
Catanese et al. BMC Bioinformatics (2018) 19:475
https://doi.org/10.1186/s12859-018-2453-2

RESEARCH ARTICLE Open Access

A nearest-neighbors network model for
sequence data reveals new insight into
genotype distribution of a pathogen
Helen N. Catanese1, Kelly A. Brayton1,2 and Assefaw H. Gebremedhin1*

Abstract

Background: Sequence similarity networks are useful for classifying and characterizing biologically important
proteins. Threshold-based approaches to similarity network construction using exact distance measures are
prohibitively slow to compute and rely on the difficult task of selecting an appropriate threshold, while similarity
networks based on approximate distance calculations compromise useful structural information.

Results: We present an alternative network representation for a set of sequence data that overcomes these
drawbacks. In our model, called the Directed Weighted All Nearest Neighbors (DiWANN) network, each sequence is
represented by a node and is connected via a directed edge to only the closest sequence, or sequences in the case of
ties, in the dataset.
Our contributions span several aspects. Specifically, we: (i) Apply an all nearest neighbors network model to protein
sequence data from three different applications and examine the structural properties of the networks; (ii) Compare
the model against threshold-based networks to validate their semantic equivalence, and demonstrate the relative
advantages the model offers; (iii) Demonstrate the model’s resilience to missing sequences; and (iv) Develop an
efficient algorithm for constructing a DiWANN network from a set of sequences.
We find that the DiWANN network representation attains similar semantic properties to threshold-based graphs, while
avoiding weaknesses of both high and low threshold graphs. Additionally, we find that approximate distance
networks, using BLAST bitscores in place of exact edit distances, can cause significant loss of structural information.
We show that the proposed DiWANN network construction algorithm provides a fourfold speedup over a standard
threshold based approach to network construction. We also identify a relationship between the centrality of a
sequence in a similarity network of an Anaplasmamarginale short sequence repeat dataset and how broadly that
sequence is dispersed geographically.

Conclusion: We demonstrate that using approximate distance measures to rapidly construct similarity networks may
lead to significant deficiencies in the structure of that network in terms centrality and clustering analyses. We present
a new network representation that maintains the structural semantics of threshold-based networks while increasing
connectedness, and an algorithm for constructing the network using exact distance measures in a fraction of the time
it would take to build a threshold-based equivalent.

Keywords: Sequence similarity network, Network analysis, Centrality, Clustering, AnaplasmamarginaleMsp1a, GroEL

*Correspondence: assefaw.gebremedhin@wsu.edu
1School of Electrical Engineering and Computer Science, Washington State
University, Pullman, WA, USA
Full list of author information is available at the end of the article

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-018-2453-2&domain=pdf
mailto: assefaw.gebremedhin@wsu.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Catanese et al. BMC Bioinformatics (2018) 19:475 Page 2 of 18

Background
The dramatic expansion of sequence data in the past few
decades has motivated a host of new and improved ana-
lytic tools and models to organize information and enable
generation of meaningful hypotheses and insights. Net-
works are one tool to this end, and have foundmany appli-
cations in bioinformatics. One network model with such
applications is the protein homology network, in which
sequences are connected based on their functional homol-
ogy. Such networks enable, among other tasks, sequence
identity clustering [1]. The subset of these protein homol-
ogy networks for which edges are built only in terms of
sequence similarity are called sequence similarity networks
(SSN) [2], and these are the class of networks discussed in
this work.
SSNs are networks in which nodes are sequences and

edges show the distance (dissimilarity) between a pair of
sequences. Unlike protein interaction networks, or anno-
tated similarity networks, the distance between sequences
is the only feature used to determine whether or not
an edge will be present. These networks can be used as
substitutes for multiple sequence alignments and phylo-
genetic trees and have been found to correlate well with
functional relationships [2]. SSNs also offer a number of
analytic capabilities not attainable with multiple sequence
alignment or phylogenetic trees. They can be used as a
framework for identifying complex relationships within
large sets of proteins, and they lend themselves to dif-
ferent kinds of analytics and visualizations, thanks to the
large number of tools that already exist for networks.
Centrality (node importance) analysis is one example of
an analytic tool enabled by SSNs. Clustering, often for
identifying homologous proteins, is another important
structure discovery tool.
In this work we present a new variant of SSN, called the

Directed Weighted All Nearest Neighbors (DiWANN)
network, and an efficient sequential algorithm for con-
structing it from a given sequence dataset. In the model
each sequence s is represented by a node ns, and the node
ns is connected via a directed edge to a node nt that cor-
responds to a sequence t that is the closest in distance to
the sequence s among all sequences in the dataset. In the
case where multiple sequences tie for being closest to the
sequence s, all of the edges are kept. The weights on edges
correspond to distances.
We apply this model to analyze protein sequences

drawn from three different applications: genotoype anal-
ysis, inter-species same protein analysis, and interspecies
different protein analysis.We show that themodel is faster
to compute than an all-to-all distance matrix, enables ana-
lytic algorithms such as clustering and centrality analysis
with comparable accuracy more quickly, and is resilient to
missing data. Neighborhood graphs1 more generally have
previously been used in bioinformatics for tasks such as

inferring missing genotypes [3] and protein ranking [4].
However they have not been used to model and analyze
sequence similarity prior to this study.

Related work and preliminary concepts
Other networkmodels in bioinformatics
There are several types of networks other than SSNs used
in bioinformatics. Protein–protein interaction networks
designate each protein as a node and connect two nodes
by an edge whenever there is a corresponding signal path-
way [5]. Such networks are the foundation for many appli-
cations, including ProteinRank, which identifies protein
functions using centrality analysis [6]. Gene regulatory
networks are bipartite networks where one vertex set cor-
responds to genes, the other vertex set corresponds to
regulatory proteins, and an edge shows where a regulatory
protein acts on a gene [7]. Gene co-expression networks
build an edge between pairs of genes based on whether
they are co-expressed across multiple organisms [8]. Such
networks enable gene co-expression clustering [9] as well
as microarray de-noising through centrality analysis [10].

Similarity/distancemeasures
In order to build a network from a set of data where there
is no inherent concept of relation, some similarity or dis-
tance measure must be used. Many distance measures
exist for sets of numeric data, including Euclidian distance
and Cosine similarity. For set data, boolean distance mea-
sures like Jaccard distance and Hamming distance [11] are
commonly used. Jaccard distance is the ratio of the size
of the intersection to that of the union of the two sets,
while Hamming distance counts the positions at which the
two sets differ. For string data, such as protein and DNA
sequences, a straightforward option is Levenshtein dis-
tance, or edit distance, which is the minimum number of
insertions, deletions andmutations needed to convert one
string to another [12]. Other distance metrics on strings
include Hamming distance, which is faster to compute
and handles replacements well but insertions and dele-
tions poorly, and variants of the Needleman-Wunsch [13]
and Smith-Waterman [14] alignment algorithms. Both of
the latter algorithms use dynamic programming to find
the optimal way of aligning two sequences fromwhich dis-
tance can be inferred. The use of a scoring matrix can also
weight these alignment scores to be more representative
of real-world mutation probabilities.
A shared weakness of the pairwise alignment-based

and the Levenshtein distance-based methods for exact
distance calculation is that they take quadratic time
in sequence lengths, which can be prohibitively costly.
Faster heuristic (approximate distance) approaches such
as FASTA [15] or BLAST [16] and its variants have
filled the gap in some cases. However, the similarity
scores, bitscores and e-value provided by BLAST were

Catanese et al. BMC Bioinformatics (2018) 19:475 Page 3 of 18

not designed to be used in this way, and for some appli-
cations such heuristics have been shown to perform
poorly [17–19].
A very different approach to measuring distances on

sequences is presented in [20], where strings are repre-
sented as time series data, with each mutation, inser-
tion or deletion assigned a particular positive or negative
value, so that numeric distancemeasures could be applied.
While this measure is computationally faster, it is sensi-
tive to alphabet ordering, and modifications of different
characters entail varying degrees of effect on the distances
computed, restricting its potential use to only small alpha-
bets such as DNA. Another way to approximate distance
within a fixed bound is to use n-grams, or overlapping
substrings of length n of a sequence. The idea is that
if the number of the n-grams that mismatch between
two strings is d, then the edit distance between those
strings is at most nd. This method has been used for
pruning string similarity joins [21], however as an approx-
imate distance measure it provides a very loose bound on
similarity.

