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Abstract

Background: While the reconstruction of transcripts from a sample of RNA-Seq data is a computationally expensive
and complicated task, the detection of splicing events from RNA-Seq data and a gene annotation is computationally
feasible. This latter task, which is adequate for many transcriptome analyses, is usually achieved by aligning the reads
to a reference genome, followed by comparing the alignments with a gene annotation, often implicitly represented
by a graph: the splicing graph.

Results: We present ASGAL (Alternative Splicing Graph ALigner): a tool for mapping RNA-Seq data to the splicing
graph, with the specific goal of detecting novel splicing events, involving either annotated or unannotated splice
sites. ASGAL takes as input the annotated transcripts of a gene and a RNA-Seq sample, and computes (1) the spliced
alignments of each read in input, and (2) a list of novel events with respect to the gene annotation.

Conclusions: An experimental analysis shows that ASGAL allows to enrich the annotation with novel alternative
splicing events even when genes in an experiment express at most one isoform. Compared with other tools which
use the spliced alignment of reads against a reference genome for differential analysis, ASGAL better predicts events
that use splice sites which are novel with respect to a splicing graph, showing a higher accuracy. To the best of our
knowledge, ASGAL is the first tool that detects novel alternative splicing events by directly aligning reads to a splicing
graph.

Availability: Source code, documentation, and data are available for download at http://asgal.algolab.eu.

Keywords: Graph alignment, Spliced alignment, Alternative splicing events, RNA-Seq

Background
Data coming from high-throughput sequencing of RNA
(RNA-Seq) can shed light on the diversity of transcripts
that results from Alternative Splicing (AS). Computa-
tional approaches for transcriptome analysis from RNA-
Seq data may be classified according to two primary goals:
(i) detection of AS events and (ii) full-length isoform
reconstruction. Tools in these two categories may be fur-
ther classified based on an approach which may be (a)
de-novo assembly based or (b) gene annotation guided
or reference based. Various tools have been proposed
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in the literature that fall in the categories listed above.
Examples of tools in category (ii.a) that do not require a
reference genome are Trinity [1] and ABySS [2], while
Cufflinks [3], Scripture [4], and Traph [5], among
many others, are known tools of category (ii.b). The first
two tools were originally designed for de-novo isoform
prediction and can make limited use of existing annota-
tions. While the reconstruction of full-length transcripts
(either de-novo or using a reference) is a computationally
intensive task, the detection of AS events is computa-
tionally feasible and it can be achieved without perform-
ing intensive steps related to transcript reconstruction.
Observe that given a set of transcripts reconstructed from
a sample of RNA-Seq reads, a tool for comparing tran-
scripts is needed to extract AS events. Such a comparison
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is performed for example by AStalavista [6], a popu-
lar tool for the exhaustive extraction and visualization of
complex AS events from full-length transcripts. This tool
does not use RNA-Seq reads as input but only the gene
annotation, and it does not focus on single events (such as
exon skipping, alternative splice sites, etc.) but rather uses
a flexible coding of AS events [7] to list all the AS events
between each pair of transcripts.
Since reconstructing full-length isoforms from RNA-

Seq reads is a difficult and computationally expensive
problem, one may restrict the task to the direct detec-
tion of AS events from RNA-Seq data through an align-
ment process. Following the latter approach, we propose
a computational approach to predict AS events, and we
implement this procedure in a tool — ASGAL — belong-
ing to category (i.b). Compared to existing tools, ASGAL
has as main goals the splice-aware alignment of RNA-
Seq data to a splicing graph and the annotation of the
graph with novel splicing events that are supported by
such alignments. From this perspective, differently from
tools for event detection based on differential analy-
sis, ASGAL is able to detect a novel event in a gene
annotation when this event is supported by reads from
a single unannotated isoform. Some tools using unan-
notated splice sites — hence most similar to ASGAL
with respect to the goal of predicting AS events — are
SpliceGrapher [8] and SplAdder [9] which take as
input the spliced alignments of sequencing data (RNA-Seq
data for SplAdder, and RNA-Seq data in addition to EST
data for SpliceGrapher) against a reference genome,
and produce an augmented graph representation of the
annotated transcripts, traditionally known as the splicing
graph [10], with nodes and edges that may represent novel
AS events. The main task of SplAdder is the prediction
of AS events that are supported by an input sample, and
the quantification of those events by testing the differ-
ences between multiple samples. Two other tools whose
main goal is differential alternative splicing analysis are
SUPPA2 [11] and rMATS [12]. Both SUPPA2 and rMATS
analyze RNA-Seq data from different samples (replicates)
to obtain the set of differential alternative splicing events
between the analyzed conditions. SUPPA2 is only able to
detect AS events that are in the annotation, while rMATS
only lists novel events that use annotated splice sites.
Similarly, MAJIQ [13] analyzes RNA-Seq data and a set
of (annotated) transcripts to quantify the relative abun-
dances of a set of Local Splicing Variations which implic-
itly represent combinations of AS events involving both
annotated and novel splice sites, but also changes of these
abundances between conditions. Note that both MAJIQ
and rMATS do not include an alignment step, but need an
external spliced aligner such as STAR [14], while SUPPA2
requires the quantification of the input transcripts, which
can be obtained by using a tool like Salmon [15]. In

both cases, the identification of AS events stems from
an analysis of the expression levels. A most recent tool,
LeafCutter [16] analyzes RNA-Seq data and quanti-
fies differential intron usage across samples, allowing the
detection of novel introns which model complex splicing
events. Like the other cited tools, LeafCutter requires
as input the spliced alignments of the RNA-Seq samples
of interest. Two crucial computational instruments are
usually required by tools of category (i.b): an input file
consisting of the alignment of RNA-Seq data to a refer-
ence genome, and a gene annotation. The first input may
significantly change the performance of such tools, as the
accuracy of the alignment may affect the predictions of AS
events. In particular, the alignment to a reference genome
is usually guided by the annotated transcripts that may be
represented by a splicing graph that is then enriched with
the information coming from the computed alignments.
With the main goal of enriching a gene annotation with

novel AS events supported by a RNA-Seq sample, we
investigated an alternative approach that directly aligns
the input reads against a splicing graph representing a
gene annotation. The main motivation of our proposal
is that, by using the splicing graph during the alignment
phase, we are able to obtain an alignment focused on
enriching a gene annotation with AS events that pro-
duce novel isoforms by using annotated or unannotated
splice sites with respect to the actual graph. For this pur-
pose, we implemented ASGAL (Alternative Splicing Graph
ALigner), a tool that consists of two parts: (i) a splice-
aware aligner of RNA-Seq reads to a splicing graph, and
(ii) a predictor of AS events supported by the RNA-Seq
mappings. Currently, there are several tools for the spliced
alignment of RNA-Seq reads against a reference genome
or a collection of transcripts but, to the best of our knowl-
edge, ASGAL is the first tool specifically designed for map-
ping RNA-Seq data directly to a splicing graph. Differently
from SplAdder, which enriches a splicing graph repre-
senting the gene annotation using the splicing informa-
tion contained in the input spliced alignments, and then
analyzes this enriched graph to detect the AS events dif-
ferentially expressed in the input samples, ASGAL directly
aligns the input sample to the splicing graph of the gene
of interest and then detects the AS events which are novel
with respect to the input gene annotation, comparing
the obtained alignments with it. More precisely, ASGAL
extracts the introns supported by the alignments of reads
against the splicing graph, then compares them against
the input annotation to detect whether novel events may
be predicted from the input reads. This allows ASGAL to
detect novel event types even when the input RNA-Seq
sample consists only of reads that are not consistent with
the input splicing graph, because of the AS event, pro-
vided that the number of alignments confirming the AS
event is above a certain threshold. Instead, SplAdder
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needs to receive reads originating from both transcripts
that induce the AS event.
The approach of inferring AS events directly from RNA-

Seq reads, without assembling isoforms, is also proposed
in [17], where the main idea is to perform a de-novo
prediction of some AS events from the De Brujin graph
assembly of RNA-Seq data, i.e. without using any gene
annotation. An investigation of the de-novo prediction
of AS events directly from RNA-Seq data is also given
in [18], where a characterization of the splicing graph
that may be detected in absence of a gene annotation
(either given as a reference or as a list of transcripts)
is provided.
The ASGAL mapping algorithm improves a previous

solution to the approximate pattern matching to a hyper-
text problem (an open problem faced in [19]). The
approximate matching of a string to a graph with labeled
vertices is a computational problem first introduced by
Manber and Wu [20] and attacked by many researchers
[21–23]. Navarro [24] improved all previous results in
both time and space complexity, proposing an algorithm
which requires Om(n + e) time, where m is the length of
the pattern, n is the length of the concatenation of all ver-
tex labels, and e is the total number of edges. The method
in [19] improves the latest result by Thachuk [25]: an algo-
rithm with time complexity Om + γ 2 using succinct data
structures to solve the exact version of matching a pat-
tern to a graph — i.e. without errors — where γ is the
number of occurrences of the node texts as substrings of
the pattern. The algorithm in [19] is based on the con-
cept of Maximal Exact Match and it uses a succinct data
structure to solve the approximate matching of a pattern
to a hypertext inOm + η2 time, where η is the number of
Maximal Exact Matches between the pattern and the con-
catenation of all vertex labels. In this paper, we improve
the results in [19] by extending the algorithm to imple-
ment a RNA-Seq data aligner for detecting general AS
event types from the splicing graph.
An experimental analysis on real and simulated data

