnosis and treatments [13]. To
identify recurrences from the narratives, researchers still
heavily rely on manual chart review. In addition to being
error-prone, the review process is both labor-intensive
and time-consuming, making it difficult to scale to large
cohort studies. The abundance of information in the free
text makes natural language processing (NLP) an indis-
pensable tool for text-mining [14, 15]. Various NLP tools
have been developed to extract features from free text
for patient profile representation. Such features can fur-
ther be used for cohort classification or clustering. Nu-
merous studies have applied NLP to extract meaningful
information from clinical narratives, such as identifica-
tion of disease status [16–21], drug-drug interactions
[22], and adverse drug events [23].
To identify breast cancer local recurrence from EHRs,

Lamont et al. used ICD9 codes as features. They ob-
tained area under receiver operating characteristic curve
(AUC) scores of 0.84 and 0.97 for two-year censoring
and five-year censoring periods, respectively [24]. How-
ever, claims data have limited validity in inferring cancer
recurrences due to its low accuracy [25]. Strauss et al.
used morphology codes and anatomic sites to detect
breast cancer local recurrence [26]. They achieved a
positive predictive value (PPV) score and a negative pre-
dictive value (NPV) score of 0.94 and 1, respectively.
Nevertheless, the method required that the pathology re-
port be well-documented in a standard format. In reality,
the reports are written in different formats across insti-
tutions and require special care for NLP systems to unify
the cross-institutional variations [18, 19]. Haque et al.
used a hybrid of pathology reports and EHR data [27];
yet the model resulted in a low precision of 65.6%. More
recently, Carrell et al. proposed a method to combine
pathology reports, radiation notes, clinical reports, and
EHR data to detect recurrences [28]. The authors
achieved an F-measure score of 0.84 in the training set
and 0.72 in the test set. Furthermore, the system was
not able to distinguish between local recurrences and
distant recurrences.
The National Program of Cancer Registries (NPCR)

was launched to capture cancer patient information.
One of its major tasks is to capture a comprehensive
history, diagnosis, treatment, and disease status for each

cancer patient. However, breast cancer local recurrence
information is often not well documented as structured
data at individual hospitals and medical institutions [29,
30]. In addition, a patient may have risks of developing
such an event for an extended period in his or her life-
time [31, 32]. The magnitude of work needed to capture
and maintain pathophysiologic data for NPCR is not
trivial [33]. In contrast, progress notes serve as a tool to
communicate opinions, findings, and plans between
healthcare professionals. Using the detailed information
in progress notes, a well-designed NLP algorithm should
be able to accurately identify local recurrences.
Motivated by the limitations of previous studies, we

aimed to develop a tool to identify breast cancer local
recurrences. Such a model should be able to be built
and replicated without intensive labor input. The input
data for the model should be easily obtainable, such as
progress notes and number of pathology reports. Fur-
thermore, the model should be able to identify breast
cancer local recurrences accurately. With these aims, in
this study we applied support vector machine (SVM) to
quantitatively assess the likelihood of a patient having a
local recurrence, using a hybrid of narratives in progress
notes and the number of breast cancer surgical path-
ology reports that were generated at least 120 days fol-
lowing the date of primary diagnosis.

Methods
An overview of the workflow employed in this study is
shown in Fig. 1. We start by first defining a positive con-
cept set, which is marked as pipeline 1 in Fig. 1. In the
training dataset, we manually review a development cor-
pus of 50 randomly selected progress notes and extract
partial sentences that indicate breast cancer local recur-
rence. We process these partial sentences to obtain a
positive set of concepts using MetaMap. The work in
pipeline 1 is described in the “Positive concept set” sec-
tion. After obtaining the positive concept set, we start
pipeline 2 as marked in Fig. 1. We first preprocess the
narratives as described in the “Data preprocessing” sec-
tion. We then apply MetaMap to annotate relevant med-
ical events in the preprocessed notes. Only concepts that
fall within the positive concept set are retained. Different
concepts extracted from the same sentence are com-
bined to generate power sets as additional features. The
process to generate features from narratives are pre-
sented in the “Feature generation” section. In addition,
the number of pathology reports generated at least 120
days following the date of primary diagnosis is used as a
feature. The intuition and method of generating such a
feature is described in the “Number of pathology report”
section. These features together are used to train a sup-
port vector machine that identifies breast cancer local
recurrences. After training and tuning the model, we
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rigorously evaluate the model’s performance in local re-
currence prediction. The details of training and evaluat-
ing the model are presented in the “Prediction model”
and “Model evaluation” sections, respectively.