Neighborhood networkmodels and algorithms
Many methods exist for generating a similarity network
from a set of data using some similarity or distance mea-
sure on the data and a threshold. Typically the selection of
threshold is achieved through trial and error. While meth-
ods for automating the threshold selection have also been
proposed [22], the methods do not eliminate the need
for all-to-all distance calculations, making them especially
unsuitable for costly distance measures.
The class of neighborhood networks is another alterna-

tive. In general neighborhood networks rely on finding for
every object in the dataset a neighborhood, or set of data
points closely related to the object. Edges are then built to
connect the object to all or a subset of its neighborhood.
One common example of this is the k-nearest neighbors
graph, or kNN graph [23]. For this model, a similarity or
distance measure is used to find the k, where k ≥ 1 is a
specified constant, nearest neighbors of each data point
which are then connected to the data point via network
edges. If ties are present, they are typically broken ran-
domly. The brute force approach to this problem, which
first computes all pairwise distances between points and
then uses only those below some threshold to construct
edges, takes O(n2) time and space, where n is the number
of data points.
A variety of more efficient solutions for kNN network

construction exist, for both the cases where the underly-
ing kNN problem is solved optimally [24–29] and where it
is solved approximately [30–33]. However, many of these
methods assume a numeric feature space, and thus cannot
be applied directly to sequence data. One way of gen-
erating the optimal KNN solution for generic distance

measures is preindexing [34], although the work demon-
strated only empirical runtime reductions, and distances
were computed between dictionary words, which are very
short compared to biological sequences. NN-Descent is
an example of an inexact solution that also generalizes to
any distance metric [35]. The method iteratively improves
on an existing approximate kNN network, however it does
not specifically optimize on number of distance calcu-
lations, and may thus be a poor fit for more expensive
measures like edit distance.
None of these algorithms are tie-inclusive, in the sense

that if two (ormore) objects are equidistant from an object
in question, one (or more) of the potential edges may be
arbitrarily excluded from being in the graph.
An alternative to this approach is the all nearest neigh-

bors (ANN) network, in which an object is connected to
only its nearest neighbor, or neighbors in the presence of
ties, among the objects in the dataset. In contexts where
the distance metric makes ties unlikely, whether or not
ties are included is not a major concern. However, with
discrete measures of distance like edit distance, where
ties are likely, excluding ties can lead to missing impor-
tant structural information. Additionally, it is not typically
clear what values of k in a kNN model will be appropriate
for a given dataset, and the selection of k is susceptible to
some of the same difficulties as in threshold selection. In
light of these facts, this work focuses on a variant of the
ANN model.
Most existing ANN algorithms, some of which are

modifications of kNN algorithms discussed previously
[24, 25] as well as others [36], are designed solely for
numeric space. We are not aware of any prior ANN algo-
rithm specifically designed for string distance measures,
and only very few solutions exist for generic distance
measures. These methods typically use a tree indexing
structure to partition the search space [37, 38], although
they only offer average case runtime improvements. An
approximate solution proposed in [39] improves worst
case runtimes with some probability of errors.

Methods
Structural analysis
To test the efficacy of the DiWANNnetworkmodel and its
semantic similarity to threshold based networks, we used
three sets of protein sequence data representing three
different applications: genotype analysis, inter-species
same protein analysis, and inter-species different protein
analysis.
The first dataset is composed of 284 Anaplasma

marginale short sequence repeats (SSRs) from the msp1α
gene, each consisting of roughly 28 amino acids, as com-
piled in [40]. SSRs are a type of satellite DNA in which
a pattern occurs two or more times. They can be found
in coding regions of the genome, and can occur in genes

Catanese et al. BMC Bioinformatics (2018) 19:475 Page 4 of 18

encoding highly variable surface proteins. In these cases,
the SSRs are useful for genotyping, or genetically distin-
guishing one strain from another.
The second dataset includes sequences of the chaper-

onin GroEL, a molecular chaperone of the hsp60 family
that functions to help proteins fold properly [41]. The
dataset includes 812 unique protein sequences from 462
species and 177 genera, compiled from GenBank. These
sequences range from 550 to 600 amino acids. We col-
lected 10,000 GroEL sequences, however, in this set there
were only 3,077 different sequences.We chose to filter out
sequences that occurred only once in the dataset, to keep
the experiment time short and reduce noise from outliers.
This left us with 812 unique sequences.
The final dataset is the gold standard proteins from

[42], with confirmed ground truth labels from five pro-
tein superfamilies. The sequences vary widely in length
from 100 to over 700 amino acids. We used a subset
of the data that had high quality labels for both a pro-
tein’s family and superfamily, as some sequences were
labeled only with a superfamily. This subset includes 852
sequences. This dataset demonstrates how the models
handle more diverse sequences, and includes labels for
functional groups (enzyme families).
For each dataset, we generated several exact threshold

based networks from which one was chosen for fur-
ther analysis. We generated a single DiWANN network
since there is no associated thresholding concept in the
DiWANN model. We compared these exact distance net-
works against a threshold based network generated via
a faster approximate distance metric. The comparison is
done in terms of both runtime and accuracy of subsequent
network analyses (including clustering and centrality
analysis).
The distance/similarity metrics used to create the

threshold based networks were BLASTP bitscore,
BLASTP similarity score, Needleman-Wunsch alignment
score and Levenshtein distance. For similarity metrics, we
show thresholds in terms of distance from the maximum
similarity, for readability. The inclusion of threshold-
based networks using both edit distance and alignment
score to define edges is to account for potential loss of
accuracy in our networks from using edit distance (a less
biologically accurate distance metric). While a DiWANN
network could be created using a different metric, the
algorithm we propose relies on properties that weighted
alignment scores do not satisfy, as described in more
detail in the Algorithm section. So instead, we attempt to
demonstrate the practical comparability of the measures,
at least for our datasets.
While other fast approximate nearest neighbor meth-

ods, such as Flann [43] exist, they assume that a full dis-
tance matrix is given. Because of this they are not suitable
(efficient) for cases where calculating the distance matrix

itself is the primary cost for generating the network.
Therefore, we do not compare against such methods.

Basic properties
In a corresponding subsection in the Results section, we
present visualizations of the three network types—exact
threshold based, inexact threshold based and DiWANN—
using an implementation of the force directed layout algo-
rithm [44] from the igraph package [45]. We also give
details on the structural differences between networks in
terms of connectedness, sparsity and other properties. For
this analysis we focused on the A. marginale SSR dataset;
we note that similar patterns in terms of connectedness
and sparsity held for all three sets of data. We present the
basic structural properties for the other datasets in the
Communities section as well.

Centrality
Under this analysis, we identify the most central nodes
on each of the three network variants, study how they
compare to each other, and see their relationship to other
sequence properties. For the analysis we used PageR-
ank centrality, but we note that similar behaviors were
observed using betweenness centrality as well. (A detailed
review of the applications of PageRank in bioinformatics
and other fields is available in [46].) We created visual-
izations to reveal which nodes are the most central in
these networks. For the A. marginale SSR dataset, we also
present a map that shows how the sequences that were
found to be themost central in the network are distributed
geographically. In this context, geographic dispersion is
defined in terms of the number of unique countries in
which a sequence had been recorded.

Communities
Under this category, we investigated the community struc-
ture in the two labeled datasets, GroEL and gold standard.
For threshold based networks, we began with the low-
est threshold value producing an average degree above
one and continued up to the threshold beyond which
clustering results no longer improved.
We calculated the precision and recall for all clusters

of significant size (more than 2 members) at two levels
of label granularity. To cluster the undirected networks,
we used the Louvain algorithm for community detection
[47], which has been found in practice to be among the
best clustering methods in terms of maximizing modular-
ity. For the directed networks (DiWANN), we also used
the Louvain algorithm, treating the graph as undirected
for clustering purposes.
We note that some GroEL samples were found across

multiple species, and as a result, some samples had mul-
tiple labels while each sequence can only be assigned to a
single cluster. This led to a maximum recall of less than

Catanese et al. BMC Bioinformatics (2018) 19:475 Page 5 of 18

one. However, this situation was fairly uncommon in the
dataset, and typically only occurred at the species (rather
than genus) level.

Resilience to missing data
One potential concern with a new network model is how
well it responds to an incomplete dataset when compared
with its alternatives. To compare the resiliency to miss-
ing data of the DiWANN network against the threshold
based networks, we generated five sample datasets from
the GroEL sequences, each with a random selection of
60% of the original data. From each sample, we gener-
ated a threshold network and a DiWANN network. The
clustering precision and recall of these reduced networks,
along with some basic structural properties, were com-
pared to the full version of the network to determine how
well structure was maintained in the “reduced” networks.
Additionally, we wanted to examine the structural

changes to the DiWANN network as more data are
removed, as the proportional increase in high weight
(weak) to low weight (strong) edges could potentially
result in connections that are not necessarily meaning-
ful in practice. To this end, we generated an additional
set of five random networks with only 20% of the origi-
nal data. The edge weight distributions were then plotted
for comparison between the full, the 60% and the 20% net-
works, along with the mean and maximum edge weights
for each.

DiWANN network model and construction algorithm
The Model. As noted earlier, a threshold-based approach
to network modeling and construction has disadvantages
and weaknesses. Specifically, if the distance threshold is
set too low, the model can miss important relationships
between proteins and more nodes will be left as singletons
with no connections. If the threshold is set too high, the
graph can become too dense to meaningfully work with
and analyze.
In sharp contrast, in the DiWANN network, each

sequence (node) is connected to only the closest neigh-
bor(s) among the other sequences in the dataset, and
connected from sequences to which it is a closest neigh-
bor in the dataset. This structure sounds simpler than it
is. For example, all outgoing edges from a node necessarily
have the same weight, whereas incoming edges to a node
can have different weights. Additionally, the out-degree of
each node is at least one, whereas no statement can be
made on the in-degree of a node.
Figure 1 illustrates how DiWANN graph connections

are defined. The example shows four sequences A, B, C
and D, along with the edit distances between every pair
of them. From sequence A’s perspective, sequences B and
D, both of which are at distance 1 from A, are its closest
neighbors. Therefore, node A is connected via a directed

Fig. 1 An example showing how DiWANN nodes connect. The
example has four nodes, A–D, corresponding to sequences. Weights
along the lines show absolute edit distances. Solid lines indicate edges
that would be present in the DiWANN graph, while dotted lines show
relationships where there would be no edges. The DiWANN graph is
structurally different from any threshold-based distance graph

edge of weight 1 to node B and similarly to node D.
Likewise, to both sequences B and D, sequence A (at
distance 1) is the closest neighbor. Therefore, there is a
directed edge of weight 1 from node B to node A and
from node D to node A. For sequence C, the closest neigh-
bor, at distance 3, is sequence A. Therefore there is an
edge of weight 3 from node C to node A. Note that this
extremely simple example still illustrates the case where
the in-degree of a node can be zero (C), and the case where
the out-degree can exceed 1 (A).