was performed with the purpose of assessing the quality
of ASGAL in detecting AS event types that are anno-
tated or novel with respect to a gene annotation. We note
that the current implementation of ASGAL is not able to
detect the insertion of novel exons inside an intron and
intron retention events caused by the union of two exons.
In the first part of our experimental analysis, we com-
pared the alignment step of ASGAL with STAR, one of
the best-known spliced aligner. The results show a good
accuracy of ASGAL in producing correct alignments by
directly mapping the RNA-Seq reads against the splicing
graph of a gene. Although ASGAL works under differ-
ent assumptions than other existing tools, we decided to
compare ASGAL with SplAdder, rMATS, and SUPPA2.
For this purpose we first ran an experimental analysis

on simulated data and compared the event identification
step of ASGAL. We performed two distinct analysis. In
the first one, we evaluated the accuracy of the tools in
predicting novel AS event types, i.e. events that are not
already contained in the annotation. Instead in the sec-
ond analysis, all the tools were compared to assess their
accuracy in detecting AS events that are already present in
the input annotation and are supported by the RNA-Seq
experiments. We also ran an experimental analysis on real
data with the main goal of evaluating ASGAL, SplAdder,
rMATS, and SUPPA2 in identifying RT-PCR validated
alternative splicing events. We performed this last exper-
iment also to test the ability of ASGAL in detecting such
events as novel ones, that is by removing the events from
the input annotation and keeping their evidence only in
the RNA-Seq data.
The results in the simulated scenario show that ASGAL

achieved the best values of precision, recall and F-measure
in predicting alternative splicing events supported by the
reads that are novel compared to the annotation speci-
fied by a splicing graph. The results on real data show the
ability of ASGAL to detect RT-PCR validated alternative
splicing events when they are simulated as novel events
with respect to the annotated splicing graph.

Methods
ASGAL (Alternative Splicing Graph ALigner) is a tool
for performing a mapping of RNA-Seq data in a sample
against the splicing graph of a gene with the main goal
of detecting novel alternative splicing events supported
by the reads of the sample with respect to the annota-
tion of the gene. More precisely, ASGAL takes as input the
annotation of a gene together with the related reference
sequence, and a set of RNA-Seq reads, to output (i) the
spliced alignments of each read in the sample and (ii) the
alternative splicing events supported by the sample which
are novel with respect to the annotation.We point out that
ASGAL uses the input reference sequence only for build-
ing the splicing graph as well as for refining the alignments
computed against it, with the specific goal of improving
the precision in the AS event type detection. Each iden-
tified event is described by its type, i.e. exon skipping,
intron retention, alternative acceptor splice site, alterna-
tive donor splice site, its genomic location, and a measure
of its quantification, i.e. the number of alignments that
support the identified event.
This section is organized as follows. We first introduce

the basic definitions and notions that we will use in the
section spliced graph-alignment, and finally we describe
the steps of our method. For the sake of clarity, we will
describe our method considering as input the splicing
graph of a single gene: it can be easily generalized to man-
age more than a gene at a time. However, the current
version of ASGAL tool cannot manage more than a limited
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set of genes. At the end of this section, we will propose a
possible procedure an user can adopt to use our tool in a
genome-wide analysis.

Definitions
From a computational point of view, a genome is a
sequence of characters, i.e. a string, drawn from an
alphabet of size 4 (A, C, G, and T). A gene is a locus
of the genome, that is, a gene is a substring of the
genome. Exons and introns of a gene locus will be
uniquely identified by their starting and ending positions
on the genome. A transcript T of gene G is a sequence
〈[a1, b1] , [a2, b2] , . . . , [an, bn]〉 of exons on the genome,
where ai and bi are respectively the start and the end posi-
tions of the i-th exon of the transcript. Observe that a1
and bn are the starting and ending positions of transcript
T on the genome, and each [bi + 1, ai+1 − 1] is an intron
represented as a pair of positions on the genome. In the
following, we denote by EG the set of all the exons of the
transcripts of geneG, that is EG = ∪T∈T E(T), where E(T)

is the set of exons of transcript T and T is the set of tran-
scripts of G, called the annotation of G. Given two exons
ei =[ai, bi] and ej =[aj, bj] of EG, we say that ei precedes
ej if bi < aj and we denote this by ei ≺ ej. Moreover, we
say that ei and ej are consecutive if there exists a transcript
T ∈ T and an index k such that ek = ei and ek+1 = ej, and
ei, ej in E(T).
The splicing graph of a gene G is the directed acyclic

graph SG = (EG,E), i.e. the vertex set is the set of the
exons ofG, and the edge set E is the set of pairs (vi, vj) such
that vi and vj are consecutive in at least one transcript. For
each vertex v, we denote by seq(v), the genomic sequence
of the exon associated to v. Finally, we say that S�

G is the
graph obtained by adding to SG all the edges (vi, vj) /∈ E
such that vi ≺ vj. We call these edges novel edges. Note
that the novel edges represent putative novel junctions
between two existing exons (that are not consecutive in
any transcript of G). Figure 1 shows an example of the
definitions of gene, exon, annotation, and splicing graph.

Fig. 1 Example of Splicing Graph. A simple gene G with 4 exons is
shown along with its annotation (transcripts) T , the corresponding
splicing graphS�

G , and the linearization Z. InS�
G , dashed arrows

represent the novel edges while full arrows represent the edges
contained inSG

In the following, we will use the notion of Maximal
Exact Match (MEM) to perform the spliced graph-
alignment of a RNA-Seq read to SG. Given two strings R
and Z, a MEM is a triple m = (iZ , iR, �) representing the
common substring of length � between the two strings
that starts at position iZ in Z, at position iR in R, and that
cannot be extended in either direction without introduc-
ing a mismatch. Computing the MEMs between a string
R and a splicing graph SG can be done by concatenating
the labels of all the vertices and placing the special sym-
bol φ before each label and after the last one, obtaining
a string Z = φseq(v1)φseq(v2)φ . . . φseq(v|EG|)φ that
we call the linearization of the splicing graph (see Fig. 1
for an example). It is immediate to see that, given a vertex
v of SG, the label seq(v) is a particular substring of the
linearization Z. For the sake of clarity, let us denote this
substring, which is the one related to seq(v), as Z[iv, jv].
Then, by employing the algorithm by Ohlebusch et al.
[26], all the MEMs longer than a constant L between R
and Z, thus between R and SG, can be computed in linear
time with respect to the length of the reads and the num-
ber of MEMs. Thanks to the special character φ which
occurs in Z and not in R, each MEM occurs inside a sin-
gle vertex label and cannot span two different labels. In
the following, given a read R and the linearization Z of SG,
we say that a MEM m = (iZ , iR, l) belongs to vertex v if
iv ≤ iZ ≤ jv where [iv, jv] is the interval on Z related to
the vertex label seq(v) (that is, seq(v) = Z[iv, jv]). We
say that a MEM m = (iZ , iR, l) precedes another MEM
m′ = (

i′Z , i′R, l′
)
in R if iR < i′R and iR + l < i′R + l′, and we

denote this bym ≺R m′. Similarly, whenm precedesm′ in
Z, we denote it bym ≺Z m′, if the previous properties hold
on Z and the two MEMs belong to the same vertex label
seq(v). Whenm precedes m′ in R (in Z, respectively), we
say that lgapR = i′R−(iR+ l) (lgapZ = i′Z −(iZ + l), respec-
tively) is the length of the gap between the two MEMs. If
lgapR or lgapZ (or both) are positive, we refer to the gap
strings as sgapR and sgapZ , while when they are negative,
we say that m and m′ overlap either in R or Z (or both).
Given a MEM m belonging to the vertex labeled seq(v),
we denote as PREFZ(m) and SUFFZ(m) the prefix and the
suffix of seq(v) upstream and downstream from the start
and the end of m, respectively. Figure 2 summarizes the
definitions of precedence between MEMs, gap, overlap,
PREFZ , and SUFFZ .

Spliced graph-alignment
We are now able to define the fundamental concepts
that will be used in our method. In particular, we first
define a general notion of gap graph-alignment and
then we introduce specific constraints on the use of
gaps to formalize a splice-aware graph-alignment that
is fundamental for the detection of alternative splicing
events in ASGAL.
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Fig. 2 Precedence relation between MEMs. Two MEMs,m = (iZ , iR , l) andm′ = (
i′Z , i

′
R , l

′), are shown in the figure. For ease of presentation we
represent in blue the former and in red the latter. Since iZ < i′Z and iZ + l < i′Z + l′ ,m precedesm′ on Z; analogouslym precedesm′ on R since
iR < i′R and iR + l < i′R + l′ . The length lgapZ of the gap between the two MEMs on Z is positive and we refer to the string between iZ + l and i′Z − 1
as sgapZ (highlighted in yellow). Conversely, the length of the gap between the two MEMs on R is negative and we say that they overlap on R.
Finally, we refer to the string between the start of the vertex label and iZ − 1 as PREFZ(m) (highlighted in light blue), and to the string between
i′Z + l and the end of the vertex label as SUFFZ(m′) (highlighted in light red). For ease of presentation, we did not report SUFFZ(m) and PREFZ(m′)

A gap graph-alignment of R to graph SG is a pair (A,π)

where π = 〈v1, . . . , vk〉 is a path of the graph S�
G and

A = 〈
(p1, r1),

(
p′
1, r′1

)
, . . . ,

(
p′
n−1, r′n−1

)
, (pn, rn)

〉

is a sequence of pairs of strings, with n ≥ k, such that
seq(v1) = x · p1 and seq(vk) = pn · y, for x, y possibly
empty strings and P = p1 ·p′