Positive concept set
The first step in this study is to build a positive concept
set. As shown in Table 1, examples of positive and

negative partial sentences are extracted from progress
notes. In the positive examples, we can infer the local re-
currences by reading the partial sentences. The word ‘re-
currence’ or ‘recurrent’ appears in most cases. However,
among the negative examples, the word ‘recurrence’ or
‘recurrent’ alone is not informative enough for us to
infer breast cancer local recurrences. In fact, we need
additional words to infer the local recurrences correctly.

Fig. 1 Diagram of the workflow of the study. Processing steps are in the circles; narratives, concepts, and features are in the squares. NP represents
the number of pathology reports generated at least 120 days after the first primary diagnosis. We start with pipeline 1 by manually going through a
development corpus of 50 randomly selected positive progress notes to build a positive concept set. We then start pipeline 2 by going through every
patient’s progress notes. The dash line indicates that only concepts falling in the positive concept set are retained

Table 1 Positive and negative examples of partial sentences indicating local recurrences

Partial sentences

Positive Examples Now with newly diagnosed DCIS recurrence

She initially received breast-conserving therapy with radiotherapy for a right breast cancer in 1990 and now she presents
with a right-sided pT1b N0 (SN) infiltrating lobular carcinoma.

She was found to have an ipsilateral breast tumor recurrence

Female with a history of left breast stage IIIC infiltrating ductal carcinoma who was treated with breast conserving surgery
and adjuvant chemo radiation in 2010 who was recently diagnosed with a cancer in the ipsilateral breast

Is currently receiving chemotherapy for her recurrent breast cancer

Negative Examples We recommended the patient undergo adjuvant radiation therapy with the goal of decreasing local regional recurrence
and possibly increasing the overall long-term survival

Carefully explained to her that removing the right breast would not change her overall survival and had minimal impact
on her recurrence

She presents with recurrence of depressive symptoms associated with new breast cancer diagnosis

Pt very concerned and anxious as some of her friends have been diagnosed with recurrent breast cancer.

Despite this stressor, and the attendant emotional strain, she appears to be coping well at present and is dealing well with
fear of recurrence and medical issues
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To build a comprehensive positive concept set for recur-
rence inference, we manually go through a development
corpus of 50 randomly selected positive progress notes
and extract partial sentences that are associated with
breast cancer local recurrence. These extracted partial
sentences are summarized in Additional file 1: Table S1.
To illustrate, one of the partial sentences identified in
this study is as follows: ‘after her chest wall breast cancer
recurrence excision’. This partial sentence indicates that
the patient has a chest wall recurrence and also had an
excision. In total, 93 partial sentences are identified from
the 50 progress notes. These partial sentences are tagged
by MetaMap, which is an NLP application to map the
biomedical text to the Unified Medical Language System
(UMLS) Meta-thesaurus [34]. The concept unique iden-
tifier (CUI) corresponding to each concept is obtained.
To reduce noise, CUIs that are not related to breast can-
cer local recurrence are manually filtered. CUIs for
words such as ‘then’, ‘the’, ‘to’, etc. are filtered and dis-
carded. Finally, 48 CUIs are retained; they are listed in
Additional file 2: Table S2. These CUIs together repre-
sent a set of positive concepts that describe breast can-
cer local recurrence. To illustrate, the partial sentence
‘history of recurrent breast cancer’ contributes three
CUIs, namely ‘history of malignant neoplasm of breast’
(C1997028), ‘Personal history of primary malignant neo-
plasm of breast’ (C1387407), and ‘Recurrent’ (C2945760),
to the positive concept set.