The construction algorithm. The DiWANN repre-
sentation is a succinct summary of the dataset, in the
sense that it captures the structural skeleton of the sim-
ilarity relationships among the sequences, while main-
taining connectivity and allowing for analysis that would
be meaningful for the original dataset. The formulation
naturally lends itself to a more efficient method of gen-
eration than producing a pairwise distance matrix for all
sequences. The method we present here uses a pruning
technique to avoid costly distance calculations in cases
where they are not needed. In practice, we found this
method to reduce the number of computations and overall
time by more than half on the three datasets we consid-
ered, as detailed in the Results section.
The algorithm is relatively simple, and relies on a few

key features of the DiWANN graph representation to a)
prune out the distance calculations that are not needed

Catanese et al. BMC Bioinformatics (2018) 19:475 Page 6 of 18

Algorithm 1 Shows the procedure for efficiently generating a DiWANN graph from a set of sequences. The algorithm
takes a set of m sequences (strings) as input and produces a symmetric m × m matrix containing a subset of their
distances to one another (only the above diagonal half of the matrix is used by the algorithm). The DiWANN graph
is constructed by traversing the matrix and using row minimum values to include only the closest neighbors for each
sequence. A DiWANN graph is returned as the output
1: procedure DIWANNGENERATOR(sequences)
2:
3: m ← length ofsequences
4: DistanceMatrix[1 : m] [1 : m] ← MAXINT (symmetric matrix, MAXINT represents ∞)
5:
6: for row = 1tom do
7: if (row == 1) then
8: for col = 2tom do
9: DistanceMatrix[row] [col] ← EDITDISTANCE(sequences[row], sequences[col])

10: else
11: rowMin ← MIN(RelDistanceMatrix[row][1:row]) (minimum value in current row)
12: Initialize minED (vector of lower bounds for current row)
13: Initialize maxED (vector of upper bounds for current row)
14: for col = (row + 1)tom do
15: append ABS(DistanceMatrix[1] [col] - DistanceMatrix[1] [row]) to minED
16: append DistanceMatrix[1] [col] + DistanceMatrix[1] [row] to maxED
17: Note: at this point minED and maxED are of length m - (row+1)
18: lowestMax ← MIN(maxED) (largest possible relevant distance for current row)
19: for col = (row + 1)tom do
20: cellMin ← minED[col − (row + 1)] (minimum bound for the current cell)
21: if (cellMin ≤ lowestMaxorcellMin ≤ rowMin) then
22: bd ← BOUNDEDEDITDISTANCE(sequences[row],sequences[col],rowMin)

23: if bd �= MAXINT then
24: DistanceMatrix[row] [col] ← bd
25: if DistanceMatrix[row] [col] < rowMin then
26: rowMin ← DistanceMatrix[row] [col]
27:
28: Generate network by adding an edge for each distance equal to rowMin for each sequence

and b) to bound the calculations that are needed. The
procedure is outlined in Algorithm 1. It takes as input
a set of m sequences and produces an m × m dis-
tance matrix, which is used to generate the DiWANN
graph. The algorithm works with only the upper diag-
onal half of the matrix, and ignores the diagonal and
the other half. We describe the algorithm in terms of
the m × m matrix for conceptual simplicity; otherwise
in practice the algorithm can easily be implemented
with sparse data structures for space efficiency and
scalability.
The algorithm begins by initializing each entry of the

m × m matrix to infinity (a sufficiently large number).
Next, the matrix is filled out row by row. The entire first
row is computed to be used in the pruning phase for
subsequent rows.
To prune distance calculations for the remaining rows,

the following bounds are used. Assuming the sequence

in the first row is S1 and the distance in question is from
sequence S2 to sequence S3, the distance lies in the fol-
lowing range:
|dist(S1, S2) − dist(S1, S3)| ≤ |dist(S2, S3)| ≤
|dist(S1, S2) + dist(S1, S3)|

This property is due to the triangle inequality. Lines
11-21 in Algorithm 1 show the “pruning” optimization,
where the value for each cell in a given row is either com-
puted or skipped. In line 21, the distance computation
will be skipped if there is some smaller value upcoming
in the row based on upper bounds, or if there is already a
lower known value. The vectors minED and maxED store
a lower and an upper bound for the not-yet-computed dis-
tance entries in a row, based on the triangle inequality.
The values in maxED are used to compute lowestMax, the
smallest upper bound for the row, while minED provides
the lower bound for pruning entries in a row. The variable

Catanese et al. BMC Bioinformatics (2018) 19:475 Page 7 of 18

rowMin tracks a running minimum value for the entire
current entry.
Lines 22-24 correspond to the “bounding” optimiza-

tion. Here if the distance between the relevant sequences
has not been pruned, the computation is done using a
bounded Levenshtein distance calculation via the function
BOUNDEDEDITDISTANCE (line 22). BOUNDEDEDITDIS-
TANCE takes as parameter two sequences as well as a
distance bound, and it either (i) returns the edit dis-
tance between the sequences, if that values is at or below
the bound, or (ii) terminates early and returns infinity
if the distance would be greater than the bound. Here,
the bound is rowMin, as defined previously. Fig. 2 illus-
trates how Algorithm 1 works on an input sample of 10
sequences. The example shows how the distance matrix is
built, and how the DiWANN graph is constructed from it.
Runtime complexity. Calculating the edit distance (or

alignment score) between two sequences each of which
is of length n takes O(n2) time. To do this for a set of m
such strings, where there are m choose 2 pairs of strings,
takesO(n2 ·m2) time. This can become problematic where
either the length or number of strings is large.
Since the DiWANN model needs to maintain only the

minimum distance edges, it allows for the pruning and
bounding optimizations as described earlier. The bound-
ing optimization reduces the time complexity of calculat-
ing the distance between two strings from O(n2) for the
standard method toO(n ·b), where b is the bound and n is
the length of a sequence. This reduces the complexity for
the overall algorithm toO(n·b·m2), where b ≤ n. The ben-
efit of the pruning optimization is not as easy to quantify,

but in the worst case, the complexity remains O
(
m2);

the worst case being when the row computed for bound-
ing is similarly distant from all other sequences. It should
however be noted that in the case of protein sequences,
the level of dissimilarity needed for the worst case sce-
nario to hold, although dependent on the data in use, is
highly unlikely, as related sequences are by definition fairly
similar.

Results
Structural analysis
The following three parts of this subsection discuss results
on the basic structure, centrality and communities of the
sequence networks we studied. The parts on basic proper-
ties and centrality focus on the A. marginale SSR network,
which was more cohesive, while the communities section
focuses on the GroEL and gold standard datasets, for
which we have ground truth labels.

Basic properties
The three network types we consider (exact threshold
based, inexact threshold based and DiWANN) vary in
structure in terms of density, connectedness, centrality
and a number of other features. In this section, we break
down the differences between these network models.
Figure 3 shows the three network variants for the A

marginale SSR dataset. It can be seen that both the exact
and inexact threshold based networks have a number of
singleton nodes which are disconnected from the larger
network. Despite this, the threshold based networks are
found to be notably denser than the DiWANN network,

Fig. 2 An example illustrating the workings of the DiWANN network construction algorithm. To the left is the distance matrix produced by
Algorithm 1, and to the right is the DiWANN graph constructed using this distance matrix. The example has 10 sequences drawn from the A.
marginale SSRs. Because the distance matrix is symmetric, Algorithm 1 uses only its upper diagonal half, while the unused portion is in black. The
first row of the matrix, which must always be computed, is shown in yellow. Every cell in which a distance is computed but is not used in building
the DiWANN graph is shown in red. A cell in which a distance is pruned because it wouldn’t result in an edge in the DiWANN graph is shown with
entry of infinity. All other non-infinite cell values, shown in green, correspond to edges in the graph. For each sequence, A-O, an outgoing edge is
added to the sequence (sequences) that is (are) at the minimum distance from itself (corresponds to rowMin at the end of a row computation in
Algorithm 1). Note that the edge from node O is not bidirectional