1 ·p2 ·p′
2 ·p3 · · · p′

n−1 ·pn is the
string labeling the path π and R = r1 · r′1 · r2 · · · r′n−1 · rn.
The pair (pi, ri), called a factor of the alignment A, con-

sists of a non-empty substring ri of R and a non-empty
substring pi of the label of a vertex in π . On the other
hand, the pair

(
p′
i, r′i

)
is called a gap-factor of the align-

ment A if at least one of p′
i and r′i is an empty substring

ε. Moreover, either p′
i is empty or |p′

i| > α, and either
r′i is empty or |r′i| > α, for a fixed value α which repre-
sents the maximum alignment indel size allowed. When
an insertion (or a deletion) is smaller than α, we consider
it an alignment indel and we incorporate it into a factor;
otherwise, we consider it as a clue of the possible pres-
ence of an AS event and we represent it as a gap-factor.
We note that an “alignment indel” is a small insertion or
deletion which occurs in the alignment, due to a sequenc-
ing error in the input data or a genomic insertion/deletion.
Intuitively, in a gap graph-alignment, factors correspond
to portions of exons covered (possibly with errors) by por-
tions of the read, while gap-factors correspond to introns,
which can be already annotated or novel, andwhich can be
used to infer the possible presence of AS events. We note
that to allow the detection of alternative splice site events
known as NAGNAG resulting in a difference of 3bps, if an

alignment indel occurs at the beginning or at the end of
an exon, we consider it during the detection of the events,
even though it is notmodeled as a gap-factor since in these
cases the insertion may be smaller than α.
We associate to each factor (pi, ri) the cost δ(pi, ri), and

to each gap-factor
(
p′
i, r′i

)
the cost δ

(
p′
i, r′i

)
, by using a

function δ(·, ·) with positive values. Then the cost of the
alignment (A,π) is given by the expression:

cost(A,π) =
n∑

i=1
δ(pi, ri) +

n−1∑

i=1
δ
(
p′
i, r′i

)
.

Moreover, we define the error of a gap graph-alignment
as the sum of the edit distance of each factor (but not of
gap-factors). Formally, the error of the alignment (A,π) is:

Err(A,π) =
n∑

i=1
d(pi, ri),

where d(·, ·) is the edit distance between two strings.
To define a splice-aware alignment, that we call spliced

graph-alignment, we need to classify each gap-factor and
to assign it a cost. Our primary goal is to compute a gap
graph-alignment of the read to the splicing graph that
possibly reconciles to the gene annotation; if this is not
possible, then we want to minimize the number of novel
events. For this reason we distinguish three types of gap-
factors: annotated, novel, and uninformative. Intuitively,
an annotated gap-factor models an annotated intron, a
novel gap-factor represents a novel intron, while an unin-
formative gap-factor does not represent any intron.
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Formally, we classify a gap-factor
(
p′
i, r′i

)
as annotated if

and only if p′
i = r′i = ε and the two strings pi, pi+1 are on

two different vertices that are linked by an edge in SG. We
classify a gap-factor

(
p′
i, r′i

)
as novel in the following cases:

1 r′i = ε and p′
i = ε occurs between the strings pi and

pi+1 which belong to two distinct vertices linked by
an edge in S�

G and not in SG (i.e. this gap-factor
represents an exon skipping event — Fig. 3a).

2 r′i = ε and p′
i 
= ε occurs between the strings pi and

pi+1 which belong to the same vertex of S�
G (i.e. this

gap-factor represents an intron retention event —
Fig. 3b). Actually, we note here that this type of
gap-factor may represent also a genomic deletion:
currently, our program does not distinguish between
intron retentions and genomic deletions that are
entirely contained in an exon, therefore we might
overpredict intron retentions.

3 r′i = ε and p′
i 
= ε occurs between the strings pi and

pi+1 which belong to two distinct vertices linked by
an edge in S�

G (i.e. this gap-factor represents an
alternative splice site event — Fig. 3c).

4 r′i 
= ε and p′
i = ε occurs between the strings pi and

pi+1 which belong to two distinct vertices linked by
an edge in S�

G (i.e. this gap-factor represents an
alternative splice site extending an exon or a new
exon event — Fig. 3d-e).

Note that Case 1 allows to detect a novel intron whose
splice sites are both annotated (see Fig. 3a). Case 2 sup-
ports a genomic deletion or an intron retention (see
Fig. 3b), and in case of intron retention, ASGAL finds the
two novel splice sites inside the annotated exon. Case 3

gives an evidence of a novel alternative splice event short-
ening an annotated exon (see Fig. 3c) and ASGAL finds
the novel splice site supported by this case. Finally, in
Case 4, ASGAL is able to detect a novel alternative splice
site (extending an annotated exon) or a novel exon (see
Fig. 3d), but only in the first case (alternative splice site)
ASGAL is able to find the novel splice site induced by the
gap-factor.
For ease of presentation, Fig. 3 shows only “classic” AS

event types and not their combination as those modeled
with the notion of Local Splicing Variations (LSV) [13].
We note here that our formalization takes into account
combinations of AS event types as those given by an exon
skipping combined with an alternative splice site (see def-
inition of gap-factor in cases 3 and 4). However, the actual
version of the tool is designed only to detect the AS event
types shown in Fig. 3. For completeness, in Fig. 4 we show
the same AS event types (shown in Fig. 3) with respect to
the annotated case, i.e. when the gap-factor is annotated
and it represents an already known AS event.
Finally, we classify a gap-factor

(
p′
i, r′i

)
as uninforma-

tive in the two remaining cases, which are (i) r′i = ε and
p′
i = ε occurs between strings pi and pi+1 which belong

to the same vertex, and (ii) r′i 
= ε and p′
i = ε occurs

between strings pi and pi+1 which belong to the same ver-
tex. We notice that in the former case, factors (pi, ri) and
(pi+1, ri+1) can be joined into a unique factor.
Let GF be the set of novel gap-factors of a gap graph-

alignment A. Then a spliced graph-alignment (A,π) of
R to SG is a gap graph-alignment in which uninforma-
tive gap-factors are not allowed, whose cost is defined as
the number of novel gap-factors, and whose error is at

Fig. 3 Novel gap-factors. The relationship among novel gap-factors, introns, and AS events is shown. Each subfigure depicts an example of novel
gap-factor

(
p′
i , r

′
i

)
(gray boxes) in relation to a simple graphS�

G , where dashed arrows represent novel edges (not present in the splicing graphSG)
and a read R. The two consecutive factors (pi , ri) and (pi+1, ri+1) of a spliced graph-alignment are represented by blue boxes, and the red lines
represent the novel introns supported by the gap-factors. In terms of novel AS events, gap-factor (ε , ε) in case a supports an exon skipping,
gap-factor

(
p′
i , ε

)
supports an intron retention in case b and alternative splice sites shortening an exon in case c. Finally, gap-factor

(
ε , r′i

)
supports

alternative splice sites extending an exon in case d and a new exon in case e
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Fig. 4 Annotated gap-factors. The novel gap-factors of Fig. 3 are shown in their annotated counterpart. Observe that now they are all (ε , ε) and are
annotated as well as the supported introns (red lines) and the related AS events. a Exon Skipping b Intron Retention c Alternative Splice Site
(internal) d Alternative Splice Site (external) e New Exon

most β , for a given constant β which models any type of
error that can occur in an alignment (sequencing errors,
indels, etc). In other words, in a spliced graph-alignment
(A,π), we cannot have uninformative gap-factors, and the
δ function assigns a cost 1 to each novel gap-factor and
a cost 0 to all other factors and annotated gap-factors:
thus cost(A,π) = |GF | and Err(A,π) ≤ β . We focus
on a bi-criteria version of the computational problem of
computing the optimal spliced graph-alignment (A,π) of
R to a graph SG, where first we minimize the cost, then
we minimize the error. The intuition is that we want a
spliced graph-alignment of a read that is consistent with
the fewest novel splicing events that are not in the anno-
tation. Moreover, among all such alignments we look for

the alignment that has the smallest edit distance (which
is likely due to sequencing errors and polymorphisms) in
the non-empty regions that are aligned (i.e. the factors).
Figure 5 shows an example of spliced graph-alignment
of error value 2, and cost 2 — since it has two novel
gap-factors.
In this paper we propose an algorithm that, given a read

R, a splicing graph SG, and three constants, which are L
(the minimum length of a MEM), α (the maximum align-
ment indel size), and β (the maximum number of allowed
errors), computes an optimal spliced graph-alignment —
that is, among all spliced graph-alignments with mini-
mum cost, the alignment with minimum error. The next
section details how ASGAL computes the optimal spliced

Fig. 5 Spliced graph-alignment. Example of a spliced graph-alignment of a read R to a splicing graphS�
G (inS�

G , the dashed arrows represent the
novel edges not present inSG). The read R has been factorized in four strings r1, r2, r3, and r4 matching to strings p1, p2, p3, and p4 of P, which is the
concatenation of exon labels of path π = 〈A, B,D〉. This yields to the spliced graph-alignment

(〈
(p1, r1),

(
p′
1, r

′
1

)
, (p2, r2) ,(

p′
2, r

′
2

)
, (p3, r3),

(
p′
3, r

′
3

)
, (p4, r4)

〉
,π

)
. We observe that p′

3, r
′
1, r

′
2, and r′3 are equal to ε . Moreover, we note that

(
p′
1, r

′
1

)
,
(
p′
2, r

′
2

)
are two novel

gap-factors, r2 matches p2 with an error of substitution while r4 matches p4 with an error of insertion: both the error and the cost of this
spliced-graph alignment are equal to 2. This alignment of R to the splicing graph of G supports the evidence of two novel alternative splicing events:
an alternative donor site of exon A and an intron retention on exon B
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graph-alignments of a RNA-Seq sample to the splicing
graph SG, and how it exploits novel gap-factors to detect
AS events.

