Li et al. BMC Bioinformatics 2018, 19(Suppl 17):494
https://doi.org/10.1186/s12859-018-2462-1

BMC Bioinformatics

RESEARCH Open Access

Evaluation of top-down mass spectral

@ CrossMark

identification with homologous protein

sequences

Ziwei Li'?, Bo He', Qiang Kou?, Zhe Wang?*, Si Wu?, Yunlong Liu?>", Weixing Feng'" and Xiaowen Liu**"

From The International Conference on Intelligent Biology and Medicine (ICIBM) 2018

Los Angeles, CA, USA. 10-12 June 2018

Abstract

mutations.

Background: Top-down mass spectrometry has unique advantages in identifying proteoforms with multiple
post-translational modifications and/or unknown alterations. Most software tools in this area search top-down mass
spectra against a protein sequence database for proteoform identification. When the species studied in a mass
spectrometry experiment lacks its proteome sequence database, a homologous protein sequence database can be
used for proteoform identification. The accuracy of homologous protein sequences affects the sensitivity of
proteoform identification and the accuracy of mass shift localization.

Results: We tested TopPIC, a commonly used software tool for top-down mass spectral identification, on a top-down
mass spectrometry data set of Escherichia coli K12 MG1655, and evaluated its performance using an Escherichia coli
K12 MG1655 proteome database and a homologous protein database. The number of identified spectra with the
homologous database was about half of that with the Escherichia coli K12 MG1655 database. We also tested TopPIC
on a top-down mass spectrometry data set of human MCF-7 cells and obtained similar results.

Conclusions: Experimental results demonstrated that TopPIC is capable of identifying many proteoform spectrum
matches and localizing unknown alterations using homologous protein sequences containing no more than 2

Keywords: Mass spectrometry, Top-down, Homologous protein database

Background

Top-down mass spectrometry (MS) has become a widely-
used technology for proteoform identification because it
has unique advantages in analyzing modified proteoforms
[1]. In the past two decades, the dominant technology in
proteomics studies is bottom-up MS, in which long pro-
teins are proteolytically digested in sample preparation,
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generating short peptides that are easy to be ionized
and measured in mass spectrometers [2—4]. Compared
with bottom-up MS, top-down MS skips protein digestion
and directly analyzes intact proteins, making it suitable
for identifying and characterizing proteoforms with post-
translational modifications (PTM) in complex mixtures.
Database search is routinely used for spectral identifica-
tion by top-down tandem mass spectrometry (MS/MS). In
this approach, experimental MS/MS spectra are searched
against theoretical spectra generated from database pro-
tein sequences to find high scoring proteoform spectrum
matches (PrSMs). Many studies [5-7] have been car-
ried out to design similarity scoring functions of PrSMs,
improve the sensitivity of proteoform identification, and
estimate statistical significance and false discovery rates
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of identifications. Various software tools have been devel-
oped for proteoform identification, such as ProSightPC
[8], MS-Align+ [9], SpectroGene [10], TopPIC [11],
TopMG [12], pTop [13], and MSPathFinder [14].

When top-down MS/MS is used to analyze a species
whose proteome database is unavailable, a homologous
proteome database can be searched against for spectral
identification. A homologous sequence contains muta-
tions compared with the corresponding sequence of the
species being studied. Alterations, such as PTMs and
mutations, in a proteoform introduce mass shifts to peaks
in its MS/MS spectra (Fig. 1). A low similarity score is
often reported when we compare an experimental spec-
trum of a proteoform and a theoretical spectrum of a
homologous database protein. As a result, a top-down
MS/MS spectrum is elusive to identify by database search
if the proteoform that produced it contains many alter-
ations compared with the database sequence.

TopPIC is a commonly used software tool for the
identification and characterization of proteoforms with
unknown alterations by top-down MS/MS. In this paper,
we present a method for proteoform identification by
top-down MS using homologous protein sequences when
the species being studied lacks a proteome database.
We also study how mutations in homologous database
protein sequences affect the performance of TopPIC
on proteoform identification. Experimental results on a
top-down MS/MS data set from Escherichia coli K12
MG1655 showed that TopPIC achieved high sensitivity in
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proteoform identification and high accuracy in mass shift
localization when homologous protein sequences contain
no more than 2 mutations.

Methods

Data sets

Two top-down MS/MS data sets were used to evaluate the
performance of TopPIC and how mutations in database
protein sequences affect the sensitivity and accuracy of
proteoform identification: the first was from Escherichia
coli (EC) and the second was from MCF-7 cells.