Catanese et al. BMC Bioinformatics (2018) 19:475 Page 8 of 18

A

B

C
D

E
F

G; 39

H I

J

Australian type 1; 8

K; S

LM; UP47

N

OQ

R

T

U

V

W Z; phi

alpha

beta

Gamma; gamma

mu

pi sigma

Sigma

tau

5
6

7
m

P

1

2
3

4
9

10

11

12

14 15

16

17

19

20
21

22
23

24

26

28

29

30

32

47
13

18

25

27

31
33

34

35

36

37

38

40

41

42

43

44

45

46

Is1; 73
Is2; 74

Is3; 75

Is4; 76

Is5; 77

Is9; 78

22−2

48

49

50

51

52

53

72; 80

24−2

39−2

54

55

56

57

58

59

60

61
62

63

64

65

66

67

68

69

70

71

72−2

79

81
82

83

84

85

86

87

88; Ph20

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103; Me1

104
105

106

107; Ph12

108

109

110111

112

113

114

115

116

117

118

119

120
121

122

123

124

125

126
127

128
129

130 131132

133

134

135

136

137

138

139

140

141

142

143

144

145

146
147

148

149

150

151

152

153

154

155
156

157; 158−2

158

159

160

161

153−2

160−2

161−2

162

Ph1

Ph2

Ph3

Ph4

Ph5

Ph6

Ph7

Ph8

Ph9

Ph10

Ph11

Ph13

Ph14

Ph15

Ph16
Ph17

Ph18

Ph19

Ph21

Gamma−2

MGl10

EV1

EV2

EV3

EV4

EV5

EV6

EV7

EV8

EV9

EV10

EV11

EV12

LJ1LJ2

UP1

UP2

UP3

UP4

UP5

UP6

UP7

UP8
UP9

UP10

UP11

UP12UP13

UP14

UP15

UP16

UP17

UP18 UP19

UP20

UP21

UP22

UP23

UP24

UP25

UP26

UP27

UP28

UP29

UP30 UP31

UP32

UP33

UP34

UP35

UP36

UP37

UP38

UP39

UP40

UP41
UP42

UP43

UP44 UP45UP46

UP48

UP49

UP50

UP51

A

B

C

D

E

F

G; 39

H

I

J

Australian type 1; 8

K; S

L

M; UP47

N

O

Q

R

T

U

V

W

Z; phi

alphabeta

Gamma; gamma

mu

pi

sigma Sigma
tau

5

6

7

m

P

1

2

3

4

9 10

11

12

14

15

16

17

19

20

21

22

2324

26

28

29

30

32

47

13

18

25 27

31

33

34

35

36

37

38

40

41

42

43

44

45

46

Is1; 73

Is2; 74

Is3; 75

Is4; 76

Is5; 77 Is9; 78

22−2

48

49

50
51

52

53

72; 80

24−2

39−2

54

55

56

57

58

59

60

61
62

63

64

65

66

67

68

69

70

71

72−2

79

81

82

83

8485

86

87

88; Ph20

89

90

91

92

93
94

95

96

97

98

99

100101

102

103; Me1

104

105

106

107; Ph12

108

109

110

111

112
113

114115

116

117

118

119

120

121

122

123

124

125

126127
128

129

130

131

132

133

134

135

136

137

138

139 140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157; 158−2

158

159

160

161

153−2

160−2

161−2

162

Ph1

Ph2

Ph3

Ph4

Ph5

Ph6

Ph7

Ph8

Ph9

Ph10

Ph11

Ph13

Ph14

Ph15

Ph16

Ph17

Ph18

Ph19

Ph21

Gamma−2
MGl10

EV1

EV2EV3
EV4

EV5
EV6

EV7

EV8

EV9

EV10

EV11

EV12

LJ1
LJ2

UP1

UP2

UP3

UP4

UP5

UP6

UP7

UP8

UP9

UP10

UP11

UP12

UP13

UP14

UP15

UP16

UP17

UP18

UP19

UP20

UP21

UP22

UP23

UP24

UP25

UP26

UP27

UP28

UP29

UP30

UP31

UP32

UP33

UP34

UP35

UP36

UP37

UP38

UP39
UP40

UP41

UP42

UP43
UP44

UP45

UP46

UP48

UP49

UP50
UP51

A

B

C

D

E

F

G; 39

H

I

J

Australian type 1; 8

K; S

L

M; UP47

N

O

Q

R

T

U

V
W

Z; phi

alpha

beta

Gamma; gamma

mu
pi

sigma

Sigma

tau

5

6

7

m

P 1

2
3

4
9

10

11

12

14

15

16

17

19

20

21

22

23

24 26

28

29

30

32

47

13

18

25

27

31

33

34

35

36

37

38

40

41
42

43

44

45

46

Is1; 73

Is2; 74

Is3; 75

Is4; 76

Is5; 77

Is9; 78

22−2

48

49

50
51

52

53

72; 80

24−2

39−2

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72−2

79

81

82

83

84

85

86

87 88; Ph20

89

90

91

92

93

94
95

96

97

98

99

100

101

102

103; Me1

104

105

106

107; Ph12

108

109

110
111

112 113

114
115

116

117

118

119

120

121

122

123

124

125 126

127

128

129

130

131

132

133

134
135

136

137
138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157; 158−2

158

159

160

161

153−2

160−2

161−2

162

Ph1

Ph2

Ph3

Ph4

Ph5

Ph6Ph7

Ph8

Ph9

Ph10

Ph11

Ph13

Ph14

Ph15

Ph16

Ph17

Ph18

Ph19

Ph21

Gamma−2

MGl10

EV1

EV2

EV3

EV4
EV5

EV6

EV7

EV8

EV9

EV10

EV11

EV12

LJ1

LJ2

UP1

UP2

UP3

UP4

UP5

UP6

UP7

UP8

UP9

UP10

UP11

UP12

UP13

UP14

UP15

UP16

UP17

UP18
UP19

UP20

UP21

UP22

UP23

UP24
UP25

UP26

UP27

UP28

UP29

UP30

UP31

UP32

UP33

UP34

UP35

UP36

UP37

UP38

UP39

UP40

UP41

UP42

UP43

UP44

UP45

UP46

UP48

UP49

UP50

UP51

a b c

Fig. 3 A. marginale sequence similarity networks. Subplot a shows the inexact similarity network at a 6% difference threshold. Subplot b shows an
exact distance network at threshold 2. Subplot c shows the DiWANN network. All three graphs are for the A. marginale SSR data set

even at low thresholds. Figure 4 shows the degree dis-
tributions of the three networks for the same dataset
(A. marginale SSRs), which also demonstrates the rela-
tive sparsity of the DiWANN network. More details on
structural properties of the three network variants on the
same dataset is shown in Figs. 5 and 6. The analog of
Fig. 6 for the GroEL sequences data is shown in Fig. 7, and
the same for the gold standard sequences data is shown
in Fig. 8.
From Figs. 3–8, it can be seen that the DiWANN

graph merges desirable features of high and low thresh-
old graphs in several relevant ways. In terms of spar-
sity, it has roughly the same number of edges as
the lower threshold graphs. Still, it is either as con-
nected or more connected than the higher threshold
graphs.

Centrality
The most central nodes were found to be fairly sta-
ble across the various exact threshold and DiWANN
networks. Among the ten most central nodes for each
of these networks, on average about 80% were found
to be the same in any two of the exact threshold and
DiWANN networks. However, the central nodes for
the inexact threshold networks did not appear to be
related. The correspondence between the topmost cen-
tral nodes in these networks and those in the exact dis-
tance networks averaged near zero. Figure 5 shows the
three A. marginale networks with nodes sized by cen-
trality scores (PageRank) and the top ten most central
nodes highlighted in red. Figures 7 and 8 show sim-
ilar results for the GroEL and gold standard datasets,
respectively.

a b c

Fig. 4 Degree distributions of A. marginale sequence similarity networks. This figure shows the degree distributions for each of the SSNs shown in
Fig. 3. Subplot a shows the degrees of the inexact similarity network at a 6% difference threshold. Subplot b shows degrees of the an exact distance
network at threshold 2. Subplot c shows degrees (combined in and out degree) of the DiWANN network. All three graphs are for the A. marginale
SSR data set