ASGAL approach
We now describe the algorithm employed by ASGAL to
compute the optimal spliced graph-alignments of a sam-
ple of RNA-Seq reads to the splicing graph of a gene,
to be used in order to provide the alternative splicing
events supported by the sample and a measure of their
quantification (i.e. the number of reads supporting the
event).
The ASGAL tool implements a pipeline consisting of the

following steps: (1) construction of the splicing graph of
the gene, (2) computation of the spliced graph-alignments
of the RNA-Seq reads, (3) remapping of the alignments
from the splicing graph to the genome, and (4) detection
of the novel alternative splicing events. Figure 6 depicts
the ASGAL pipeline.
In the first step, ASGAL builds the splicing graph SG of

the input gene using the reference genome and the gene
annotation, and adds the novel edges to obtain the graph
S�
G which will be used in the next steps.
The second step of ASGAL computes the spliced graph-

alignments of each read R in the input RNA-Seq sample
by combining MEMs into factors and gap-factors. For
this purpose, we extend the approximate pattern match-
ing algorithm of Beretta et al. [19] to obtain the spliced
graph-alignments of the reads, which will be used in the
following steps to detect novel alternative splicing events.
As described before, we use the approach proposed by

Ohlebusch et al. in [26] to compute, for each input read
R, the set of MEMs between Z, the linearization of the
splicing graph SG, and R with minimum length L, a user-
defined parameter (we note that the approach of [26]
allows to specify the minimum length of MEMs). We
recall that the string Z is obtained by concatenating the
strings seq(v) and φ for each vertex v of the splicing
graph (recall that φ is the special character used to sepa-
rate the vertex labels in the linearization Z of the splicing
graph). We point out that the concatenation order does
not affect the resulting alignment and that the splicing
graph linearization is performed only once before aligning
the input reads to the splicing graph.
Once the setM of MEMs between R and Z is computed,

we build a weighted graph GM = (M,EM) based on the
parameter α, representing the maximum alignment indel
size allowed, and the two precedence relations between
MEMs, ≺R and ≺Z , respectively. Then we use such graph
to extract the spliced graph-alignment. Intuitively, each
node of this graph represents a perfect match between a
portion of the input read and a portion of an annotated
exon whereas each edge models the alignment error, the
gap-factor of the spliced graph-alignment, or both. More
precisely, there exists an edge from m to m′, with m,m′ ∈
M, if and only if m ≺R m′ and one of the following six
conditions (depicted in Fig. 7) holds:

1 m andm′ are inside the same vertex label of Z,
m ≺Z m′, and either (i) lgapR > 0 and lgapZ > 0, or
(ii) lgapR = 0 and 0 < lgapZ ≤ α. The weight of the
edge (m,m′) is set to the edit distance between sgapR
and sgapZ (Fig. 7a).

Fig. 6 ASGAL pipeline. The steps of the pipeline implemented by ASGAL are shown together with their input and output: the splicing graph is
built from the reference genome (FASTA file) and the gene annotation (GTF file), the RNA-Seq sample (FASTA or FASTQ file) is aligned to the
splicing graph, and finally the alignments to the splicing graph are used to compute the spliced alignments to the reference genome (SAM file) and
to detect the AS events supported by the sample (CSV file)
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(a) (b)

(c) (d)

(e) (f)

Fig. 7 Conditions for linking two different MEMs. All the conditions used to connect two different MEMs and then to build the factors and
gap-factors of a spliced graph-alignment are shown. In all the conditions, the first MEMmust precede the second one on the read. In condition (a)
and (b), the two MEMs occur inside the same vertex label and leave a gap (condition a) or overlap (condition b) on the read or on the vertex label. In
these conditions, the two MEMs are joined in the same factor of the alignment. In condition c, instead, the two MEMs occur inside the same vertex
label but they leave a long gap only on the vertex label and not on the read. In this case, the two MEMs belong to two different factors linked by a
gap-factor. In the other conditions, instead, the two MEMs are inside the labels of two different vertices of the splicing graph, linked by a (possible
novel) edge. For this reason, in any of these cases, the two MEMs belong to two different factors of the alignment. In condition d, the two MEMs
leave a gap only the path, in condition e they leave a gap only on the read, and in condition f, they leave a gap on both the path and the read

2 m andm′ are inside the same vertex label of Z,
m ≺Z m′, lgapR ≤ 0, and lgapZ ≤ 0. The weight of
the edge (m,m′) is set to |lgapR − lgapZ| (Fig. 7b).

3 m andm′ are inside the same vertex label of Z,
m ≺Z m′, lgapR ≤ 0 and lgapZ > α. The weight of
the edge (m,m′) is set to 0 (Fig. 7c).

4 m andm′ are on two different vertex labels seq(v1)
and seq(v2), with v1 ≺ v2, and lgapR ≤ 0. The
weight of the edge (m,m′) is set to 0 (Fig. 7d).

5 m andm′ are on two different vertex labels seq(v1)
and seq(v2), with v1 ≺ v2, lgapR > 0, and
SUFFZ(m) = PREFZ(m′) = ε. The weight of the
edge (m,m′) is set to 0 if lgapR > α, and to lgapR
otherwise (Fig. 7e).

6 m andm′ are on two different vertex labels seq(v1)
and seq(v2), with v1 ≺ v2, lgapR > 0, at least one
between SUFFZ(m) and PREFZ(m′) is not ε. The
weight of the edge (m,m′) is set to the edit distance
between sgapR and the concatenation of SUFFZ(m)

and PREFZ(m′) (Fig. 7f).

Note that the aforementioned conditions do not cover
all of the possible situations that can occur between two
MEMs, but they represent those that are relevant for com-
puting the spliced graph-alignments of the considered

read. Intuitively, m and m′ contribute to the same factor
(pi, ri) in cases 1 and 2 and the non-zero weight of the
edge (m,m′) concurs to the spliced graph-alignment error.
In cases 3-5, the edge (m,m′) models the presence of a
novel gap-factor. More precisely,m contributes to the end
of a factor (pi, ri) and m′ contributes to the start of the
consecutive factor (pi+1, ri+1) and the novel gap-factor in
between models an intron retention or a genomic dele-
tion on an annotated exon (case 3), an alternative splice
site shortening an annotated exon (case 4), and an alter-
native splice site extending an annotated exon or a new
exon (case 5). Finally in case 6, m contributes to the end
of a factor (pi, ri) and m′ contributes to the start of the
consecutive factor (pi+1, ri+1) whereas the gap-factor in
between can identify either a novel exon skipping event
or an already annotated intron. In both these cases, the
non-zero weight of the edge contributes to the spliced
graph-alignment error.
The spliced graph-alignment of the read R is computed

by a visit of the graph GM. More precisely, each path πM
of this graph represents a spliced graph-alignment and the
weight of the path is the number of differences between
the pair of strings in R and Z covered by πM. For this rea-
son, for read R, we select the lightest path in GM, with
weight less than β (the given error threshold) which also
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contains the minimum number of novel gap-factors, i.e.
we select an optimal spliced graph-alignment.
The third step of ASGAL computes the spliced align-

ments of each input read with respect to the reference
genome starting from the spliced graph-alignments com-
puted in the previous step. Exploiting the annotation of
the gene, we convert the coordinates of factors and gap-
factors in the spliced graph-alignment to positions on the
reference genome. In fact, observe that factors map to
coding regions of the genome whereas gap-factors iden-
tify the skipped regions of the reference, i.e. the introns
induced by the alignment, modeling the possible presence
of AS events (see Fig. 3 for details). We note here that
converting the coordinates of factors and gap-factors to
positions on the reference genome is pretty trivial except
when factors pi and pi+1 are on two different vertices and
only p′

i is ε (case d-e of Fig. 3). In this case, the portion
r′i must be aligned to the intron between the two exons
whose labels contains pi and pi+1 as a suffix and prefix,
respectively. If r′i aligns to a prefix or a suffix of this intron
(taking into account possible errors within the total error
bound α), then the left or right coordinate of the examined
intron is modified according to the length of r′i (Fig. 3d). In
the other case (Fig. 3e), the portion r′i is not aligned to the
intron and it is represented as an insertion in the align-
ment. Moreover, the third step of our approach performs
a further refinement of the splice sites of the introns in the
obtained spliced alignment since it searches for the splice
sites (in a maximum range of 3 bases with respect to the
detected ones) determining the best intron pattern (firstly
GT-AG, secondly GC-AG if GT-AG has not been found).
In the fourth step, ASGAL uses the set I of introns

supported by the spliced alignments computed in the
previous step, i.e. the set of introns associated to each
gap-factor, to detect the novel alternative splicing events
supported by the given RNA-Seq sample with respect to
the given annotation. Let In be the subset of I composed
of the introns which are not present in the annotation, that
is, the novel introns. For each novel intron

[
ps, pe

] ∈ In
which is supported by at least ω alignments, ASGAL iden-
tifies one of the following events, which can be considered
one of the relevant events supported by the input sample:

- exon skipping, if there exists an annotated transcript
containing two non-consecutive exons [ai, bi] and
[aj, bj], such that bi = ps − 1 and aj = pe + 1.

- intron retention, if there exists an annotated
transcript containing an exon [ai, bi] such that (i)
ai < ps < pe < bi, (ii) there exists an intron in I
ending at ai − 1 or ai is the start of the transcript and
(iii) there exists another intron in I starting at bi + 1
or bi is the end of the transcript.

- alternative acceptor site, if there exists an annotated
transcript containing two consecutive exons
[ai, ps − 1] and [aj, bj] such that pe < bj, and there
exists an intron in I starting at bj + 1 or bj is the end
of the transcript.