The EC data set was published in [11]. EC K12 MG1655
was grown in M9 minimal medium at 37°C with shak-
ing. Cells were harvested at 4°C. Cell pellets were lysed
by using 0.1 mM zirconia/silica beads. Cell debris and
beads were removed by centrifugation, and the clarified
cell lysate was subject to ultracentrifugation at 4°C for
sub-cellular fractionation. EC protein was separated by
reverse phase liquid chromatography (RPLC) on a Waters
NanoAquity system with a custom packed C5 column
and analyzed by an LTQ Orbitrap Velos mass spectrom-
eter. Parent spectra were collected at a 60,000 resolution
and the top 4 ions in each MS spectrum were selected
for MS/MS analysis, in which the resolution was 60,000
and the alternating fragmentation mode was used. A total
of 2027 collisional-induced dissociation (CID) and 2027
electron-transfer dissociation (ETD) MS/MS spectra were
generated. The raw file of the EC data was converted into
an mzXML file using msconvert in ProteoWizard (version
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Fig. 1 Comparison of the theoretical spectrum (top) of an unmodified protein sequence EPPLSQETFS and the theoretical spectrum (bottom) of a
modified proteoform EPPLS[phosphorylation]QETFS, in which the serine residue is phosphorylated. Only N-terminal fragment peaks are included in
the theoretical spectra to simply the comparison. The fragment peaks in the box are shifted to the right by 79.97 Da in the bottom spectrum
because of the phosphorylation
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2.0) [15], and the mzXML file was deconvoluted using
MS-Deconv (version 0.8.0) [16] with default parameter
settings.

The soluble MCF-7 intact proteins were separated using
the bead-beating based cell lysis approach followed by
a filter-based desalting step. A home-made long column
was directly coupled on an LTQ Orbitrap Velos Pro mass
spectrometer with a customized ion source. The MS/MS
data were collected with data dependent CID and a res-
olution of 60,000. A total of 5310 MS/MS spectra were
collected. The raw file of the MCF-7 data was converted
into an mzML file using msconvert, and the mzML file
was deconvoluted using TopFD in TopPIC suite [17] with
default parameter settings.

Protein databases

A proteome database of EC K12 MG1655 and a proteome
database of EC ISC11 were used in the EC data analy-
sis. The two proteome databases were downloaded from
the UniProt database (version May 2016) [18]. The two
databases are referred to as the K12 and ISC11 databases,
respectively. There are 4314 entries in the K12 database
and 6130 entries in the ISC11 database. A human pro-
teome database and a mouse proteome database were
downloaded from the UniProt database (version May
2018) for the analysis of the MCEF-7 data set. The human
database and the mouse database contain 20,328 and
16,966 proteins, respectively.

Experiment design

The design of the EC data analysis is shown in Fig. 2.
We tested two scenarios in proteoform identification: (1)
a reference protein database is available and (2) no ref-
erence databases are available, but a homologous protein
database is available. The K12 and ISC11 databases were
used to evaluate the performance of TopPIC (version
1.1) in the two scenarios. We searched the deconvoluted
spectra against the two protein databases separately for
spectral identification.

Proteoform identification using TopPIC

In TopPIC, a shuffled decoy database was concatenated
to the target database, a 1% spectrum-level false discovery
rate (FDR) was used for filtering identifications. The error
tolerances for precursor and fragment masses were set to
15 parts-per-million (ppm), no fixed modifications were
used, and the other parameters were set to default values.
All the parameters are shown in Additional file 1.

Identification accuracy

We evaluated the accuracy of the identifications reported
by the ISC11 database search as well as the accuracy of the
localization of mass shifts in these identifications. In the
evaluation, spectral identifications reported by the K12
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database search were used to find “correct identifications”
for the ISC11 database search.

