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Abstract

healthy subjects is small.

Background: Ultra-deep next-generation sequencing of circulating tumor DNA (ctDNA) holds great promise as a
tool for the early detection of cancer and for monitoring disease progression and therapeutic responses. However,
the low abundance of ctDNA in the bloodstream coupled with technical errors introduced during library
construction and sequencing complicates mutation detection.

Results: To achieve high accuracy of variant calling via better distinguishing low-frequency ctDNA mutations from
background errors, we introduce TNER (Tri-Nucleotide Error Reducer), a novel background error suppression
method that provides a robust estimation of background noise to reduce sequencing errors. The results on both
simulated data and real data from healthy subjects demonstrate that the proposed algorithm consistently
outperforms a current, state-of-the-art, position-specific error polishing model, particularly when the sample size of

Conclusions: TNER significantly enhances the specificity of downstream ctDNA mutation detection without
sacrificing sensitivity. The tool is publicly available at https://github.com/ctDNA/TNER.
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Background

Cancer is a genetic disease that is driven by changes to
genes controlling cellular function [1]. Characterizing the
disease at the molecular level is essential for early detec-
tion, personalized therapy based on tumor genomic pro-
files, monitoring tumor progression and response to
treatment and the identification of resistant mechanisms
[2]. For solid tumors, tumor tissue biopsies are typically
necessary to obtain samples for genotyping or other mo-
lecular analyses. Biopsy procedures are usually invasive
and introduce additional risk to the patient’s health. In
many cases, tumor tissue biopsy is contraindicated medic-
ally, and the tissue samples are often insufficient or un-
suitable for molecular profiling [3]. In addition, cancer is a
heterogeneous disease that can include different subclones
within the same primary tumor and between the primary
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tumor and metastatic lesions. This heterogeneity in tu-
mors can lead to variations in tumor tissue sampling
through biopsy [4].

Both cancer and normal cells shed DNA as a result of
apoptosis and other biological processes and release DNA
fragments into the blood stream to become cell-free DNA
(cfDNA) [5-7]. The cfDNA derived from tumor cells is
called circulating tumor DNA (ctDNA) and provides a
real-time genomic snapshot of cancer cells due to the rela-
tively short half-life of cfDNA (~ 1-2 h) [2, 8]. Thus, ctDNA
is a form of “liquid biopsy” that provides a noninvasive alter-
native to tissue biopsy for cancer diagnosis and monitoring
[9, 10]. Moreover, ctDNA from all tumor lesions is generally
pooled in the circulatory system; therefore, it can reduce
the sampling variation associated with tumor heterogeneity
in comparison to that of a single tissue biopsy [11].

The fraction of ctDNA in the total cfDNA in plasma, how-
ever, can be extremely low in many cancer patients [2, 8].
Recently established techniques, such as droplet-digital PCR
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(ddPCR), enable the detection and quantification of
low-abundance ctDNA but cover only a small number of
known “hotspot” mutations [8, 12]. Advances in DNA se-
quencing technology have made it possible to identify
ctDNA mutations with sensitivity comparable to that of
ddPCR [13, 14] when the sequence coverage is sufficient (>
10,000x per base). One of the most significant challenges in
detecting ctDNA mutations is suppressing technical errors
introduced during library preparation, PCR amplification
and sequencing itself [15]. While errors arising during PCR
amplification can be removed effectively using molecular
barcodes [15], other technical errors are more universal and
need to be removed before mutation calling [3, 16].
Newman et al. [17] recently proposed a creative integrated
digital error suppression (iDES) method that includes both a
molecular barcoding system to reduce PCR errors and a
background polishing model with an improved estimation of
background mutation error rate (BMER) compared to the
previous computational method used in CAPP-Seq [18].
Specifically, the BMER was mostly estimated using a model
of Gaussian distribution on the mutation data from a
collection of healthy subjects [17]. To our knowledge, there
are very few background polishing methods designed for
ctDNA detection, and iDES is the only publicly available
state-of-the-art method. The polishing method used in iDES
increased the percentage of error-free positions from ~ 90 to
~98% (based on a 300 kb panel, Fig. 2b in [17]). However,
approximately 6,000 positions containing a substantial
number of noisy bases could still be misclassified due to the
relatively small sample size (1 =12) of healthy subjects and
the nature of the data (small discrete counts), which made it
difficult for the Gaussian model to robustly estimate the
background.