- alternative donor site, if there exists an annotated
transcript containing two consecutive exons [ai, bi]
and [pe + 1, bj] such that ps > ai, and there exists an
intron in I ending at ai − 1 or ai is the start of the
transcript.

We note here that these definitions are accurately
designed to minimize the chances of mistaking a complex
AS event as those modeled with the notion of LSV for an
AS event. For example, if we remove conditions (ii) and
(iii) from the definition of intron retention, we could con-
fuse the situation shown in Fig. 8 with an intron retention
event.

Genome-wide analysis
ASGAL is specifically designed to perform AS prediction
based on a splice-aware alignment of an experiment of
RNA-Seq reads against a splicing graph of a specific gene.
The current version of ASGAL is time efficient when a
limited set of genes are analyzed, while for genome-wide
analysis we have implemented a pre-processing step that
aims to speed up the process of filtering reads that map
to genes under investigation. Given a set of genes and a
RNA-Seq sample, this filtering procedure consists of three
main steps: (i) the quasi-mapping algorithm of Salmon is
first used to quantify the transcripts of the genes and to
quickly assign each read to the transcripts, (ii) a smaller set
of RNA-Seq samples, one for each gene, is then produced

Fig. 8 Example of false intron retention. The figure depicts a splicing graphS�
G , a transcript T , and the alignments of a sample of reads from T. In this

case, the transcript T shows a complex AS event w.r.t. the annotation of the splicing graphS�
G consisting of two new exons. ASGAL finds the new

intron supported by the red alignments, but the analysis of the neighboring introns shows that no simple AS event can explain the alignments: this
situation is recognized by ASGAL that refuses to make any prediction of a novel (surely incorrect) intron retention event
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by analyzing the output of Salmon, and finally (iii) if the
input sample contains paired-end reads, then the mate of
the mapped reads that were not mapped by Salmon are
then added to these smaller samples. Once we split the
input RNA-Seq experiment in smaller samples, it is pos-
sible to use ASGAL on the different genes without having
to align the entire sample of reads against each of them.
We note that we decided to use Salmon as pre-processing
step since it is very fast and it allows to split the input
sample faster than any other spliced aligner. Anyway, in
aligning reads to a reference transcriptome, some reads
which cover unannotated exons are not aligned, exclud-
ing them from any downstream analysis: for this reason,
future works will focus on improving this step.

Results
In this section we will describe the experimental evalua-
tion we performed to assess ASGAL ’s ability to align reads
to a splicing graph and to detect alternative splicing event
types. Such experimental analysis was performed on both
simulated and real data. The former had the specific goal
of measuring the quality of our tool in predicting spe-
cific AS event types, whereas the latter prove the ability
of ASGAL to detect on real datasets annotated and novel
alternative splicing events that are known to be RT-PCR
validated.
We ran ASGAL using its default parameters in all the

experiments. More precisely, the minimum length of the
MEMs (L) was set to 15, while α and β were set to 3%
of the maximum length of the input reads, and the mini-
mum support for AS events (ω) was set to 3. The analyses
were performed on a 64 bit Linux (Kernel 4.4.0) sys-
tem equipped with Four 8-core Intel � Xeon 2.30GHz
processors and 256GB of RAM.

Simulated data
In the first phase of our experimental analysis, we eval-
uated our tool using simulated data. The goal of this
analysis was twofold: (i) to assess the accuracy and the
efficiency of our method in aligning a RNA-Seq sample
against a splicing graph, and (ii) to assess how well the

method detects the alternative splicing events supported
by a sample.
To avoid any bias in the experiments, we decided to

reuse the same data — that is the reference genome,
annotations, and RNA-Seq samples simulated with Flux
[27]— used in [9]1.We considered two different RNA-Seq
datasets of this corpus. More precisely, we downloaded
two datasets: one composed of 5 million reads, and the
other of 10 million reads. From now on, we will refer to
these datasets as 5M and 10M, respectively. Each dataset
covers 1000 randomly selected genes of the human GEN-
CODE annotation (v19) [28]. We used AStalavista [6]
(version 4.0) to extract the AS events included in the anno-
tation of each gene, then we selected the genes whose
annotation includes at least one AS event. After these fil-
tering steps, the set of genes under analysis included 656
elements. Finally, we divided each read sample into 24
samples (by using the information included in the header
of each entry of the file containing the reads), one for each
chromosome, and we used cutadapt [29] (version 1.14)
to remove poly-A tails.
In the first part of our experimental analysis, we com-

pared the alignment step of ASGAL with STAR [14] (ver-
sion 2.5.4b), one of the best-known spliced aligner. Let us
recall that ASGAL performs a splice-aware alignment and
its current implementation is specifically designed to con-
firm or detect novel splice sites using the splicing graph
as a main reference for the alignment of reads. Since our
tool works at gene level — that is, it considers the splic-
ing graph of each gene independently — we ran ASGAL
on each gene independently whereas we ran STAR in two-
pass mode on each chromosome, providing the annota-
tion of the considered genes. We then selected all primary
alignments reported by the two tools and we compared
them using different metrics, as in [30]. Note that our
tool considers each gene independently, thus it can align
the same read to different genes and report multiple pri-
mary alignments of it, i.e. at most one for each gene.
Table 1 reports the total number of mapped reads (91% for
ASGAL, and 97% for STAR), as well as the number of align-
ments per read reported by the two tools. As expected,

Table 1 Number of alignments on the simulated datasets

Sample Tool Total reads Unmapped
Number of alignments per read

Mapped reads
1 2 3 4 5

5M ASGAL 3,226,895 281,767 2,938,383 6734 2 9 0 2,945,128

STAR 75,947 3,150,948 0 0 0 0 3,150,948

10M ASGAL 6,522,455 571,202 5,942,220 9009 13 10 1 5,951,253

STAR 166,593 6,355,862 0 0 0 0 6355862

For each considered Sample (5M and 10M), the number of reads simulated from the 656 considered genes is shown along with the number of Unmapped reads, the number
of reads mapped only once, the number of reads mapped multiple times, and the total number ofMapped Reads by the considered Tool (ASGAL and STAR)
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since we considered only primary alignments and since
STAR aligns the input sample to the input reference, STAR
yields a single alignment per read. Conversely, ASGAL
might align the same read to different genes: in this case
ASGAL outputs multiple primary alignments (at most one
for each gene). However, this behaviour is extremely rare.
Indeed, less than 0.2% of the considered reads are aligned
to multiple genes. We also assessed the basewise accuracy
of both ASGAL and STAR. As shown in Table 2, ∼ 98% of
the primary alignments produced by both the tools map
the read to the correct location, i.e. the read is placed in
the position from where it were extracted. ASGAL pro-
duced fewer “Partially Mapped” alignments, i.e. the align-
ments which place some but not all the read bases in the
correct positions, but more “Differently Mapped” align-
ments, i.e. the alignments which place all the read bases
in positions different from those from which the read
was simulated. Observe that the fewer “Partially Mapped”
alignments is a consequence of the advantage of align-
ing directly to the splicing graph. Indeed, by investigating
the “Partially Mapped” alignments of STAR, we found that
the vast majority of these alignments (more than the 75%)
place some read bases on an intron: this situation mainly
occurs when the first (last) bases of an intron (exon) are
equal to the first (last) bases of an exon (intron). By using
the splicing graph, it is possible to avoid these situations
since, when it is possible, it forces the alignments to be
placed on the known exons of a gene. On the other hand,
the higher number of alignments to positions different
from the one of extraction is a consequence of the fact
that ASGAL works at the gene level and can produce mul-
tiple primary alignments, of which only one aligns the
read to the exact positions from which it was simulated.
We also analyzed the number of incomplete alignments
due to read truncation reported and each tool’s toler-
ance for mismatches. Figures 9 and 10 show the results
of this analysis. As said before, ASGAL mapped 91% of
the input reads whereas STAR mapped 97% of the reads.
The differences in ASGAL alignments are due to two rea-
sons: (i) with default parameters, the number of allowed
errors in an alignment is smaller for ASGAL than for STAR

(see Fig. 9), and (ii) ASGAL only maps reads to exonic
regions, therefore it cannot correctly map reads covering
intronic regions or long novel exons. Figure 10 reports
the number of truncated alignments and we can note that
ASGAL outputs more incomplete alignments than STAR.
This is mainly due to the choice of parameter L. Indeed,
ASGAL builds each alignment starting from anchors of
at least L bases. If a prefix or a suffix of some read is
not covered by any anchors, ASGAL outputs a truncated
alignment since it cannot align that portion of the read.
Although such behavior might remove parts of the align-
ments which are useful for the detection of alternative
splicing events, we will show later that such aggressive
truncation strategy does not affect significantly the fol-
lowing step of event identification.Moreover, at the cost of
increasing the running time, it is possible to decrease the
number of truncated alignments by setting a smaller value
of L. Finally, we analyzed the computational resources
required by the two tools. We ran both the tools using a
single thread and we reported in Table 3 the total time and
the memory peak required by them. As expected, since
ASGAL works at the gene level, it required more time and
less memory than STAR. Indeed, we ran STAR on each
chromosome whereas we ran ASGAL on each gene and
thus we needed to repeat its execution for the total num-
ber of processed genes.Moreover, we note that the slowest
run of ASGAL on the 5M dataset took only 99 s whereas
the slowest run on the 10M dataset took only 184 s. Since
each run of ASGAL is independent from the others, by
spreading a many-gene computation over multiple cores,
we can reduce the running time, proportionally to the
number of cores. We finally note that STAR can be run
using multiple threads too. Nevertheless, we did not com-
pare the time performance of ASGAL and STAR when run
in parallel since our main goal is to measure the quality of
the alignments.
In the second part of our experimental analysis on sim-

ulated data, we compared the event identification step of
ASGAL with three other well-known tools for the detec-
tion of AS events from RNA-Seq data: SplAdder [9]
(version 1.0.0), rMATS [12] (version 4.0.2 turbo), and