Below we describe the method for mapping a K12 iden-
tification to an ISC11 identification. Let Q be a query
spectrum, and Fikjy the best scoring proteoform identi-
fied from the K12 database (Fig. 2). The proteoform Fk;2
is called the K12 proteoform of Q. The unmodified protein
segment of the proteoform Fi3 is called the K12 protein
segment of Q, denoted by Sk12. The protein segment Ski2
is a subsequence or the full sequence of the database pro-
tein sequence of Fijs. Similarly, the proteoform identified
from the ISC11 database is called the ISCI1 proteoform
of Q and denoted by Fiscii- The unmodified protein
segment of the proteoform Fiscy is called the ISC11 pro-
tein segment of Q, denoted by Sisci1. Because the K12
database contains protein sequences of the target species
and the 1% FDR cutoff used in spectral identification is
stringent, we assume that the K12 proteoform F;2 is cor-
rect. We use two steps to map the K12 proteoform to
its homologous protein segment in the ISC11 database:
(1) We employ BLAST-P (version 2.3.31) [19] to search
Ski2 against the ISC11 database to find the best ISC11
homologous sequence, denoted by Pisci1. The K12 pro-
tein segment Sk12 may be aligned with only a subsequence
of Pisc11. (2) The R function “pairwiseAlignment” in pack-
age “Biostrings” [20] is used to find the best global-local
alignment between Sk12 and Pigcii. The subsequence of
Prscy in the alignment, denoted by S;SCH, is called the
homologous protein segment of Q. The match between
the query spectrum Q and the homologous protein seg-
ment S;SCH is treated as the correct ISC11 identification
of Q. We compare SJISCH with the ISC11 protein segment
Sisc11 to evaluate the accuracy of the ISC11 proteoform
Fisci1. If Siscir and Siscn are from the same protein,
we say the ISC11 database search correctly identifies the
target protein. If Sisci; and Siscu are from the same
protein and their sequences are also the same, we say
the ISC11 database search correctly identifies the protein
segment.

In the analysis of the EC data, an E-value cutoff of 0.01 in
BLAST-P was used to filter identifications. Other parame-
ters in BLAST-P were set to default values. In the function
“pairwiseAlignment’; the penalty for a gap extension was
set to 4, the penalty for a gap opening was set to 10, and
all the other parameters were set to default values.

Accuracy of mass shift localization

When a PrSM reported from the ISC11 database search
correctly identifies the protein segment, we further study
the accuracy of its mass shift localization. There are
two types of unknown mass shifts in reported matches
between spectra and ISC11 proteoforms: (1) The K12
proteoform of the query spectrum does not have any
unknown alternations, and the K12 protein segment is the



Li et al. BMC Bioinformatics 2018, 19(Suppl 17):494

Page 24 of 107

| Raw data

| MzXML data |

!

K12 database |— /M

Deconvoluted mass |-
spectra

//~| I1SC11 database |

<_3TopPic >

K12 proteoforms and

!

L " N
K12 protein segments 8. Comparison D«

|
!

I1SC11 proteoforms and
ISC11 protein segments

Mass shift localization
accuracy

5.BLAST-P

e

Homologous ISC11
protein sequences

6.Global-local
alignment

Homologous protein

segments

Fig. 2 Outline of the experimental design. Raw MS data are converted to deconvoluted mass spectra, which are further searched against the K12 and
ISC11 proteome databases separately. A K12 protein segment is obtained from each K12 proteoform identified from the K12 proteome database
and searched against the ISC11 proteome database to find the best homologous ISC11 protein by BLAST-P. Then a global-local alignment between
the homologous ISC11 protein sequence and the K12 protein segment is used to find the best-scoring homologous protein segment. Finally,
homologous protein segments and ISC11 protein segments identified from the ISC11 proteome database are compared to evaluate the accuracy of
the ISC11 protein segments, and ISC11 proteoforms are compared with K12 proteoforms to evaluate the accuracy of mass shift localization
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same as the K12 proteoform. In this case, the unknown
mass shift in the ISC11 proteoform is the sum of the
mass shifts of all the substitutions, insertions and dele-
tions between the K12 protein segment and the ISC11
protein segment. TopPIC reports a subsequence SsHirT
of amino acids in the ISC11 protein segment as the pos-
sible positions of the mutations for the unknown mass
shift. If SsyipT covers the positions of all the substitutions,
insertions and deletions, we say the reported subsequence
Sshiet is correct. (2) The K12 proteoform has an unknown
mass shift compared with the unmodified K12 protein
segment. In this case, the unknown mass shift in the ISC11
proteoform is the sum of the mass shifts of all the substi-
tutions, insertions and deletions between the K12 protein
segment and the ISC11 protein segment as well as the
unknown mass shift in the K12 proteoform. If Sgyipr cov-
ers the positions of all the substitutions, insertions and
deletions as well as those of the mass shift, we say the
reported subsequence SsHirT is correct.