Data preprocessing
A number of preprocessing steps are performed on the
progress notes. We remove duplicate copies, divide the
notes into sentences, and remove non-alphanumeric
symbols. Following these preprocessing steps, we anno-
tate the medical concepts in the sentences using Meta-
Map. The surrounding semantic context is determined.
If multiple CUIs are mapped, the one with maximum
MMI score (a score ranked by MetaMap) is retained.
CUIs that are tagged as negated by NegEx [35] are ex-
cluded (NegEx is a negation tool configured in

MetaMap). In order to completely and accurately ex-
clude negations or unrelated contextual cues, such as a
differential diagnosis events, sentences with negation
contextual features (e.g. contain keyword of ‘no’, ‘rule
out’, ‘deny’, ‘unremarkable’) and uncertain contextual fea-
tures (e.g. contain keyword ‘risk’, ‘concern’, ‘worry’, ‘evalu-
ation’) are also removed, where the customized list of
contextual features are obtained from the development
corpus. Following the filtering, CUIs that fall outside the
positive concept set are excluded.

Feature generation
After data preprocessing and concept mapping, CUIs
that fall within the positive concept set are used as fea-
tures to train our model. However, a single CUI some-
times is not informative enough for us to accurately infer
a local recurrence. In the previous example, using the CUI
‘history of malignant neoplasm of breast’ (C1997028) or ‘re-
current’ (C2945760) alone, we could not infer a breast can-
cer local recurrence. Nevertheless, we can properly infer a
breast cancer local recurrence using these two CUIs to-
gether. Driven by this observation, we generate power sets
as additional features using a combination of any two and
three CUIs that are extracted from the same sentence. Using
the above example of ‘history of recurrent breast cancer’
for illustration, nine features (C1997028), (C1387407),
(C2945760), (C1997028, C1387407), (C1997028, C2945760),
(C1387407, C2945760), (C1997028, C1387407, C2945760)
are generated.
Figure 2 shows this example to illustrate the processes

used to generate power sets. Note that we have used
power set to refer to the conventional power set exclud-
ing the empty set.
To identify recurrences more precisely, additional fea-

tures such as the number of pathology reports can be
assessed. The intuition and reasoning for implementing
such a feature are that patients with local recurrences
tend to have more pathology reports in their records be-
cause a pathology report is required for breast cancer re-
currence diagnosis in most situations. Most of the

Fig. 2 Constructing features using one partial sentence. Green circles are generated features for the model
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diagnosed women get a core needle biopsy and have a
high probability of undergoing surgery. Pathology re-
ports are generated for these events. Therefore, women
who had a recurrence will ordinarily have more path-
ology reports generated in their EHRs, which means the
number of pathology reports is associated with local re-
currence. In this study, the number of pathology reports
generated at least 120 days after the first primary diagno-
sis is obtained as an additional feature. This number is
obtained from the Northwestern Medicine Enterprise
Data Warehouse (NMEDW).

Data description
The NMEDW is a joint initiative across the Northwest-
ern University Feinberg School of Medicine and North-
western Memorial HealthCare. The NMEDW is used to
retrieve data. Patients diagnosed with breast cancer at
Northwestern Memorial Hospital between 2001 and
2015 are identified by ICD9 codes and are included in
the study. In total, 6899 subjects are identified and in-
cluded in the model training and evaluation. These 6899
subjects’ notes are divided and manually annotated by a
postdoc fellow (co-author XL), and a Ph.D. student (co--
author ZZ) over 15 months. In total, 569 (8.25%) local
recurrences are identified among the 6899 subjects in
this round of manual curation.
The five-year local recurrence rate is 8.8% for