Table 2 Read placement accuracy on the simulated datasets

Sample Tool Alignments Perfectly mapped Partially mapped Differently mapped

5M ASGAL 2,951,893 2,907,881 (98.51%) 34,047 (1.15%) 9965 (0.34%)

STAR 3,150,948 3,072,183 (97.50%) 76,599 (2.43%) 2166 (0.07%)

10M ASGAL 5,960,322 5,879,604 (98.65%) 66,463 (1.11%) 14,255 (0.24%)

STAR 6,355,862 6,201,270 (97.56%) 150,373 (2.37%) 4219 (0.07%)

For each considered Sample (5M and 10M) and for each considered Tool (ASGAL and STAR ), the number of Alignments produced by each tool is shown along with the
number of Perfectly Mapped alignments, i.e. the alignments which place all the read bases in the correct position, the number of Partially Mapped alignments, i.e. the
alignments which place some (but not all) read bases in the correct position, and the number of Differently Mapped alignments, i.e. the alignments which place all the read
bases in a position different from the one from which the read has been simulated
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Fig. 9Mismatch frequencies. The figure shows for each considered sample (5M and 10M) and for each considered tool (ASGAL and STAR ), the
percentage of reads aligned divided by number of mismatches. The different colors indicates the number of mismatches

Fig. 10 Reads truncation frequencies. The figure shows for each considered sample (5M and 10M) and for each considered tool (ASGAL and STAR),
the percentage of incomplete alignments due to reads truncation. The different colors indicates the number of truncated bases
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Table 3 Computational resources required by the two tested
methods (ASGAL and STAR ) to align the simulated datasets
(5M and 10M)

Sample Tool Time (m) Memory Peak (MB)

5M ASGAL 475 249

STAR 179 7921

10M ASGAL 945 247

STAR 197 7921

These results are shown in terms of time (minutes) and memory peak (MegaBytes).
These results take into account both the index and the alignment steps performed
by the tools

SUPPA2 [11] (version 2.3). Note that we did not include
MAJIQ [13] in the experimental comparison since the
tool focuses on Local Splicing Variations (LSV). Although
LSVs capture previously defined types of alternative splic-
ing as well as more complex transcript variations, MAJIQ
does not provide a direct way to map one kind of
event into the other one. Moreover, we did not include
LeafCutter [16] in our experiments since the tool
focuses on introns which model complex splicing events
and there is no easy way to extract from them the simpler
AS events.
The main goal of our experimental analysis on sim-

ulated data was to evaluate the ability of our tool in
detecting splicing event types that are novel with respect
to the input annotation, i.e. splicing events that are not
already contained in the input annotation. For this rea-
son, in the first part of our analysis, we created a set of
reduced annotations by removing some transcripts from
the annotations of the considered genes. In such a way,
by providing the tools with these reduced annotations
and a read sample containing reads simulated from the
original annotation, we assessed how well they are able
to detect novel event types, i.e. events that come from

transcripts not contained in the reduced annotation but
that are supported by the input RNA-Seq data. Observe
that ASGAL is specifically designed to enrich a gene anno-
tation with novel events supported by a RNA-Seq sample
and thus this first analysis better reflects the performance
of ASGAL. On the other hand, we wanted to perform
a comparison also with current state of art tools that
specifically detects from differential analysis of RNA-Seq
experiments AS events that are already present in a gene
annotation or use annotated splice sites, such as SUPPA2
and rMATS. For this purpose, we set up a second analysis
in which we used ASGAL to detect from the read align-
ments introns that support annotated splicing events that
may be alternative to a given isoform. More precisely, we
used ASGAL to confirm the presence of annotated introns
in the RNA-Seq experiment that induce exon skipping,
or alternative splice sites or intron retention events that
are already in the splicing graph. For this purpose, we
provided the tools with the original annotations of each
considered gene and the same read samples used in the
previous analysis. As said above, ASGAL is designed to
detect events that are novel with respect to the input gene
annotation. For this reason, even in the annotated case,
ASGAL looks for potential novel AS events by extracting
from the alignments to the splicing graph those introns
that may support the presence in the experiment of an iso-
form related to an event that is alternative with respect to
an already annotated isoform. For example, an alternative
splicing event may be reported by ASGAL if it is sup-
ported by an annotated intron that belongs to an isoform
whose splice sites are alternative to another annotated iso-
form. However, by using only the computed set of introns
to detect AS events, ASGAL ’s events prediction may
show a higher number of false positives, as illustrated in
Fig. 11: even though the computed alignments are correct,

Fig. 11 Examples of splicing event misclassification. The figure depicts three situations in which ASGALmay detect a false positive event: an
alternative donor site in (a), an alternative acceptor site in (b), and an intron retention in (c). The black arrows represent an annotated intron (in the
first two cases), whereas the red dotted lines represent the novel intron supported by the input sample with respect to the annotationS�

G . In cases
(a) and (b), the novel event induces an alternative 5’ and an alternative 3’ splice site (respectively) with respect to the intron in the annotation, and in
case (c) the novel intron is inside an already annotated exon. On the assumption that the reads come from a hypothetical novel transcript T1, then
ASGAL outputs a true positive event. Indeed, all the events refer to an annotated exon, thus one (the start of the 5’ exon in case (a) and the end of
the 3’ exon in case (b)) or two splice sites (the start of the 5’ exon and the end of the 3’ exon in case (c)) involved in the predicted event are already
annotated inS�

G . By contrast, if the aligned reads come from a hypothetical novel transcript T2, then ASGAL produces a false positive event: it
outputs the events with respect to the annotated exon but the true events refer to a novel exon having both splice sites not annotated inS�

G
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some introns can be misclassified as alternative splice site
or intron retention. More in detail, this misclassification
occurs when the considered intron is the first (or the last)
intron of a transcript: in these cases, by using only the
information provided by the introns, it is not possible to
fully understand if the considered intron supports a real
AS event. A planned improvement of ASGAL is to refine
the procedure for identifying and classifying AS events
by analyzing the coverage: this would allow to correctly
classify the events of Fig. 11.
As anticipated, one of the tools we compared with is

SplAdder, a software for identifying and quantifying
alternative splicing events starting from a given anno-
tation and the alignment files [9]. Although SplAdder
might look similar to ASGAL, it performs different
tasks. More precisely, as confirmed by our experiments,
SplAdder builds a splicing graph starting from a given
annotation and enriches it by exploiting the spliced align-
ments, but to identify the AS events it requires that all
the isoforms involved in the event are supported by reads
in the experiment. On the other hand, ASGAL is able
to identify the alternative splicing events even if only
a single isoform inducing the event is expressed in the
experiment, since it uses the annotation as a reference
for the identification of the novel AS events. This case is
especially important, since usually there is a single tran-
script expressed per gene, when considering only a sample
[31]. According to SplAdder ’s supplementary material,
the default behaviour of SplAdder can be modified by
adapting different parameters that guide the confirmation
process of each alternative splicing event found. How-
ever, it is not an easy task to modify these parameters
since they are hard-coded and it is not even clear how
to choose the best values without the risk of introduc-
ing undesired behaviors. The other tools involved in the
comparison, that are rMATS and SUPPA2, aim to detect
the differential splicing events between conditions. More
precisely, rMATS implements a statistical method for the
detection of differential alternative splicing from replicate
RNA-Seq data. A statistical test can also be performed to
assess whether a difference in the isoform ratio of a gene
between two conditions is significant with respect to a
given threshold, also taking into account biological repli-
cates. rMATS starts from either a RNA-Seq dataset or an
alignment file produced by a spliced aligner, and produces
as output a file for each considered AS event, obtained
from the annotation and the samples. Similarly, SUPPA2
is able to infer the differential AS events from RNA-Seq
data across multiple conditions and taking into account
their biological variability. SUPPA2 starts from the abun-
dances of each transcript in the considered annotation,
expressed in transcript per million (TPM) units, and
quantifies the AS events in terms of proportion spliced in
(psi) for each sample. The differential splicing is given in

terms of the differences of these relative abundances for
each condition. As stated in [11], the quantification of the
abundances values are computed by using Salmon [15]
(in our analysis, we used version 0.9.1).
As done in [9], to assess the accuracy of the tools in

detecting novel alternative splicing event types, we pro-
vided a reduced annotation, obtained in the following
way. First of all, we used AStalavista [6] to extract
all the alternative splicing events contained in the anno-
tations of the 656 considered genes. This resulted in a
total of 2568 alternative splicing events: 1574 exon skip-
pings, 416 alternative acceptor sites, 290 alternative donor
sites, and 288 intron retentions. Then, for each gene and
for each event identified by AStalavista, we created
a new reduced annotation containing all the transcripts
except those responsible for such event. Here, we focused
our attention on exon skippings, alternative splice sites
(both acceptor and donor), and intron retentions caused
by the insertion of a new intron inside an exon. Since
the alternative splice site can consist of both shortening
or extending an exon, we added both these cases to the
events considered in the experimental evaluation. On the
other hand, we did not consider the possible insertion of a
new exon inside an intron and the intron retention caused
by the union of two exons, since detecting such events is
impossible using only data from the splicing graph. More-
over, when different events on the same gene produced
the same reduced annotation, we considered the annota-
tion only once. We obtained a total of 3274 AS events and
2792 reduced annotations. Differently from [9], where the
reduced annotation provided as input to the tools con-
tained only the first transcript of the annotation of each
gene, we generated the gene annotations by keeping all
the transcripts except the ones including the intron sup-
porting the considered AS event. Indeed, ASGAL is less
general than SplAdder in detecting novel exons that
appear in intronic regions and that can only be detected by
aligning reads to large intronic region. The exons involved
in the considered novel events must be present in the
reduced annotation to allow ASGAL to detect them. How-
ever, observe that ASGAL uses the genomic regions close
to exon splice sites to detect novel exons that are variants
of existing ones.
For each gene and for each reduced annotation, we