Results

Similarity between the K12 and ISC11 databases

We analyzed the similarity between protein sequences in
the K12 database and their homologous sequences in the
ISC11 database. We used BLAST-P to search each protein
sequence in the K12 database against the ISC11 database
to find its homologous sequence with an E-value cutoff of
0.01. BLOSUMS62 was used as the similarity matrix and
other parameters were set to default values in BLAST-P.
Of the 4312 K12 protein sequences, 3769 were aligned to
homologous ISC11 protein sequences. BLAST-P reported
a sequence identity (the percentage of identical matches
over the entire length of the alignment) for each K12
and ISC11 protein sequence pair. The histogram of the
reported sequence identities is given in Fig. 3. Of the 3769
sequence pairs, 1786 (47.4%) have an identity no less than
90%, and 960 (25.5%) have an identity between 80% and
90%. The sequence similarities are high for many reported
homologous sequence pairs, making it possible to search
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Fig. 3 The histogram of the sequence identities between the 3769 protein sequences in the K12 proteome database and their corresponding
homologous sequences reported by BLAST-P with a 0.01 £-value cutoff from the ISC11 proteome database

the EC top-down MS data against the ISC11 database for
proteoform identification.

Comparison of identified proteoforms

A PrSM identified using the K12 database is called a K12
PrSM, and a PrSM identified using the ISC11 database is
called an ISC11 PrSM. With a 1% spectrum-level FDR,
TopPIC identified 1895 K12 PrSMs from 180 proteins and
951 ISC11 PrSMs from 98 proteins from the EC data set.
A main reason for the low identification rate in the K12
database search is that many query spectra do not con-
tain enough fragment masses for confident identification.
Of the 4054 query spectra, 1323 contain no more than
30 fragment masses. The ISC11 database search identi-
fied 949 (50.1%) spectra and missed 946 spectra identified
by the K12 database search (Fig. 4a and Additional file 2).
With a relaxed 5% spectrum-level FDR, TopPIC identified
1062 ISC11 PrSMs, including 1058 of the 1895 spectra
identified by the K12 database search with a 1% FDR. Most
of the spectra identified by the ISC11 database search

were also identified by the K12 database search, showing
that most of the identified ISC11 PrSMs are accurate and
that it is feasible to use a homologous database for spectral
identification when no reference databases are available.
The number of identified spectra with the ISC11 database
is about half of that with the K12 database, demonstrating
that using a homologous database significantly reduces
the number of identifications.

For each of the 1895 identified K12 PrSMs, we obtained
its K12 proteoform and K12 protein segment, and
searched the K12 protein segment against the ISC11
database to find its homologous protein segment. (See
Fig. 2 and “Methods” section.) Many ISC11 protein seg-
ments and homologous protein segments are truncated
protein sequences, not whole ones. With an E-value cut-
off of 0.01, BLAST-P identified an ISC11 protein segment
for 1792 of the 1895 K12 PrSMs. For each of the 1792
PrSMs with a K12 protein segment and a homologous
protein segment, the global alignment of the two seg-
ments was computed to obtain the number of mutations

K12 ISC11

(a)

human mouse

868

(b)

Fig. 4 Comparison of the numbers of spectra identified by TopPIC with a 1% spectrum-level FDR using a proteome database of the target species
and a homologous proteome database. (a) The EC data set; (b) the MCF-7 data set
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(substitutions, insertions, and deletions) between them.
Of the 1792 segment pairs, a total of 1126 have no more
than 4 mutations: 328 segment pairs are the same, 536 seg-
ment pairs contain only one or two mutations, and 262
segment pairs contain three or four mutations. When the
homologous protein segment of a query spectrum con-
tains 5 or more mutations, software tools for spectral
identification often fail to identify it using homologous
sequences. As a result, we focused on only the 1126 spec-
tra with no more than 4 mutations in segment pairs, and
these spectra are referred to as the high identity spectrum
(HIS) set.

We also compared the performance of TopPIC on the
MCEF-7 data set with the human proteome database and
the mouse proteome database. With a 1% spectrum-
level FDR, TopPIC identified 1335 human PrSMs from
175 proteins and 873 mouse PrSMs from 112 pro-
teins from the MCF-7 data set. The mouse database
search identified about 868 (65.0%) of the spectra
identified by the human database search. (Fig. 4b and
Additional file 3).

Identification rates using homologous sequences

Because unknown mass shifts were allowed in PrSMs
reported by TopPIC, the 1126 K12 PrSMs of the HIS set
were divided into two group: 569 without unknown mass
shifts (perfect group) and 557 each with one unknown
mass shift (mass shift group).