ER-positive breast cancer and is 6.9% for ER-negative
breast cancer [32], and often only a small amount of re-
currences are identified in most study cohorts. Without
a large cohort, models trained using such a dataset may
experience problems with generalizability. In the previ-
ous studies, only 12 local recurrence patients were iden-
tified by Lamont et al., and 32 local recurrence patients
were identified by Strauss et al. [24, 26]. Our goal is to
build a much larger cohort. As a first step, one medical
informatics student (co-author ZZ) and one public
health student (co-author XL) annotate the 6899 pa-
tients and randomly select 201 subjects with local recur-
rence and 500 subjects without local recurrences. These
701 subjects’ records are further annotated by a medical
student (co-author AR), and a breast surgery fellow (co--
author SE), thus forming a double-annotation of 701
subjects (a record is annotated by ZZ/XL and AR/SE).
We intentionally keep the division of 701 subjects be-
tween ZZ and XL different from the division between

AR and SE for maximal cross check. The items without
agreement are resolved by discussion between the two
annotators. In the second round of annotation, we iden-
tify 16 subjects who do not have a local recurrence
within the 201 subjects who were previously identified
with local recurrences, and we identify 8 local recur-
rences within the 500 subjects, who were previously
identified without local recurrences. After the second
round of annotation and confirmation, of the 701 sub-
jects, 193 subjects are identified as having a local recur-
rence and 508 subjects are identified as having no local
recurrence. In the second round of annotation, we iden-
tify 24 misclassified notes out of 701 samples and the
error rate is 3.4%. The Cohen’s kappa score for the
double annotation (ZZ/XL vs. AR/SE) is 0.92. With this
high accuracy and high kappa score (0.81–1 kappa con-
sidered as almost perfect agreement [36]), the first round
annotation outside the 701 samples is a reasonable “sil-
ver standard” for evaluating the generalization perform-
ance of our model. Among the study cohorts, 701
samples are double-annotated and 6198 samples are
single-annotated. In total, 561 (8.13%) subjects devel-
oped a breast or chest wall local recurrence. The num-
ber is close to what appears in literature [32]. The
cohort distributions appear in Table 2.

Model evaluation
We utilized the support vector machine (SVM) because of
its widely-acknowledged generalizability. Before training
the model, a chi-square test is applied to select features to
obtain a reasonable feature sample ratio. To include only
features that are highly associated with outcomes, only the
top 50% of features are retained for subsequent modeling.
After filtering the features, we perform a five-fold cross-val-
idation using the training data to tune the model’s parame-
ters. Parameters of gamma and C for the model are
selected by a grid search with C ranging from 1 to 100 with
interval spacing equal to 10, and gamma ranging from
0.0001 to 0.01 with interval spacing equal to 0.001. Kernel
types ‘radial basis function’, ‘linear’, ‘poly’, and ‘sigmoid’ are
tested. The parameters with the best performance using the
micro-averaged F1 score in the cross-validation are
retained. Cross-validation favors a radial basis function ker-
nel for all the settings in our experiments.
The 701 double-annotated subjects are randomly split

into a training set and a held-out test set according to a

Table 2 Training cohort and test cohort distributions

Total Local Recurrence Percentage (%) Overall percentage (%)

Double annotation set 701 193 27.53% 8.13%

Cross-validation set 490 143 29.18%

Held-out test set 211 50 23.70%

Single annotation set 6198 368 5.94%
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7:3 ratio. In our experiments, we train three baseline
classifiers using various feature configuration. The three
baselines are: uses a full set of medical concepts tagged
by MetaMap, uses only the filtered features generated
from progress notes without the number of pathology
reports, and uses the bag of words as features. The func-
tion of TfIDFVectorizer in scikit-learn was used to con-
vert the raw documents to a matrix of TF-IDF features
for bag of words.