ran all tools on the two considered datasets of reads,
namely 5M and 10M. We recall here that these RNA-
Seq samples were simulated with Flux simulator, cover
1000 randomly selected human genes and were used in
the experimental analysis performed in [9]. For each type
of alternative splicing event we analyzed the predictions
over the set of 656 genes, computing the corresponding
values of precision, recall, and F-measure. More precisely,
given a gene and its reduced annotation, we consider as
ground truth the set of events found by AStalavista
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in the original annotation. To compute the values of pre-
cision, recall, and F-measure, we considered the number
of events that are in the original annotation but not
in the reduced one and are found by the tools as true
positives, the number of events that are in the origi-
nal annotation but not in the reduced one and are not
found by the tool as false negatives, and the number of
events found by the tools and not in the annotation as
false positives. We reported in Table 4 the quality results,
for the different alternative splicing events, obtained by
ASGAL, SplAdder and rMATS (for which we used STAR
to compute the alignments), and SUPPA2 (for which we
used Salmon to obtain the transcript quantification). The
results show that ASGAL achieved the best values of pre-
cision, recall and F-measure in almost all the alternative
splicing event types with the only exception of the recall
of the alternative splice sites (A5 and A3). We investigated
those cases and we found that our method applies strict
criteria in detecting the alternative splice site events that
extend an annotated event. As previously described, to
detect this kind of event, ASGAL requires that the reads
align leaving a gap on them, and requires the presence
of sufficiently long anchors on two different exons, typ-
ically 15bps related to the length L. As a consequence,
our method detects an alternative splice site event extend-
ing an exon when the length of the extension does not
exceed the length of the read minus twice the length of L
(the two anchors). By these requirements our methodmay
not be able to detect alternative splice site extending an
exon of several bases, as observed in the cases analyzed in

our experimental analysis: for this reason ASGAL shows a
lower recall on alternative splice site events. However, our
method achieved the best values of F-Measure in all the
alternative splicing event types — hinting that our crite-
ria are well balanced — highlighting the ability of ASGAL
in detecting novel alternative splicing events. To better
analyze our results, we decided to manually examine the
exon skipping events found by ASGAL but not by the other
tools. In this analysis, we considered only SplAdder and
rMATS since SUPPA2 did not find any novel exon skip-
ping event. We found that most of the events not detected
by SplAdder are due to the fact that only one of the
two isoforms involved in the event is supported by the
input alignments. As said above, to confirm an AS event,
SplAdder requires that all the isoforms involved in the
event are supported by reads in the experiment. Regard-
ing rMATS, instead, we found that it does not output most
of the events involving the skip of multiple exons. More-
over, by increasing the number of reads in the input set,
all methods almost always achieve better recall with a
slightly worse precision, since a higher coverage allows
to detect a higher number of supported introns that are
used to detect AS events. As it is possible to notice from
Table 4, results of both rMATS and SUPPA2 are zero: this
was expected since these two methods are not designed to
detect novel events. More precisely, rMATS is not able to
detect AS events involving novel splice sites (for this rea-
son, it is able to detect only exon skipping events) whereas
SUPPA2 only detects AS events that are present in the
input annotation. To this purpose, as anticipated before,

Table 4 Quality measures in detecting novel alternative splicing events on the simulated datasets with 5M and 10M reads

5M 10M

Tool Measure ES A3 A5 IR ES A3 A5 IR

ASGAL Prec 0.997 0.955 0.905 0.862 0.995 0.938 0.895 0852

Rec 0.917 0.741 0.737 0.674 0.963 0.789 0.781 0.681

FM 0.955 0.835 0.812 0.756 0.979 0.857 0.834 0.757

SplAdder Prec 0.885 0.612 0.475 0.299 0.874 0.642 0.495 0.272

Rec 0.802 0.884 0.821 0.531 0.848 0.925 0.891 0.521

FM 0.841 0.723 0.602 0.383 0.860 0.758 0.637 0.357

rMATS Prec 0.996 - - - 0.997 - - -

Rec 0.860 - - - 0.863 - - -

FM 0.923 - - - 0.925 - - -

SUPPA2 Prec - - - - - - - -

Rec - - - - - - - -

FM - - - - - - - -

Results obtained by ASGAL, SplAdder and rMATS (for which we used STAR to compute the alignments), and SUPPA2 (for which we used Salmon to obtain the
transcript quantification) are reported. Precision (Prec), Recall (Rec), and F-Measure (FM) achieved on the simulated datasets in detecting novel alternative splicing events:
exon skipping (ES), alternative acceptor site (A3), alternative donor site (A5), and intron retention (IR). A dash “-” means that the considered tool is not designed to detect that
type of novel AS events
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in order to have a thorough comparison with these tools,
we also ran an experimental analysis considering all the
AS events present in the annotation. More precisely, we
ran all the tools providing them the full annotation of the
genes. Table 5 reports the results obtained in this setting.
Results of the tools are similar, with ASGAL performing
slightly better on exon skipping events, while SUPPA2
outputs better predictions of alternative donor and accep-
tor sites, and both SUPPA2 and rMATS have better results
on intron retention events. By a careful inspection of the
results obtained by ASGAL, we observed that more than
85% of the false positives alternative splice site events in
Table 5 and more than 98% of false positives intron reten-
tion events are due to the cases discussed previously and
illustrated in Fig. 11, i.e. the events are induced by the
first or the last intron of a transcript. Consequently, a
lower precision cannot be imputed to the quality of the
alignment performed by ASGAL. Though the false posi-
tive cases described above could be eliminated by using
more conservative rules: the actual rules used by ASGAL
produce higher precision in detecting novel event types
as shown in Table 4 as well as good results for RT-PCR
validated AS events discussed in the next section.
Finally, we discuss the efficiency of the tested meth-

ods. To this purpose, we retrieved the running time and
the maximum memory used by each tool in the detec-
tion of annotated events on the 10M dataset using the
GNU time command. We decided to analyze the perfor-
mance during the detection of annotated events to have a
fair comparison, since rMATS and SUPPA2 are meant to
detect only annotated events and do not provide any use-
ful information when detecting novel events. As described
before, ASGAL is composed of two main steps: the align-
ment of the reads and the detection of the events. These
two steps required 945 and 60 min, respectively, and the
main memory usage was 760 MB. For SplAdder we
considered the time required by STAR to align the reads
to the chromosomes and by the tool itself to detect the
events. The first step required 45 min whereas the sec-
ond step required 36 min. The main memory usage was
5.8 GB and was due to the alignment step. Similarly to
SplAdder, rMATS aligns the reads using STAR. There-
fore the first step of rMATS requires the same time as
SplAdder (45 min). Detecting the events using rMATS,
on the other hand, requires 268 min. The main mem-
ory usage of this tool was, again, due to the alignment
step of STAR and was equal to 5.8 GB. Finally, SUPPA2 is
composed of three main steps: quantifying the transcripts
using Salmon, generating events from the annotation
using SUPPA2 generate, and computing the psi-value,
i.e. the relative abundance value per sample, of the events
using SUPPA2 psi. These steps required 130, 19, and
19 min respectively. The main memory usage was due to
the quantification step of Salmon and was equal to 192

MB. Note that in the previous analysis we did not con-
sider the time required by STAR and Salmon to index the
genome and the transcriptome, respectively. In fact, such
indexes could already be available from previous runs of
the tools. Nevertheless, we report the times for these steps
for sake of completeness. STAR required 152 min and 7.9
GB to index the chromosomes of the Human Genome
whereas Salmon required 2 min and 14 MB to index its
transcriptome.

Real data
We also applied our method to a real dataset of RNA-
Seq reads in order to assess its performance in detecting
events from RNA-Seq data. Inspired by the experimental
analysis performed in the SUPPA2 paper [11], we consid-
ered a set of 83 RT-PCR validated AS events upon TRA2A
and TRA2B knockdown compared to control sets from
the study in [32]. More precisely, this experiment consists
of 3 samples2 in which there is a double knockdown of
the TRA2A and TRA2B splicing regulatory proteins and
3 control datasets3. The goal of the experimental anal-
ysis of SUPPA2 in [11] was to identify the 83 RT-PCR
validated AS events in these knockdown versus control
datasets. Since in 2 of these 83 events the positions of the
intron(s) involved in the event were missing, they could
not be used to compare the predictions of the tools. For
this reason, we decided to remove such 2 events from the
set, resulting in a set of 81 events on which we tested
ASGAL, rMATS, SUPPA2 and SplAdder, with the spe-
cific goal of identifying the RT-PCR validated alternative
splicing events. More precisely, we ran all tools on the 3
replicate datasets with the knockdown of the two splicing
regulatory proteins (SRR1513332, SRR1513333, and
SRR1513334).
We ran ASGAL in “genome-wide” mode on each dataset,

to analyze reads that are potentially from the entire
genome. Moreover, we ran SUPPA2 based on the quan-
tifications obtained with Salmon, while we provided
the alignments obtained with STAR to SplAdder and
rMATS. We compared the results obtained on each
dataset with the tested methods and, in particular, we
considered all the events output by such tools that were
in the list of events under analysis. In Fig. 12 we show
a comparison of the results obtained by the tools on
the 3 knockdown datasets. As it is possible to observe,
rMATS was the tool that was able to detect more events
(78 on SRR1513332, 78 on SRR1513333, and 77 on
SRR1513334). Similarly, SUPPA2 identified 65 events in
each of the 3 datasets, while ASGAL predicted 63, 59,
and 61 events on the SRR1513332, SRR1513333, and
SRR1513334 dataset, respectively. Finally, SplAdder
was able to identify only 13, 13, and 12 RT-PCR val-
idated AS events on the SRR1513332, SRR1513333,
and SRR1513334 dataset, respectively. We note that
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Table 5 Quality measures in detecting annotated alternative splicing events on the simulated datasets with 5M and 10M reads