To provide a more robust estimation of background
noise and remove the sequencing artifacts more effectively
for panel sequencing data, we developed a novel
background polishing method called TNER (Tri-Nucleo-
tide Error Reducer) with a Bayesian consideration to over-
come the small sample size issue. TNER is based on
tri-nucleotide context data and uses a binomial distribution
for the mutation error count to estimate the background
from healthy subjects. The tri-nucleotide context (TNC
hereafter) consists of 96 distinct substitutions in the spe-
cific context of the tri-nucleotide, consisting of the 6 distin-
guishable single-nucleotide substitutions (C>A, C>G,
C>T, T>A, T>C and T > G) and the 16 possible combi-
nations of immediately preceding and following bases.
TNC has been extensively studied in cancer genetics to
construct mutation signatures as a response to carcinogens
(an excellent summary is available at http://cancer.sanger.-
ac.uk/cosmic/signatures), to compare the mutational spec-
tra of trunk and branch mutations, and to predict the
clinical implications of called mutations [19-21]. Given
that the pattern of low-frequency technical errors from
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next-generation sequencing (NGS) should be similar in
normal control samples and patient samples, we argue that
local sequence context could help better model noise for a
small sample size of healthy subjects by leveraging infor-
mation from other bases with a shared TNC. The TNER
methodology proposed here, to the best of our knowledge,
is novel in this area. As an effective error reducer, TNER
can be easily integrated into an existing variant-calling
pipeline before the variant caller to detect very
low-frequency mutations in liquid biopsy samples. TNER
is freely available at https://github.com/ctDNA/TNER.

Methods

NGS data for analysis

To demonstrate the performance of the error suppres-
sion model in detecting single-nucleotide variations, we
analyzed targeted sequencing data of plasma cfDNA
from healthy subjects using a panel of 87 cancer genes
(http://cancerres.aacrjournals.org/content/77/13_Supple-
ment/2749). The barcoded target-enriched DNA library
(147 kb) was sequenced on an Illumina HiSeq 4000 plat-
form, generating ultra-deep coverage with an average
coverage per base of ~ 12,000x.

Tri-nucleotide error reduction model
The detection of ctDNA is typically achieved through de-
tecting signature mutations associated with tumors in
cfDNA. Sequencing data from cfDNA contain many
stereotypical errors or other background mutation errors
that are not of tumor origin [22]. To call a mutation in
ctDNA, the distribution of the BMER needs to be charac-
terized at each nucleotide base position to reduce false
positive error, for example, by modeling cfDNA data on
the same NGS panel from healthy subjects [17]. The mu-
tation rates from healthy subjects are assumed to be back-
ground mutation noise associated with both technical and
biological sources. One challenge in characterizing the in-
dividual nucleotide BMER from healthy subjects is the
relatively small cohort size. The iDES method used 12
healthy subjects [17]; we used a comparably sized set of 14
healthy subjects. These small sample sizes do not allow a
reliable estimate of the background error distribution for
individual nucleotides. The Bayesian method with prior
information can help to overcome this limitation.

To better estimate the BMER distribution, we propose
a background error model originating from a hierarch-
ical Bayesian method that utilizes the distribution of mu-
tation error rate in a TNC, which consists of the
mutated nucleotide and the combinations of immedi-
ately preceding and following nucleotides. Mutation sig-
natures characterized by TNC have been used frequently
in cancer genetics [19, 21, 23]. There are 96 distinct
TNCs, and we assume that they are independent. For a
nucleotide in TNC group i (i=1, ..., 96) at base position
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j (G=1,...]), the number of background error reads X;
observed for a given coverage N is assumed to follow a
binomial distribution

Xij ~ Binom(Nj,mj) (l)

with a position-specific mutation error rate parameter
my. ] is the total number of bases in the panel (147 k).
With a large N (typically >1,000) and a small n (< 1%),
X can also be modeled as a Poisson distribution

Xij ~ Pois (N) * TTij) (2)

with rate parameter N; ;. We will focus on the bino-
mial model here.