Catanese et al. BMC Bioinformatics (2018) 19:475 Page 9 of 18

A

B

C
D

E
F

G; 39

H I

J

Australian type 1; 8

K; S

LM; UP47

N

OQ

R

T

U

V

W Z; phi

alpha

beta

Gamma; gamma

mu

pi sigma

Sigma

tau

5
6

7
m

P

1

2
3

4
9

10

11

12

14 15

16

17

19

20
21

22
23

24

26

28

29

30

32

47
13

18

25

27

31
33

34

35

36

37

38

40

41

42

43

44

45

46

Is1; 73
Is2; 74

Is3; 75

Is4; 76

Is5; 77

Is9; 78

22−2

48

49

50

51

52

53

72; 80

24−2

39−2

54

55

56

57

58

59

60

61
62

63

64

65

66

67

68

69

70

71

72−2

79

81
82

83

84

85

86

87

88; Ph20

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103; Me1

104
105

106

107; Ph12

108

109

110111

112

113

114

115

116

117

118

119

120 121

122

123

124

125

126
127

128
129

130 131132

133

134

135

136

137

138

139

140

141

142

143

144

145

146
147

148

149

150

151

152

153

154

155
156

157; 158−2

158

159

160

161

153−2

160−2

161−2

162

Ph1

Ph2

Ph3

Ph4

Ph5

Ph6

Ph7

Ph8

Ph9

Ph10

Ph11

Ph13

Ph14

Ph15

Ph16
Ph17

Ph18

Ph19

Ph21

Gamma−2

MGl10

EV1

EV2

EV3

EV4

EV5

EV6

EV7

EV8

EV9

EV10

EV11

EV12

LJ1LJ2

UP1

UP2

UP3

UP4

UP5

UP6

UP7

UP8
UP9

UP10

UP11

UP12UP13

UP14

UP15

UP16

UP17

UP18 UP19

UP20

UP21

UP22

UP23

UP24

UP25

UP26

UP27

UP28

UP29

UP30 UP31

UP32

UP33

UP34

UP35

UP36

UP37

UP38

UP39

UP40

UP41
UP42

UP43

UP44 UP45UP46

UP48

UP49

UP50

UP51

A

B

C

D

E

F

G; 39

H

I

J

Australian type 1; 8

K; S

L

M; UP47

N

O

Q

R

T

U

V

W

Z; phi

alphabeta

Gamma; gamma

mu

pi

sigma Sigma
tau

5

6

7

m

P

1

2

3

4

9 10

11

12

14

15

16

17

19

20

21

22

2324

26

28

29

30

32

47

13

18

25 27

31

33

34

35

36

37

38

40

41

42

43

44

45

46

Is1; 73

Is2; 74

Is3; 75

Is4; 76

Is5; 77 Is9; 78

22−2

48

49

50
51

52

53

72; 80

24−2

39−2

54

55

56

57

58

59

60

61
62

63

64

65

66

67

68

69

70

71

72−2

79

81

82

83

8485

86

87

88; Ph20

89

90

91

92

93
94

95

96

97

98

99

100101

102

103; Me1

104

105

106

107; Ph12

108

109

110

111

112
113

114115

116

117

118

119

120

121

122

123

124

125

126127
128

129

130

131

132

133

134

135

136

137

138

139 140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157; 158−2

158

159

160

161

153−2

160−2

161−2

162

Ph1

Ph2

Ph3

Ph4

Ph5

Ph6

Ph7

Ph8

Ph9

Ph10

Ph11

Ph13

Ph14

Ph15

Ph16

Ph17

Ph18

Ph19

Ph21

Gamma−2
MGl10

EV1

EV2EV3
EV4

EV5
EV6

EV7

EV8

EV9

EV10

EV11

EV12

LJ1
LJ2

UP1

UP2

UP3

UP4

UP5

UP6

UP7

UP8

UP9

UP10

UP11

UP12

UP13

UP14

UP15

UP16

UP17

UP18

UP19

UP20

UP21

UP22

UP23

UP24

UP25

UP26

UP27

UP28

UP29

UP30

UP31

UP32

UP33

UP34

UP35

UP36

UP37

UP38

UP39
UP40

UP41

UP42

UP43
UP44

UP45

UP46

UP48

UP49

UP50
UP51

A

B

C

D

E

F

G; 39

H

I

J

Australian type 1; 8

K; S

L

M; UP47

N

O

Q

R

T

U

V
W

Z; phi

alpha

beta

Gamma; gamma

mu
pi

sigma

Sigma

tau

5

6

7

m

P 1

2
3

4
9

10

11

12

14

15

16

17

19

20

21

22

23

24 26

28

29

30

32

47

13

18

25

27

31

33

34

35

36

37

38

40

41
42

43

44

45

46

Is1; 73

Is2; 74

Is3; 75

Is4; 76

Is5; 77

Is9; 78

22−2

48

49

50
51

52

53

72; 80

24−2

39−2

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72−2

79

81

82

83

84

85

86

87 88; Ph20

89

90

91

92

93

94
95

96

97

98

99

100

101

102

103; Me1

104

105

106

107; Ph12

108

109

110
111

112 113

114
115

116

117

118

119

120

121

122

123

124

125 126

127

128

129

130

131

132

133

134
135

136

137
138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157; 158−2

158

159

160

161

153−2

160−2

161−2

162

Ph1

Ph2

Ph3

Ph4

Ph5

Ph6Ph7

Ph8

Ph9

Ph10

Ph11

Ph13

Ph14

Ph15

Ph16

Ph17

Ph18

Ph19

Ph21

Gamma−2

MGl10

EV1

EV2

EV3

EV4
EV5

EV6

EV7

EV8

EV9

EV10

EV11

EV12

LJ1

LJ2

UP1

UP2

UP3

UP4

UP5

UP6

UP7

UP8

UP9

UP10

UP11

UP12

UP13

UP14

UP15

UP16

UP17

UP18
UP19

UP20

UP21

UP22

UP23

UP24
UP25

UP26

UP27

UP28

UP29

UP30

UP31

UP32

UP33

UP34

UP35

UP36

UP37

UP38

UP39

UP40

UP41

UP42

UP43

UP44

UP45

UP46

UP48

UP49

UP50

UP51

a b c

Fig. 5 A. marginale sequence similarity networks with the most central nodes highlighted. Each figure has been modified to size nodes by their
PageRank centrality. The ten most central nodes are highlighted in red. Subplot a shows the inexact similarity network at a 6% difference threshold.
Subplot b shows an exact distance network at threshold 2. Subplot c shows the DiWANN network. All three graphs are for the A. marginale SSR data
set

a

c

b

Fig. 6 A. marginale sequence similarity networks. Subplots a-c show the inexact (Blast similarity score > 95%), exact (distance ≤ 2) and DiWANN
networks for the A. marginale SSR data, respectively. The table gives some structural properties for each of these networks. Nodes are sized based on
their PageRank centrality, and colored based on their cluster membership using the Louvain community detection algorithm

Catanese et al. BMC Bioinformatics (2018) 19:475 Page 10 of 18

a

c

b

Fig. 7 GroEL sequence similarity networks. Subplots a-c show the inexact (Blast similarity score > 75%), exact (distance ≤ 30) and DiWANN
networks, respectively, for the GroEL data. The table gives some structural properties for each of these networks. Nodes are sized based on their
PageRank centrality, and colored based on their cluster membership using the Louvain community detection algorithm

It has already been noted that someA. marginaleMsp1a
SSRs, such as M [48], are widely geographically dis-
tributed, which we confirmed here. However we have
found an additional pattern of interest for these widely
dispersed SSRs relating to their centrality. Specifically,
those nodes that are most geographically dispersed also
tend to be the most central in the network. As shown in
Fig. 9, seven out of ten of the most central and most com-
mon sequences are the same. This pattern held roughly
across each of the exact threshold graphs we worked with,
as well as the DiWANN graph, as the central nodes across
them were consistent for the most part. Because no such
pattern existed for the inexact networks, we suspect that
some meaningful structure was lost due to the approxi-
mation of distances. Figure 10 shows the alignment of the
central and common A. marginale sequences, alongside
the logo [49] of each.

Communities
For theA.marginale SSR data, we lack ground truth values
for clustering, however the gold standard data are labeled,

and for the GroEL data we used genus and species as
ground truth labels.
For the GroEL samples the majority of network vari-

ants (excluding high threshold BLAST networks) were
highly fragmented, having hundreds of connected compo-
nents (see the table in Fig. 7). This is not unexpected as
data were collected from dozens of different species. On
these networks, we used the Louvain clustering algorithm
to generate groups of samples. For the aforementioned
disconnected networks, we found that the clusters cor-
responded almost exactly along connected component
lines.
For the GroEL data we generated clustering results on

both the exact and inexact networks over a variety thresh-
olds, as well as for the DiWANN network. Table 1 shows
the specific precision and recall values for each network
for both genus and species. Overall the exact networks
produced strong clusters in terms of both precision and
recall compared to the inexact threshold-based networks.
Between the threshold based networks and DiWANN, the
threshold based networks have higher precision at the cost

Catanese et al. BMC Bioinformatics (2018) 19:475 Page 11 of 18

a

c

b

Fig. 8 Gold standard sequence similarity networks. Subplots a-c show the inexact (Blast similarity score > 55%), exact (distance ≤ 150) and DiWANN
networks, respectively, for the gold standard data. The table gives some structural properties for each of these networks. Nodes are sized based on
their PageRank centrality, and colored based on their cluster membership using the Louvain community dtection algorithm

of both recall and cluster coverage. This demonstrated
that a significant level of clustering accuracy is sacrificed
when using approximate distance measures, at least for
this dataset, and that the DiWANN network performs
comparably to threshold based networks, even in some
ways better.
For the gold standard data, a similar behavior was

observed. Networks broke into many connected compo-
nents, which broke along family and superfamily lines
(see Fig. 8). The precision and recall values are shown in
Table 2. For these data the recall values were not high,
primarily because each superfamily tended to break into
many components. Note that while for most of the net-
works clustering took negligible time, higher threshold
networks (above 100) took up to fifteen minutes to run
due to their density.