5M 10M

Tool Measure ES A3 A5 IR ES A3 A5 IR

ASGAL Prec 0.999 0.850 0.702 0.657 0.999 0.846 0.703 0.642

Rec 0.924 0.788 0.774 0.719 0.966 0.814 0.799 0.722

FM 0.960 0.818 0.736 0.687 0.982 0.830 0.748 0.680

SplAdder Prec 0.963 0.844 0.734 0.513 0.957 0.857 0.733 0.450

Rec 0.822 0.927 0.899 0.552 0.855 0.947 0.936 0.531

FM 0.887 0.884 0.808 0.532 0.903 0.900 0.822 0.487

rMATS Prec 0.995 1 1 0.976 0.996 1 1 0.976

Rec 0.905 0.685 0.755 0.830 0.905 0.685 0.755 0.830

FM 0.948 0.813 0.860 0.897 0.949 0.813 0.860 0.897

SUPPA2 Prec 1 0.880 0.754 0.976 1 0.880 0.754 0.976

Rec 0.894 1 1 0.830 0.894 1 1 0.830

FM 0.944 0.936 0.860 0.897 0.944 0.936 0.860 0.897

Results obtained by ASGAL, SplAdder and rMATS (for which we used STAR to compute the alignments), and SUPPA2 (for which we used Salmon to obtain the
transcript quantification) are reported. Precision (Prec), Recall (Rec), and F-Measure (FM) achieved on the simulated datasets in detecting annotated alternative splicing
events: exon skipping (ES), alternative acceptor site (A3), alternative donor site (A5), and intron retention (IR)

Fig. 12 Results on RT-PCR validated events. Venn diagram showing the overlaps in results obtained by ASGAL, SUPPA2, rMATS, and SplAdder,
on the 3 knockdown dataset. The results are expressed as the number of RT-PCR validated events detected by the various tools



Denti et al. BMC Bioinformatics          (2018) 19:444 Page 19 of 21

the events not identified by ASGAL show an extremely
low support. To better validate the results obtained by
ASGAL, we extracted from the alignments computed with
STAR the spliced alignments supporting each consid-
ered event. More in detail, since each RT-PCR validated
event is an exon skipping event, we counted the number
of spliced alignments supporting the exclusion isoform
of each event, i.e. the spliced alignments supporting the
intron that confirms the skipping of one or more exons.
We report the result of this analysis in Fig. 13, where the
coverage of the 81 considered RT-PCR validated events is
shown. These results highlight the ability of ASGAL in pre-
dicting AS events from real datasets of RNA-Seq reads,
especially if compared to SplAdder which is the most
similar tool. We note one more time that, to detect an AS
event, SplAdder needs that all the isoforms involved in
the event are supported by the reads in the sample. Thus,
we analyzed how many of the RT-PCR validated events
are supported by a single isoform. The obtained results
show that, in the three considered datasets, 59, 54, and
65 events, respectively, are not supported by both the iso-
forms involved in the event. Moreover, the performances
achieved by ASGAL on the tested datasets are similar, in
terms of the number of detected AS events, to that of
SUPPA2, which still lacks in detecting the novel events.
The only tool that slightly outperformed ASGAL in this
experimental analysis is rMATS. Anyway, also this latter
method is not able to detect AS events involving novel
splice sites that are not already in the considered annota-
tion.Moreover,ASGAL identifiedmore AS events than the
RT-PCR validated ones. We analyzed the genes involved
in the 81 considered RT-PCR validated AS events and

we checked if the events additionally reported by ASGAL
were also detected by the other considered tools. Table 6
summarizes the results of this analysis: except for intron
retention events, the majority of the AS events identified
by ASGAL were also reported by rMATS and SUPPA2.
Finally, we ran our tool providing a reduced annota-

tion. As done in our experiments on simulated data, we
removed all the transcripts which include the introns sup-
porting the considered event and we used this annotation
as input for our tool. In this way, we could test the ability of
our tool in detecting novel AS events, not already present
in the input annotation. In this setup, ASGAL predicted
the same events predicted using the full annotation, i.e. 63,
59, and 61 events on the SRR1513332, SRR1513333,
and SRR1513334 dataset, respectively.
Overall, ASGAL proved to be a competitive tool to

detect annotated AS events, while allowing also the possi-
bility of predicting the novel ones.

Conclusions
In this paper we proposed ASGAL, a tool for predicting
alternative splicing (AS) events from a RNA-Seq sample
and a gene annotation given by a collection of anno-
tated transcripts. ASGAL differs from similar tools since it
implements a splice-aware algorithm for mapping RNA-
Seq data to a splicing graph. The alignments of the reads
to the splicing graph are then analyzed to detect differ-
ences, at the intron level, between the known annotation
and the introns obtained by the alignments, in order to
reconstruct AS events. Indeed, tools for AS prediction rely
on a previously computed spliced-alignment of reads to a
linear reference genome. While the spliced-alignment to

Fig. 13 Coverage of RT-PCR validated events. Bar chart showing the coverage of the minor isoform of each RT-PCR validated events. The coverage is
expressed as the number of spliced alignments supporting the intron that skips the exon(s)



Denti et al. BMC Bioinformatics          (2018) 19:444 Page 20 of 21

Table 6 For each considered knockdown datasets and for each considered event type, we reported the number of AS events
identified by ASGAL with respect to the considered genes, i.e. the genes involved in the 81 considered RT-PCR validated AS events,
and how many of these events were also identified by the other tools considered in our analysis

SRR1513332 SRR1513333 SRR1513334

ES A3 A5 IR ES A3 A5 IR ES A3 A5 IR

ASGAL 343 168 141 56 356 170 138 50 323 149 140 51

SplAdder 33 18 3 2 35 17 2 1 28 18 2 1

rMATS 314 65 48 18 328 65 54 16 302 63 46 18

SUPPA2 193 83 78 17 191 82 78 16 189 83 76 17

a reference is a well understood notion, in this paper we
investigated the problem of optimally mapping reads to a
splicing graph by formalizing the notion of spliced graph-
alignment. Then we proposed an algorithmic approach to
compute optimal spliced graph-alignments. Indeed, the
graph aligner module of ASGAL can be used indepen-
dently to produce spliced graph-alignments of RNA-Seq
reads to a general splicing graph. Note that our notion of
spliced graph-alignment is tailored for detecting AS event
types that are either simple or a combination of two dif-
ferent simple events. However, such a notion deserves to
be further investigated to detect more complex combina-
tions of AS event types. This will be the goal of a future
development of the tool. Future works will also focus on
an in-depth analysis of the influence of the parameter L on
the overall accuracy and efficiency of our tool in the align-
ment step, as well as in predicting events. Another further
step will focus on allowing ASGAL to be used natively in
a genome-wide analysis by improving its pre-processing
step or by directly improving its code.
To the best of our knowledge, ASGAL is the first tool for

computing the splice-aware alignment of RNA-Seq data
to a splicing graph. Compared with current tools for the
spliced alignment to a reference genome, ASGAL produces
high quality alignments to the splicing graph, even though
there is still room for further improvements, for example
in the direction of using ASGAL for confirming AS events
already contained in the input annotation and for predict-
ing novel exons that may be detected by insertions in the
alignment of reads to the splicing graph that match to
intronic regions of the reference genome.
The experimental analysis discussed in this paper

shows some advantages of ASGAL in using a splice-
aware aligner of RNA-Seq data to detect alternative
splicing events that are novel with respect to the
annotation of a splicing graph, i.e. the events which
involve either novel or annotated splice sites. In this
sense, ASGAL can be used to enrich a given annota-
tion with novel alternative splicing events in order to
allow a downstream tool for differential alternative splic-
ing analysis such as SUPPA2 to also quantify these
new events.

Compared to other approaches, ASGAL can work in
presence of a poor gene annotation given by the splicing
graph to enrich its structure with novel events. A natural
extension of the ASGAL alignment method is the detec-
tion of AS events in a de-novo framework, where only
the reference transcriptome is known. A future direction
that we will investigate is the extension of ASGAL to work
on a FASTA file input containing only mRNA sequences
related to a reference transcriptome. In this case, a draft
splicing graph may be built from the FASTA file and then
used to infer AS events by using the ASGAL procedure.
A problem which is related to mapping RNA-Seq reads

to a splicing graph is mapping genomic reads directly to a
graph representation of multiple genomes (pan-genome):
this problem is tackled by vg [33]. Despite this, how to
apply a read mapper to a pan-genome graph for transcrip-
tome analysis remains an interesting open problem.

Endnotes
1Data available at http://public.bmi.inf.ethz.ch/projects/

2015/spladder/
2SRA accession numbers SRR1513332, SRR1513333,

and SRR1513334.
3SRA accession numbers SRR1513329, SRR1513330,

and SRR1513331.
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