The BMER at position j can be estimated using the aver-
age mutation error rate of the j"™ base position from the 14
healthy subjects, Ti;;. This position-specific parameter will
be poorly estimated because of the small sample size. To
improve the estimate of 1 (for simplicity we drop the sub-
scription for now), we propose a Bayesian framework and
assume that 1 follows a beta distribution within a TNC

1t ~ Beta(a, ) (3)

The use of the beta prior is primarily due to its conjuga-
tion to the binomial distribution and its goodness of fit to
the data (see Discussion). For convenience, we reparame-
terize the beta distribution using its mean as a parameter.

1t ~ Beta(y, v), with p = andv=a+p (4)

a
a+f

The prior parameters of the beta distribution can be
estimated based on the BMER distribution of nucleo-
tides in a TNC using the method of moments [24]. The
mean parameter p can be estimated by the average mu-
tation error rate (ft) of nucleotides in the TNC. The v
parameter can be estimated using {i and the sample vari-
ance of BMER within the TNC. For a position with a
mutation count of x out of # total reads, the posterior
distribution of the BMER at this position will be a
Beta(a + %, p + n — x) with a mean parameter.

, a+x

= aipin =wyu+ (1-w)x/n (5)

U
where w=(a + b)/(a+ b + n).

Therefore, the posterior mean of the position-specific
BMER for position j with TNC i can be estimated with a
shrinkage estimator, that is, a weighted average of the TNC
level mutation error rate ({i;) and the position-specific rate 7;

7y = Wyl + (1-wy) (6)

The weight w;; can be derived in closed form under a
beta-binomial distribution and estimated using the
method of moments [25]. We found that the analytic
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Bayesian weight worked well for the vast majority of the
positions except for a small number (< 1%) of positions
where the estimated position-specific error rate i is
large. In those positions, the shrinkage towards a smaller
{i, tends to underestimate the true background mutation
error. Therefore, we adopted a modified weight that bal-
ances the relative size of the TNC error rate and the
position-specific error rate

Hi
Wij /:ti 4 ﬁi]’ (7)
This weight function provides less shrinkage when the
position-specific mutation error rate is high - a property
that helps retain the position-specific background when
it is much higher than the tri-nucleotide level back-
ground. Although this simple weight does not reflect the
impact of sample size, a larger sample size helps provide
a better estimate of m; Due to this modification in
weight, TNER adopted a more heuristic approach than a
full Bayesian method.

Once we have an estimate of the BMER m;; using Eq.
(6), the threshold for mutation detection can be defined
based on the upper posterior credible interval bound of
1. At the o level, the upper 1-a/2 Clopper-Pearson
interval bound for a binomial proportion is

(24 - ~
Bij =ﬁ<1—§,N}'T[l'j+1,Nj(1—]'[ij)> (8)

where B() is the quantile function of beta distribution;
71 is the posterior estimate of the mutation error rate in
Eq. (6); and N; is the average total reads for this position
from healthy subjects. If the observed mutation error
rate at position j with TNC i is lower than Bj;, those vari-
ants mapped to the TNC will be classified as background
noise and polished using the reference allele; otherwise,
the variants will not be polished (possibly true muta-
tions). In the Bayesian model, multiple comparison is
not a major concern because the prior distribution al-
lows pooling information between positions and avoids
false positive calls when variation is low [26]. In our ana-
lysis, false positive calls are very rare when the method
is applied to healthy subjects (see Results). A similar
beta-binomial model has been used in other studies
[27-29]. However, none of them used the model to esti-
mate the BMER distribution with TNC, nor did they
apply the model to ctDNA NGS data.