The ISC11 database search identified 447 (78.56%) of
the 569 spectra in the perfect group and 375 (67.32%) of
the 557 spectra in the mass shift group. In the perfect
group, the ISC11 database search identified the correct
protein for 444 spectra, and the correct protein segment
for 438 spectra. (See “Methods” section.) In the mass shift
group, the ISC11 database search identified the correct
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protein for 373 spectra and the correct protein segment
for 361 spectra.

We investigated how the numbers of mutations in
homologous sequences affect the sensitivity of spectral
identification when the homologous ISC11 database was
used. The 569 spectra in the perfect group were divided
into 5 subgroups Gy, Gi, G2, G3, G4 (Gop: 192 PrSMs,
G1: 96 PrSMs, Gj: 181 PrSMs, Gs: 68 PrSMs, Gg: 32
PrSMs ) based on the numbers of mutations between their
K12 segments and homologous protein segments. (See
“Methods” section.) The subgroup G; (0 < i < 4) con-
tained the spectra corresponding to protein segment pairs
with i mutations. The 557 spectra in the mass shift group
were divided into 5 subgroups Hy, H1, H2, H3, Hs (Hp: 136
PrSMs, H;: 102 PrSMs, Hy: 157 PrSMs, Hs3: 81 PrSMs, Hy:
81 PrSMs) similarly. Let #; be the number of spectra in
a subgroup. Let 7, and n; be the numbers of spectra in
the subgroup with correct protein identifications and cor-
rect protein segment identifications in the ISC11 database
search, respectively. We define the correct protein (CP)
rate and the correct segment (CS) rate as the ratios Z—’: and
Z—i, respectively. The CP and CS rates for the 10 subgroups
are shown in Fig. 5.

As the number of mutations per protein segment pair
increases from 0 to 4, the CS rate for the perfect group
drops from 99.0% to 18.8%, and that for the mass shift
group drops from 92.7% to 22.2%. The CS rates are above
79% for Gy, Gy, and Hj, showing that a good sensitiv-
ity can be obtained when homologous sequences have
high similarity (no more than 2 mutations). The CS rates
are below 25% for G3 and Gy. In general, the mass shift
subgroups have lower CS rates than the perfect sub-
groups because of the existence of unknown mass shifts
in identified proteoforms. In the 10 subgroups, the CS
rates are similar to the CP rates, demonstrating that
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the ISC11 database search can identify the correct pro-
tein segment in most cases when the correct protein is
identified.

Accuracy of mass shift localization

The localization of mass shifts is an important step
in interpretation of top-down mass spectra. We chose
only PrSMs with correct protein segment identifications
from Gi,...,Ga,Hi,...,Hy, for the evaluation of mass
shift localization. A total of 248 PrSMs were selected
from the perfect group, and 235 from the mass shift
group. The mass shifts were correctly localized in 132
(53.2%) of the 248 PrSMs in the perfect group and in 35
(14.9%) of the 235 PrSMs in the mass shift group (See
“Methods” section.) The accuracy of mass shift local-
ization of the perfect group is much higher than the
mass shift group. The main reason is that PrSMs in the
mass shift group contains unknown alterations as well
as mutations, making it challenging to accurately local-
ize mass shifts. Many errors in mass shift localization are
due to randomly matched fragment peaks in identified
PrSMs.

Discussion

Most existing software tools [13, 14] are capable of iden-
tifying proteoforms with variable PTMs, but not proteo-
forms with unknown mutations. In homologous sequence
comparison, there are in total 20 x 19 = 380 possible types
of mutations: each of the 20 amino acids can be mutated
to one of the other 19 amino acids. It is impractical to
treat all the 380 mutations as variable PTMs in spec-
tral identification. In general, these software tools are not
capable of identifying proteoforms with unknown muta-
tions when homologous sequences are used in database
search. TopPIC and the delta-M mode of ProSightPC
[8] are capable of identifying proteoforms with unknown
alterations and can be used in top-down MS data analysis
when the species being studied lacks a complete proteome
database.

Conclusions

In this paper, we studied the proteoform identification
problem by database search using top-down MS and eval-
uated the performance of TopPIC on two data sets with
homologous sequences. The experimental results show
that mutations in homologous sequences are a crucial fac-
tor that affects the sensitivity and accuracy of proteoform
identification. While the sensitivity of TopPIC dropped
significantly in spectral identification with homologous
sequences with 3 or more mutation, it achieved a high sen-
sitivity and accuracy with homologous sequences with 1
or 2 mutations. The results demonstrate that it possible to
use homologous protein databases in top-down spectral
identification.
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