Results
Among the 701 patients in the training set, the average
number of pathology reports is 1.98 (95% CI =±0.16).
Among the 193 patients with a local recurrence, the
average number of pathology reports is 4.55 (95% CI =
±0.44). Among the 508 patients without a local recur-
rence, the average number of pathology reports is 0.92
(95% CI = ±0.15). A histogram and a density plot for the
number of pathology reports stratified by subjects with
and without local recurrence appear in Fig. 3.
Each of the 701 subjects was annotated by two annota-

tors and correctly labeled as either having breast cancer
with a local recurrence or without a local recurrence.
We modeled the task as a classification problem and
also reported the probability. In total, 4151 features were
generated in our proposed model. A total of 17,897,
4150, and 57,612 features were generated for baselines
‘full MetaMap’, ‘filtered MetaMap’, and ‘bag of words’, re-
spectively. Table 3 shows the evaluation results of our
model in comparison to the other three methods in the
cross-validation. The evaluation metrics include preci-
sion, recall, F-measure, and AUC. It is clear that full
MetaMap features outperformed the bag of words. We

compared our model with full MetaMap and filtered
MetaMap using the Student’s t-test. The evaluation met-
rics with significant changes (p < 0.05) in Table 3 are
marked. We see improvements on AUC, recall, and
F-measure in our model compared to full MetaMap or
filtered MetaMap. In the cross-validation, the AUC for
our model is 0.93 with a standard deviation of 0.01.
Table 4 shows the evaluation results of the model for

classification in comparison with the three other
methods in the held-out test. The AUC score is 0.87 for
our proposed model, which outperformed the other
methods and is consistent with the cross-validation
result.
We used the 701 double annotated data to fit an SVM

model. The fitted model was then used to predict labels
on the rest of 6198 samples. The predictions were com-
pared with the annotated labels, and we obtained a pre-
cision of 0.50, a recall of 0.81, an f-measure of 0.62, and
an AUC score of 0.87.
Using the training data, we performed a feature study.

We extracted the coefficient for each feature from a fit-
ted linear SVM model. The top 10 ranked features ap-
pear in Table 5. The UMLS concept preferred name is
also presented in the table. Two power sets were ranked
among the top 10 features, which suggests that the
power sets have a significant role in predicting the right
label. Of note, the number of pathology reports ranked
as the 101st feature with a coefficient score equal to
0.12.

Discussion
In the study, we used MetaMap to identify words or
phrases in the text and map them to the Unified Medical

Fig. 3 Histogram plot for number of pathology reports. a frequency distribution of subjects with and without local recurrence; b density distribution
of subjects with and without local recurrence
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Language System (UMLS). The UMLS mapping has the
benefit of increasing semantic interoperability. Our pro-
posed model was able to retrieve breast cancer local re-
currence using the combination of UMLS concepts and
the additional feature of pathology report counts. In the
study, we obtained better performance using Full Meta-
Map concepts compared to bag of words. This improve-
ment is mainly due to the UMLS mapping. Before
training the model, we performed a feature selection.
Some of the redundant CUIs appear in almost every pa-
tients’ notes, and some CUIs appear only in one or two
patients’ notes. This feature selection process can remove
these redundant or unrelated features, yielding a reason-
able feature and sample ratio. The AUC score of our pro-
posed model was 0.93 (±0.01) in a cross-validation and
was 0.87 in a held-out test. The AUC score of our model
outperformed the model proposed by Lamont et al. [24]
in a five-year censoring period. In addition, we have a lar-
ger sample size in this study. Compared to the hybrid
model proposed by Haque et al. [27], our model achieved
a higher precision and takes less effort to replicate.
To date, most of the tools used to retrieve breast can-

cer local recurrence are rule-based systems using path-
ology reports [26, 27]. However, different institutions
may have different clinical documentation systems and
styles, which poses challenges in generalizing the work
to multiple institutions. In this study, we dismissed the
requirement of documentation formats by utilizing the
narrative text from progress notes and the number of
pathology reports. In particular, we use the number of
pathology reports without applying our NLP pipeline.
Pathology reports are usually heavily templated in differ-
ent institutions using different templates [37]. In the fu-
ture, we plan to develop a processing component in our