Results

Model performance on the healthy subject data

We first evaluated the TNER model on the healthy sub-
ject data using the leave-one-out method and compared
its performance to that of iDES with the default settings
[17]. We built the background model using data from 13
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healthy subjects and predicted the mutation in the
left-out subject. Similar to Newman et al. [17], we
counted the number of error-free positions, defined as
those positions with exclusively reference allele reads
after error suppression, for each of the 14 healthy sub-
jects at all 147 k nucleotide positions and compared the
different error suppression methods, including back-
ground polishing from iDES and the TNER method
(Fig. 1). For TNER, we used a=0.01, although the re-
sults were similar for a=0.05. We also calculated the
panel-wide error rate, which is defined as the number of
nonreference allele reads (frequency<5%, to exclude
SNPs) divided by the total reads. The TNER method has
the highest number of error-free positions and the low-
est panel-wide error rate, demonstrating its superior spe-
cificity in reducing false positive error.

To test the sensitivity of the method, we used data from
three healthy subjects who were not part of the back-
ground cohort. One subject had 10 unique private SNPs
that were not shared by any of the healthy subjects. We
performed an in silico experiment to dilute this subject’s
data with those of the other two healthy subjects in a
1:250:250 ratio and assumed heterozygosity, producing an
expected allele frequency of 0.1% for the 10 private SNPs.
We found that both iDES and TNER (a = 0.01) were able
to detect all 10 SNPs in this experiment.

Model performance on simulated data

To compare the performance of the position-specific
background polishing method and the TNER method
more rigorously, we evaluated their sensitivity and speci-
ficity at various detection thresholds using simulation
studies (see the schematic in Additional file 1). The
simulation used the average position-specific mutation
error rate from the 14 healthy subjects as the BMER,
which is a matrix of 147 k rows and four columns. Each

= TNER

m - iDES

= Barcoding Only
= Raw

Error-free
Positions (%)

0 20 40 60 80

Panel-wide
error rate (%)

0.00 0.02 0.04 0.06

138 —
158 —
170 —
216 —
26

263 —
287 —
305 —
79 —
87 —

T
o~

11959 —
12536 —

Fig. 1 Error-free positions (%) and panel-wide error rate of the 14
healthy subjects’ data (sample labels on x-axis) from the leave-one-
out analysis with different methods. “Raw" = raw data, “Barcoding
Only” = Barcoding error reduction only
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column is a nucleotide that the reference base can mu-
tate to, including the reference nucleotide, which is zero.
We randomly selected 1,000 bases (rows) out of the
147 k total, and at each of the selected bases, a simulated
allele frequency (simulated signal) was added to the
existing BMER of a selected nonreference nucleotide
(column). Specifically, for each of the 1,000 positions,
there are three possible nonreference nucleotides to
which it can mutate. We chose the nucleotide with the
largest BMER value as the selected nucleotide to add the
simulated signal. If the BMER had all zeros at this pos-
ition, we used the first nonreference letter (A-C-T-Q) as
the selected nucleotide to add the signal. This updated
BMER matrix is the same as the original matrix except
that 1,000 rows have a signal added to a selected col-
umn. With the updated BMER matrix, we simulated the
read counts with a total coverage of 10,000 per position
using a binomial and a normal distribution. For the nor-
mal distribution, we simulated the allele fractions with
the updated BMER as the mean and the square root of
the BMER divided by 100 as the standard deviation. The
read counts are calculated by multiplying the simulated
allele fractions by the total coverage of 10,000 (round to
whole number). The simulated counts were further split
into forward and reverse strands with a random forward
to reverse strand ratio centered at approximately 1. The
TNER method and the position-specific Gaussian
models from the iDES were then separately applied to
the simulated data. As the true positives and true nega-
tives were known, the sensitivity and specificity were cal-
culated under various detection thresholds (« values).
The receiver operating characteristic (ROC) curves in
Fig. 2 compare the two methods in different scenarios.
The TNER method performed better than the
position-specific Gaussian model in all cases of data sim-
ulated under different distributions and different muta-
tion rates (MRs), as shown by the ROC curves.
Simulated mutation signals of 0.075 and 0.1% were
chosen because they are close to the limit of detection
for the methods when per base coverage is approxi-
mately 10,000x. Signals lower than the detection limit
will be difficult to detect by either method.