Resilience to missing data
To test the resilience to missing data of the DiWANN
network compared to the threshold based networks, we

generated five random samples, each containing 60% of
the proteins in the GroEL dataset. From these samples,
we generated five networks. Table 3 shows the structure
and clustering comparison for these reduced networks
and their full counterparts. While there are minor vari-
ations in precision and recall, overall the reduced net-
works produced similar qualities of clusters. The reduced
DiWANN networks were more significantly altered in
terms of structure, as indicated by the variation in
clustering coefficient; nonetheless, the clustering results
produced from those networks were to a large extent
unaffected.
Additionally, we wanted to see how the structure of

the DiWANN network changes as data are removed.
To this end, we plotted the edge weight distributions
for the full network, and for the average of two sets
of 60% and 20% networks. The weight of an edge can
be thought of as a measure of the strength of the con-
nection between those two nodes. Thus, the higher the
edge weights in the DiWANN network, the more edges

Catanese et al. BMC Bioinformatics (2018) 19:475 Page 12 of 18

Fig. 9 A map of the 10 most common and 10 most central A. marginaleMsp1a SSRs. This map, generated by RepeatAnalyzer, shows the
distribution of the 10 SSRs which appear across the greatest number of countries, as well as those which are most central in the graph
representation of the data. In the legend, central SSRs are in the red box, while common SSRs are in the blue box

represent weak connections, and the more disparate the
sequences in the network. Of course, in a given anal-
ysis, it is possible and perhaps even helpful to ignore
edges above a certain weight. These plots are meant to
give an estimate of how many such weak edges there are
at different levels of missing data.The distributions are
shown in Fig. 11. As one would expect, as more data
are removed, mean edge weight increases, as does max-
imum, but the power law distribution of edges remains
even down to the 20% network. This indicates that
while losing data does weaken the average tie strength
in the network, the majority of ties are still relatively
strong.

Performance of the graph generation algorithm
In order to assess the runtime gains of our method,
we performed an empirical analysis of runtimes of our
DiWANN construction algorithm for the three datasets:
A. marginale SSR data, the GroEL protein sequences from
GenBank, and the gold standard protein data.
Table 4 shows the runtime (in seconds) to generate

a distance matrix from which the DiWANN graph is
trivially built. For two of the three datasets, comput-
ing pairwise BLAST scores was significantly faster than
computing exact edit distances; in the smallest dataset,
the overhead from BLAST made it slightly slower. The

DiWANN construction times showed a fourfold improve-
ment over a basic threshold based approach. The method
was able to prune approximately 15% of distance calcu-
lations for the gold standard data, approximately 26% for
the A. marginale SSR data, and about 35% of calcula-
tions were skipped for the GroEL data. The remainder
of the speedup is likely due to the bounding of distance
calculations.

Discussion
As shown in Table 3, the DiWANN network behaved
significantly differently than a threshold based network
with incomplete data. The average degree of the reduced
DiWANN networks remained roughly stable, while in the
threshold based case the average degree is reduced in
proportion with the node count. However for cluster-
ing coefficient in particular, the reduced DiWANN net-
works varied greatly compared to their full counterpart,
as opposed to the threshold based reduced networks, for
which clustering coefficient is near constant. This is sensi-
ble, insofar as removing a highly connected sequence from
the DiWANN network can mean significant structural
changes as each node picks a new neighbor(s). In contrast,
removing a node from a threshold-based network would
simply remove any edge to or from that node, effectively
producing a reduced version of the original network. It

Catanese et al. BMC Bioinformatics (2018) 19:475 Page 13 of 18

Fig. 10 Alignment and logos of the most common and most central SSRs. Panel a of this figure shows the alignment for the ten most common
(geographically) and ten most central (in the DiWANN network) A. marginale SSRs. The top three entries are SSRs which are only common, while the
bottom 3 are only central. Those in the middle seven rows belong to both sets. The logo in panel b represents the most central SSRs, while the one
in panel c represents the most common SSRs

may be due to this structural flexibility that the number of
nodes meaningfully clustered for the reduced DiWANN
networks is unaffected relative to the full networks as data
are removed at random. Although the precision of the
remaining clusters is kept high in the case of the reduced
threshold networks, the resulting loss of meaningfully
grouped nodes may be an unfavorable trade-off, indicat-
ing that in cases where a threshold based approach results
in many singleton nodes, DiWANN is a more informative
model.

On another point, we find that the DiWANN network
performs comparably to threshold based approaches in
terms of clustering accuracy, even when a standard net-
work clustering algorithm is used. However, since the
DiWANN model is, in a sense, a structural summary of
the similarity relationships in the dataset, a specialized
clustering algorithm designed to take advantage of the
information encoded in the model could give superior
clustering results. Design of such a specialized algorithm
is an interesting avenue for future work.

Catanese et al. BMC Bioinformatics (2018) 19:475 Page 14 of 18

Table 1 Clustering accuracy for the GroEL networks

Graph (812 nodes) Th. Edges C |C1| |C2| |C>2| Genus prec. Genus recall Species prec. Species recall

Similarity Score 5% 2886 371 246 122 444 43.0% 21.6% 34.9% 43.0%

15% 4668 275 175 90 547 38.9% 22.2% 30.3% 40.0%

25% 8222 182 122 44 646 33.0% 31.8% 22.4% 36.9%

35% 12,491 81 55 22 735 26.5% 18.6% 17.1% 28.0%

Bitscore (from max) 50 544 623 552 86 174 30.5% 21.7% 24.7% 51.3%

100 2895 367 243 122 447 42.1% 20.2% 34.0% 42.0%

200 4576 275 175 86 551 38.7% 21.7% 29.9% 42.1%

300 9271 183 126 40 646 31.8% 26.2% 22.4% 33.8%

Edit Distance Threshold 8 2139 456 345 128 339 97.3% 33.4% 77.9% 58.3%

16 2904 391 268 126 418 95.9% 35.3% 72.7% 59.1%

30 4254 304 188 118 506 90.3% 47.3% 60.6% 63.2%

42 5023 256 154 90 568 85.0% 51.9% 56.5% 64.4%

54 6582 206 114 76 622 81.5% 58.3% 50.8% 66.6%

60 7196 190 99 80 633 80.6% 62.6% 49.3% 66.8%

Needleman-Wunsch (from max score) 100 1780 482 386 110 316 42.2% 4.7% 30.8% 5.8%

200 4691 280 175 98 539 87.0% 49.7% 59.4% 63.5%

300 7733 183 96 80 636 79.1% 62.5% 48.0% 66.8%

DiWANN NA 1055 180 0 118 694 80.4% 43.9% 59.5% 61.8%

This table shows a summary of clustering accuracy for the various GroEL networks. Th. gives the threshold used for a given network, either in number of edits, distance from
the maximum similarity score (for bitscore and Needleman-Wunsch) or percent similarity score. C gives the total number of clusters, |C1| gives the number of nodes in clusters
of size 1 (singletons), |C2| gives the number of nodes in clusters of size 2, and |C>2| shows the number of nodes in clusters of size 3 and above. For calculating precision and
recall, we assume clusters should correspond to the genus and species labels for a given GroEL sequence. Each GroEL sequence is between roughly 550 and 600 amino acids

In this study, we assumed that edit distance is an ana-
log for similarity. While one could envision using a more
biologically significant metric than edit distance, such as
weighting edits based on probability, or using an align-
ment based method with a scoring matrix, such a metric
would have caused problems for the symmetry property
commonly assumed in distance or similarity measures.
This is because there is no guarantee that an edit from
one amino acid to another is as likely as an edit in the
opposite direction, or that an insertion is as likely as a
deletion. More importantly, a weighted measure would
disrupt the validity of the triangle inequality (though a
much weaker version could still be applied) on which our
pruning method is based. Due to these two factors, we
have included results for our threshold-based networks
using Needleman-Wunsch (NW) alignment scores as well
as edit distance, however we only generate the DiWANN
network with edit distances. While using NW scores in
the DiWANN graph construction does produce better
clustering results than using edit distances for our data,
the results are sufficiently comparable that we conclude

edit distance may be an adequate substitute in many
cases.
The relationship between centrality and commonal-

ity among SSRs implies a biologically interesting con-
clusion, but by no means verifies it. Nonetheless, it is
of enough interest to mention as an avenue for future
inquiry. Because centrality is a property defined in terms
of a sequence’s structure and how that relates to the struc-
ture of other sequences, while its geographic commonality
is a measure of where that sequence occurs, it could be
the case that these central/common SSRs were spread
in some way and have thus developed many variants
over a wide geographic area. Alternatively, these cen-
tral/common SSRs could be ancestral types that are
widely distributed and structurally central for that rea-
son. That most of the SSRs are close in edit distance
to each other would give credence to this idea. Inter-
estingly, SSR (Beta) has a closest edit distance of four
from any of the other SSRs that are central or common
(Fig. 10), arguing that this common SSR is an outlier in the
set.