NLP pipeline and integrate pathology report text from
multiple institutions to explore the impact of varying
pathology report templates to generalizability.
Using the reported probability, if we use 0.5 as a cut-

off, we obtained 41 false negatives and 32 false positives.
The 41 false negatives have an average of 2.6 pathology
reports per patient, which is significantly (p-value
=5.12E-06) lower than 5.11 in the 152 true positives.
Among these 41 false negatives, the number of path-
ology number is highly correlated (Pearson correlation
coefficient = 0.69) with the prediction probability. Within
the 41 false negatives, we examined 14 cases with more
than two pathology reports but have low prediction
probability smaller than 0.2. A majority of them have a
small number of progress notes available in the database.
Thus, they have minimal breast cancer recurrence re-
lated information recorded in their notes. For the 32
false positives, most cases were misidentified because
these women’s contralateral occurrences or distant re-
currences were incorrectly categorized as a local recur-
rence. Contralateral breast cancer is defined as breast
cancer (invasive or DCIS) that develops in the opposite
breast after the detection of primary breast cancer. Dis-
tant recurrence is defined as cancer spreading to other
organs. For example, one woman had a contralateral
event and a distant recurrence event. In one of her pro-
gress notes, the following was recorded: “History of
Present Illness: 50 y/o female with h/o recurrent breast
CA in chemo who presents with fever”. In this situation,
the ‘recurrent breast cancer’ refers to the distant recur-
rence. Furthermore, the patient has two pathology re-
ports at least 120 days after the primary diagnosis for
her contralateral event. Without knowing the site infor-
mation about her recurrent cancer, the algorithm could

Table 3 Cross-validation results using different methods

Methods P (SD) R (SD) F (SD) AUC (SD)

Filtered MetaMap +Pathology Report Count (4151) 0.84 (0.04) 0.76 (0.02) 0.80 (0.02) 0.93 (0.01)

Full MetaMap (17897) 0.80 (0.06) 0.48 (0.05) 0.60 (0.05) 0.83 (0.03)

Filtered MetaMap (4150) 0.82 (0.03) 0.67 (0.02) 0.74 (0.02) 0.90 (0.01)

Bag of Words (57612) 0.69 (0.07) 0.42 (0.062) 0.52 (0.06) 0.78 (0.03)

The number in the parenthesis in the first column is the number of features. The number in parenthesis in the 2nd~5th columns is standard deviation
Gray shade indicates baseline methods
P stands for precision, R stands for recall, F stands for f score, AUC stands for area under the receiver operator characteristic curve, and SD is standard deviation

Table 4 Held-out test results using different methods

Methods P R F AUC

Filtered MetaMap +Pathology Report Count (4151) 0.74 0.84 0.79 0.87

Full MetaMap (17897) 0.66 0.34 0.45 0.80

Filtered MetaMap (4150) 0.71 0.78 0.74 0.84

Bag of Words (57612) 0.53 0.43 0.48 0.74

The number in the parenthesis in first column is the number of features
Gray shade indicates baseline methods
P stands for precision, R stands for recall, F stands for f score, AUC stands for area under the receiver operator characteristic curve
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not distinguish whether or not this was a local recur-
rence. Within these 32 false positives, several cases had
a high prediction probability because they had a high
number of pathology report counts. However, the high
number of pathology report counts were generated be-
cause the patients visited the hospital multiple times for
benign biopsies or re-excision.
In summary, the sentences in progress notes contain

rich information. In addition, the number of pathology
reports is easy to retrieve. This added feature signifi-
cantly improved the model’s performance (p-value com-
paring recalls: 0.001; p-value comparing F-measures:
0.004). In particular, recall significantly improved while
precision was maintained or improved. Using these fea-
tures, we can accurately identify breast cancer local re-
currences. For generalizability purpose, part-of-speech,
format, or style information were not included for model
training. Since our method is not sensitive to the par-
ticular format of progress notes and pathology reports,
this study is easy to replicate and can reduce the
time-consuming work required to manually identify
local recurrences. In the future, structured data such as
biomarkers, lymph node status, tumor characteristics,
etc. will be included and evaluated to see if it can im-
prove the model’s performance.
However, the model still has several limitations. Repli-