Catanese et al. BMC Bioinformatics (2018) 19:475 Page 15 of 18

Table 2 Clustering accuracy for the gold standard data

Graph (852 nodes) Th. Edges C |C1| |C2| |C>2| SF prec. SF recall Family prec. Family recall

Similarity Score 15% 1563 427 300 116 432 49.3% 2.2% 35.4% 4.7%

25% 3057 335 223 88 537 46.4% 3.2% 33.0% 5.1%

35% 5125 265 169 72 607 42.7% 5.2% 30.6% 7.0%

45% 6689 239 153 64 631 41.5% 7.1% 30.4% 8.8%

55% 7433 223 140 64 644 40.7% 6.8% 29.8% 8.1%

Bitscore (from max score) 1000 1808 507 436 64 348 44.3% 3.6% 32.5% 4.1%

1100 4168 364 293 56 499 42.7% 5.2% 30.7% 5.8%

1200 5607 300 223 50 575 42.1% 4.7% 30.6% 5.8%

Edit Distance Threshold 50 1134 448 312 122 418 100% 4.2% 99.3% 21.9%

100 3453 310 192 86 574 100% 8.2% 98.6% 32.4%

150 8726 206 107 74 671 99.0% 15.5% 95.8% 45.6%

175 12,966 152 71 54 727 94.6% 25.6% 91.3% 57.7%

200 18,097 115 48 38 766 93.6% 29.5% 88.3% 60.7%

Needleman-Wunsch (from max score) 2200 1896 638 588 32 232 100% 8.8% 100% 33.5%

2400 5485 507 450 56 346 100% 17.9% 100% 48.5%

2600 8231 378 324 38 490 100% 18.8% 100% 51.8%

2800 15,603 291 228 46 578 100% 30.5% 100% 64.3%

3000 26,917 243 176 38 638 99.8% 39.7% 94.8% 79.1%

3200 39,633 165 123 26 670 83.8% 64.2% 68.4% 87.7%

DiWANN NA 931 218 0 142 710 97.5% 3.5% 92.3% 25.5%

This table shows a summary of clustering accuracy for the gold standard sequence similarity networks. Th. gives the threshold used for a given network, either in number of
edits, distance from the maximum similarity score (for bitscore and Needleman-Wunsch) or percent similarity score. C gives the total number of clusters, |C1| gives the
number of nodes in clusters of size 1 (singletons), |C2| gives the number of nodes in clusters of size 2, and |C>2| shows the number of nodes in clusters of size 3 and above.
For calculating precision and recall, we assume that clusters correspond to the family and superfamily labels provided with the dataset. Sequences vary widely in length
between 100 up to over 700 amino acids

It should be noted that we chose to measure “geographic
dispersion” of SSRs in terms of the number of countries
in which an SSR occurs, rather than a stricter measure of
geographic distance. While we recognize the latter might
be more meaningful in some contexts, for many of the
samples, the only information available about their loca-
tion is the country in which they were reported. Further,
for some contexts (i.e. trade and national regulatory varia-
tions) considering data in terms of countriesmay elucidate
patterns that strict distance would not. However, the same
basic methods could be applied using geographic dis-
tances as well. It is an open question whether the resulting
patterns would be the same, but based on the wide disper-
sion of common SSRs across distant countries, we suspect
it would.
While this paper gives a description of the DiWANN

network model and some examples of applications, we
can see a number of additional uses for the model. For

example, in a set of sequences from different species,
clusters composed of multiple species may provide a
way of detecting orthologues. The network may also be
used as a structural skeleton on which a threshold based
network could be built, maintaining the advantages of
each. Both of these are interesting avenues for future
inquiry.

Conclusions
Sequence similarity networks are an important tool for
understanding the relationships between proteins in a
dataset. We have demonstrated that, in some cases, using
approximate distance measures such as BLAST similar-
ity scores to generate SSNs rapidly may lead to significant
deficiencies in the structure of a network in terms of
its central nodes and clusters. We presented a new net-
work model that mitigates some of these weaknesses and
can be built in a fraction of the time it would take to

Catanese et al. BMC Bioinformatics (2018) 19:475 Page 16 of 18

Table 3 Structural comparison of networks on subsets of the data (resilience to incomplete data)

Avg. degree D CC Number Comp. Largest Comp. |C1| |C>2|/|V| Genus prec. Genus recall Species prec. Species recall

GroEL Threshold

Full 10.5 5 0.98 304 46 188 62.3% 90.3% 47.3% 60.6% 63.2%

Sample Avg. 6.2 4 0.97 221 29 150 56.1% 89.7% 46.7% 62.8% 64.5%

Sample 1 6.2 5 0.97 221 30 151 53.8% 90.8% 47.2% 62.2% 65.4%

Sample 2 6.3 4 0.97 229 29 158 52.0% 89.3% 45.4% 62.1% 62.6%

Sample 3 6.5 4 0.98 223 27 152 53.2% 89.2% 45.5% 61.0% 63.0%

Sample 4 6.3 5 0.96 212 32 141 56.7% 87.7% 46.2% 63.4% 64.9%

Sample 5 5.9 4 0.98 218 25 146 58.5% 91.6% 49.4% 65.3% 66.7%

GroEL DiWANN

Full 2.6 7 0.19 179 34 0 85.4% 80.4% 43.9% 59.5% 61.8%

Sample Avg. 2.7 6 0.41 119 26 0 86.4% 75.8% 51.1% 55.2% 67.8%

Sample 1 2.8 7 0.52 100 33 0 86.4% 73.6% 52.1% 53.4% 68.4%

Sample 2 2.4 5 0.21 111 22 0 85.6% 78.2% 50.4% 56.4% 66.2%

Sample 3 2.8 6 0.58 113 24 0 84.0% 73.6% 52.7% 54.0% 69.2%

Sample 4 2.6 5 0.38 105 23 0 87.3% 77.9% 46.0% 57.9% 67.6%

Sample 5 2.7 7 0.36 105 29 0 88.9% 75.8% 54.1% 54.5% 68.0%

This table shows a comparison of both structure and clustering results for the GroEL dataset for networks generated from a random sample of 60% of the sequences. D
denotes diameter, and CC denotes clustering coefficient. Also shown are the number of connected components, and the size of the largest component. |C1| gives the
number of nodes in clusters of size 1 (singletons), and |C>2|/|V| shows the percentage of nodes in a cluster of size 3 or above. The full network is also included for
comparison. For the threshold based networks, we use a threshold of 30, which had a good trade-off of precision and recall in the community analysis. The full networks
contain 812 nodes, while each reduced network contains 487 nodes

construct an exact threshold based network. We showed
that the model is resilient to missing sequences, sparse
(and thus fast to analyze), and maintains many of the
useful structural properties of an exact threshold based
network, while achieving a higher level of connected-
ness. We also showed that protein centrality in a sequence
similarity network may be linked to non-structural

properties of that sequence, such as its geographic
distribution.

Endnote
1We use the terms graphs and networks interchange-

ably throughout the manuscript.

Fig. 11 Edge weight distributions for the GroEL dataset. These plots show the distribution of edge weights in the DiWANN networks using the full
GroEL data, averages for five 60% samples and averages for five 20% samples. The minimum edge weight for all three networks is 1. For the 20%
networks, the median is 4 and the maximum is 223. For the 60% networks, the median is 6 and the maximum is 288. For the full network, the
median is 29 and the maximum is 291

Catanese et al. BMC Bioinformatics (2018) 19:475 Page 17 of 18

Table 4 Performance comparison of the network construction
algorithms

Method Msp1a SSR GroEL Gold standard

Inexact threshold (seconds) 30.6 2106 211

Exact threshold (seconds) 27.9 100,131 60,434

DiWANN (seconds) 7.4 25,980 20,266

This table shows the times taken to generate the distance matrix for each type of
network, which is essentially the time for network generation

Abbreviations
DiWANN: Directed weighted all nearest neighbors; KNN: K nearest neighbors;
SSN: Sequence similarity network; SSR: Short sequence repeat

Acknowledgements
The authors gratefully acknowledge support through the NSF CAREER Award
IIS-1553528 and by Washington State University.

Funding
This work was supported by the US National Science Foundation CAREER
award IIS-1553528 and by Washington State University. The funding body
played no role in the design of the study, the collection, analysis, and
interpretation of data or in writing the manuscript.

Availability of data andmaterials
All A. marginale and GroEL data used in this study are available for download at
https://bitbucket.org/repeatgroup/repeatanalyzer. Gold standard sequences
are available in [42].

Authors’ contributions
HNC developed and implemented the algorithms, carried out the analyses,
and contributed to writing the manuscript. KAB participated in design and
coordination of the study and contributed to writing the manuscript. AHG
conceived the project, directed the model and algorithm development work,
led the study design and coordination, and contributed to writing the
manuscript. All authors read and approved the final manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1School of Electrical Engineering and Computer Science, Washington State
University, Pullman, WA, USA. 2Department of Veterinary Microbiology and
Pathology, Washington State University, Pullman, WA, USA.

Received: 6 July 2018 Accepted: 31 October 2018

References
1. Mishra P, Pandey PN. A graph-based clustering method applied to

protein sequences. Bioinformation. 2011;6(10):372–4.
2. Atkinson HJ, Morris JH, Ferrin TE, Babbitt PC. Using sequence similarity

networks for visualization of relationships across diverse protein
superfamilies. PLoS ONE. 2009;4(2):.

3. Roberts A, McMillan L, Wang W, Parker J, Rusyn I, Threadgill D. Inferring
missing genotypes in large SNP panels using fast nearest-neighbor
searches over sliding windows. Bioinformatics. 2007;23(13):401–7.

4. Weston J, Elisseeff A, Zhou D, Leslie CS, Noble WS. Protein ranking: from
local to global structure in the protein similarity network. Proc Natl Acad
Sci U S A. 2004;101(17):6559–63.

5. de Las Rivas J, Fontanillo C. Protein-protein interactions essentials: Key
concepts to building and analyzing interactome networks. PLoS Comput
Biol. 2010;6(6):1–8.

6. Freschi V. Protein function prediction from interaction networks using a
random walk ranking algorithm. In: Proceedings of the 7th IEEE
International Conference on Bioinformatics and Bioengineering. IEEE;
2007. p. 42–48.

7. Knabe JF, Nehaniv CL, Schilstra MJ. Evolutionary robustness of
differentiation in genetic regulatory networks. In: Proceedings of the 7th
German Workshop on Artificial Life. Berlin: Akademische
Verlagsgesellschaft; 2006. p. 75–84.

8. Stuart JM, Segal E, Koller D, Kim SK. A Gene-Coexpression Network for
Global Discovery of Conserved Genetic Modules. Science. 2003;302(5643):
249–55.

9. Huttenhower C, Flamholz AI, Landis JN, Sahi S, Myers CL, Olszewski KL,
Hibbs MA, Siemers NO, Troyanskaya OG, Coller HA. Nearest Neighbor
Networks: Clustering expression data based on gene neighborhoods.
BMC Bioinform. 2007;8:1–13. https://doi.org/10.1186/1471-2105-8-250.

10. Morrison JL, Breitling R, Higham DJ, Gilbert DR. GeneRank: Using search
engine technology for the analysis of microarray experiments. BMC
Bioinform. 2005;6:1–14.

11. Hamming RW. Error detecting and error correcting codes. Bell Syst Tech J.
1950;29:147–60.

12. Levenshtein VI. Binary codes capable of correcting spurious insertions
and deletions of ones. Sov Phys Dokl. 1966;10:707.

13. Needleman SB, Wunsch CD. A General Method Applicable to the Search
for Similarities in the Amino Acid Sequence of Two Proteins. J Mol Bio.
1970;48(3):443–53.

14. Waterman MS, Smith TF, Beyer WA. Some biological sequence metrics.
Adv Math. 1976;20(3):367–87.

15. Pearson WR. Rapid and sensitive sequence comparison with FASTP and
FASTA. Methods Enzymol. 1990;183(C):63–98.

16. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K,
Madden TL. BLAST+: architecture and applications. BMC Bioinform.
2009;10:421.

17. Wu C, Kalyanaraman A, Cannon WR. PGraph: Efficient Parallel
Construction of Large-Scale Protein Sequence Homology Graphs. IEEE
Trans Parallel Distrib Syst. 2012;23(10):1923–33.

18. Shpaer EG, Robinson M, Yee D, Candlin JD, Mines R, Hunkapiller T.
Sensitivity and selectivity in protein similarity searches: A comparison of
Smith-Waterman in hardware to BLAST and FASTA. Genomics. 1996;38(2):
179–91.

19. Pearson WR. Searching protein sequence libraries: Comparison of the
sensitivity and selectivity of the Smith-Waterman and FASTA algorithms.
Genomics. 1991;11(3):635–50.

20. Shieh J, Keogh E. iSAX: Indexing and Mining Terabyte Sized Time Series.
In: 14th ACM SIGKDD international conference on Knowledge discovery
and data mining. New York: ACM; 2008. p. 623.

21. Arasu A, Ganti V, Kaushik R. Efficient Exact Set-Similarity Joins. In:
Proceedings of the 32nd International Conference on Very Large Data
Bases. Seoul: VLDB Endowment; 2006. p. 918–29.

22. Apeltsin L, Morris JH, Babbitt PC, Ferrin TE. Improving the quality of
protein similarity network clustering algorithms using the network edge
weight distribution. Bioinformatics. 2011;27(3):326–33.

23. Eppstein D, Paterson MS, Yao FF. On nearest neighbor graphs. Discret
Comput Geom. 1997;17(3):263–82.

24. Bentley JL. Multidimensional Divide-and-Conquer. Commun ACM.
1980;23(4):214–29.

25. Clarkson KL. Fast algorithms for the all nearest neighbors problem. In:
24th Annual Symposium on Foundations of Computer Science. IEEE;
1983. p. 226–232.

26. Omohundro SM. Five balltree construction algorithms. Int Comput Sci
Inst Tech Rep. 1989;51(1):1–22.

27. Sankaranarayanan J, Samet H, Varshney A. A fast all nearest neighbor
algorithm for applications involving large point-clouds. Comput Graph.
2007;31(2):157–74.

28. Dashti A, Komarov I, D’Souza RM. Efficient Computation of k-Nearest
Neighbour Graphs for Large High-Dimensional Data Sets on GPU Clusters.
PLoS ONE. 2013;8(9):e74113.

https://bitbucket.org/repeatgroup/repeatanalyzer
https://doi.org/10.1186/1471-2105-8-250

Catanese et al. BMC Bioinformatics (2018) 19:475 Page 18 of 18

29. Anastasiu DC, Karypis G. L2Knng : Fast Exact K-Nearest Neighbor Graph
Construction with L2-Norm Pruning. In: CIKM 2015: Proceedings of the
24th ACM International on Conference on Information and Knowledge
Management. New York: ACM; 2015. p. 791–800.

30. Arya S, Mount DM, Netanyahu NS, Silverman R, Wu AY. An optimal
algorithm for approximate nearest neighbor searching in fixed
dimensions. Proceedings of the 5th ACM-SIAM Sympos. Discret Algoritm.
1998;45(6):891–923.

31. Jones PW, Osipov A, Rokhlin V. A randomized approximate nearest
neighbors algorithm. Proc Natl Acad Sci. 2011;108(38):15679–86.

32. Zhang YM, Huang K, Geng G, Liu CL. Fast kNN graph construction with
locality sensitive hashing. In: Joint European Conference on Machine
Learning and Knowledge Discovery in Databases. Berlin: Springer; 2013.
p. 660–74.

33. Park Y, Park S, Lee S-g, JungW. Greedy filtering: A scalable algorithm for k-
nearest neighbor graph construction. In: Database Systems for Advanced
Applications. Cham: Springer International Publishing; 2014. p. 327–341.

34. Paredes R, Navarro G. Practical Construction of k Nearest Neighbor Graphs
in Metric Spaces. In: Proceedings of the 5th international conference on
Experimental Algorithms. Berlin: Springer-Verlag; 2006. p. 85–97.

35. Dong W, Moses C, Li K. Efficient k-nearest neighbor graph construction
for generic similarity measures. In: Proceedings of the 20th International
Conference on World Wide Web. New York: ACM; 2011. p. 577–586.

36. Vaidya PM. An O(n log n) algorithm for the all-nearest-neighbors Problem.
Discret Comput Geom. 1989;4:101–15.

37. Yianilos PN. Data structures and algorithms for nearest neighbor search in
general metric spaces. In: Proceedings of the fourth annual ACM-SIAM
Symposium on Discrete algorithms. Philadelphia: SIAM; 1993. p. 311–321.

38. Brin S. Near Neighbor Search in Large Metric Spaces. In: Proceedings of
the 21st VLDB Conference. San Francisco: Morgan Kaufmann Publishers
Inc.; 1995.

39. Clarkson KL. Nearest Neighbor Queries in Metric Spaces. Discret Comput
Geom. 1999;93:63–93.

40. Catanese HN, Brayton KA, Gebremedhin AH. RepeatAnalyzer: A Tool for
Analysing and Managing Short-Sequence Repeat Data. BMC Genom.
2016;17(1):422.

41. Welsh WJ. Heat shock proteins functioning as molecular chaperones:
their roles in normal and stressed cells. Philos Trans R Soc Lond B Biol Sci.
1993;29(339):327–33.

42. Brown SD, Gerlt JA, Seffernick JL, Babbitt P. A gold standard set of
mechanistically diverse enzyme superfamilies. Genome Biol. 2006;7(1):
1–15.

43. Muja M, Lowe DG. Scalable Nearest Neighbour Algorithms for High
Dimensional Data. IEEE Trans Pattern Anal Mach Intell. 2014;36(11):
2227–40.

44. Fruchterman TMJ, Reingold EM. Graph drawing by force-directed
placement. Softw Pract Experience. 1991;21(11):1129–64.

45. Csárdi G, Nepusz T. The igraph software package for complex network
research. InterJournal. 2006;Complex Sy:1695.

46. Gleich DF. PageRank beyond the Web. SIAM Rev. 2015;57(3):321–63.
47. Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E. Fast unfolding of

communities in large networks. J Stat Mech Theory Exp. 2008;10:P10008.
48. Cabezas-Cruz A, Passos LMF, Lis K, Kenneil R, Valdés JJ, Ferrolho J, Tonk

M, Pohl AE, Grubhoffer L, Zweygarth E, Shkap V, Ribeiro MFB,
Estrada-Peña A, Kocan KM, de la Fuente J. Functional and Immunological
Relevance of AnaplasmamarginaleMajor Surface Protein 1a Sequence
and Structural Analysis. PLoS ONE. 2013;8(6):65243.

49. Crooks G, Hon G, Chandonia J-M, Brenner SE. WebLogo: A Sequence
Logo Generator. Genome Res. 2004;14:1188–90.

	Abstract
	Background
	Results
	Conclusion
	Keywords

	Background
	Related work and preliminary concepts
	Other network models in bioinformatics
	Similarity/distance measures
	Neighborhood network models and algorithms

	Methods
	Structural analysis
	Basic properties
	Centrality
	Communities

	Resilience to missing data
	DiWANN network model and construction algorithm

	Results
	Structural analysis
	Basic properties
	Centrality
	Communities

	Resilience to missing data
	Performance of the graph generation algorithm

	Discussion
	Conclusions
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors' contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher's Note
	Author details
	References