cating the model requires building a set of positive con-
cepts. Without having a known positive event set, it is
difficult to build a filter. To address this concern, we re-
leased the positive concept set for local recurrences in
the supplementary material. The model also has another
limitation in that it can confuse local recurrence with
distant recurrence, especially when the patient also has a
contralateral event. The mention of ‘recurrent breast
cancer’ for distant recurrence and a high pathology
number for a contralateral event together can lead to an
incorrect prediction. We also acknowledge that this is a
skewed data set because the event rate is low. To

address this problem, we performed the analysis con-
structing and using a less skewed case-control data set.
The statistics of Tables 3 and 4 reflect the enrichment of
the training corpus with local recurrence cases, which
has been artificially inflated in the gold standard dataset
from the true value of 7–9% in the population [32] to
28%. We are aware that the precision is influenced by
incidence, so we further validated the model by report-
ing the model performances using the 701 double anno-
tated samples (gold standard dataset) plus the 6198
single annotated samples (silver standard dataset), which
together have an incidence rate matching the population
rate. The generalization test showed similar performance
and our future goal is to double annotate the entire
cohort and release the double annotated dataset for sec-
ondary research use. Limitations also include not analyzing
pathology report text and not considering richer semantic
relations between concepts due to generalizability consid-
erations. We plan to address those issues and continue to
improve our model. In this study, position information
(where the feature appears in a sentence) of the CUI fea-
ture are not included in our model. This information can
possibly help remove some redundant features and in-
crease the model performance. In the future, instead of
using position-sensitive power set, we plan to use
graph-based representation to capture the relations be-
tween CUIs with more accuracy [38].

Conclusions
Our aim was to utilize narrative sentences to generate
medical concepts, mine relevant concepts, and combine
the mined concepts for feature generation. We applied
NLP to breast cancer local recurrences identification by
integrating a flexible number of medical concepts, their
power sets, and the additional feature of the number of
pathology reports. We then applied support vector ma-
chines (SVMs) to identify local recurrences in breast
cancer patients. Our evaluation shows that the classifier

Table 5 The top-ranked features with the corresponding coefficient in the model and the UMLS concept preferred name for the
CUIs

Feature Coefficient UMLS Concept Preferred Name

C0278493 0.66 ‘Recurrent breast cancer’

{C0007124; C0222600; C0222600} 0.46 {‘Noninfiltrating Intraductal Carcinoma’; ‘Right breast’; ‘Right breast’}

C0920420 0.43 ‘Cancer recurrence’

C1458156 0.41 ‘Recurrent Malignant Neoplasm’

C2945760 0.40 ‘Recurrent’

C0235653 −0.36 ‘Malignant neoplasm of female breast’

C0277556 0.36 ‘Recurrent disease’

C1512083 − 0.35 ‘Ductal’

{C0007124; C0205090; C0262512} 0.32 {‘Noninfiltrating Intraductal Carcinoma’; Right; ‘History of present illness’}

C4042789 0.30 ‘Right-Sided Breast Neoplasms’
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significantly outperforms three baseline models using ei-
ther full MetaMap concepts, filtered MetaMap concepts,
or bag of words as features. We expect that by minimally
adapting the positive concept set (48 CUIs in our study),
this study has the potential to be replicated at other in-
stitutions with a moderate sized training dataset (701
samples in our study). Further development of this
model will allow more accurate data-mining and signifi-
cantly less time-consuming manual chart review. This is
particularly relevant in an era where evidence-based
medicine is increasingly scrutinized and there is a grow-
ing interest in data-driven discoveries.

Additional files

Additional file 1: Table S1. Positive sentences. We went through a
development corpus of 50 randomly selected positive progress notes
and extracted partial sentences that indicated a breast cancer local
recurrence event. (XLS 27 kb)

Additional file 2: Table S2. Positive CUIS. A dictionary of CUISs and the
corresponding CUI preferred name that were retained after filtering.
(XLS 23 kb)
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