One of the advantages of the TNER method is that it
uses information from other positions with the same
TNC through a Bayesian consideration and stabilizes the
estimates of the BMER. Therefore, we would expect
TNER to perform better than position-specific error
models when the available sample size for healthy sub-
jects is small. To evaluate the effect of healthy subject
sample size on the performance of the mutation detec-
tion methods, we used half the available healthy subjects
(n=7) as our background mutation estimate and com-
pared the results from both position-specific Gaussian
models and TNER in the simulation studies. As
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Simulated Binomial

1.0

—— PSGM (MR=0.075%)
—— TNER (MR=0.075%)
— --- PSGM (MR=0.1%)
--- TNER (MR=0.1%)

Sensitivity

05 06 07 08 09
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Fig. 2 ROC curves for position-specific Gaussian model (PSGM) (black) and TNER (red) methods in simulated cfDNA data. Two mutation rates
(MRs) were simulated: 0.075% (solid line) and 0.1% (dashed line), with a total coverage of 10000x at each position
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expected, we found that a smaller sample size of healthy
subjects did not substantially reduce the performance of
TNER but greatly reduced the performance of the
position-specific Gaussian method (Fig. 3) compared to
other methods. This result clearly illustrates the robust-
ness of the TNER method when the number of healthy
subjects is small. In fact, we found that TNER can work
even with 1-3 healthy subjects without excessively sacri-
ficing performance.

Discussion

In this study, we proposed TNER, a novel background
polishing method for removing sequencing artifacts in
panel sequencing data for liquid biopsy samples. The
TNER method estimates background mutation errors

from healthy subjects using a beta-binomial model to hier-
archically incorporate both the tri-nucleotide-level error
rate and the position-specific error rate. The additional in-
formation from the tri-nucleotide-level data helps stabilize
the estimate of background errors and makes TNER more
robust than the Gaussian-based, position-specific model
used in iDES [17], especially when the number of healthy
subjects is small. The results on both simulated and real
healthy subject data demonstrated better performance of
TNER than iDES in error reduction, indicated by substan-
tially more error-free positions and a lower panel-wide
error rate. TNER’s superior specificity in reducing false
positive error can greatly benefit the downstreaming vari-
ant calling by general variant callers such as VarScan [30]
or MuTect [31].

Simulated Binomial

1.0

Sensitivity

— TNER (n=14)
--- PSGM (n=7)

/

!

1

1
— PSGM (n=14) | |
|
1
--- TNER(n=7) |!
1
h

05 06 07 08 09

0.04 0.08

1-Specificity

Fig. 3 ROC curves of the position-specific Gaussian model (PSGM) (black) and the TNER (red) methods with different input numbers of healthy
subjects: n =7 (dashed line) and n= 14 (solid line). The mutation rate was 0.075%
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We could have used a dinucleotide context or a more
complicated local sequence context, such as a pentanu-
cleotide (2 flanking nucleotides on each side) or heptanu-
cleotide (3 flanking nucleotides on each side) context. The
larger local sequence context may provide a better model
fit to the mutation error rate [32], but the increasing
model complexity with the use of pentanucleotides (1,536
unique contexts) and heptanucleotides (24,576 unique
contexts) becomes impractical for a targeted panel, such
as the one tested here with a total of 147 k bases. The
Bayesian prior parameter will not be well estimated due to
the small number of bases within each context. The TNC
provided a better fit than a dinucleotide context [33] but
was less complicated than the larger local sequence con-
text [32], thus providing a more balanced approach for a
common NGS targeted panel.

One of the assumptions in analyzing NGS data by
TNER is that individual nucleotides within a TNC share a
more similar mutation error rate than those between
TNCs. We looked at the average mutation error rate from
healthy subjects at the TNC level and compared the
intra-TNC variability and the inter-TNC variability. Ap-
proximately 94% of TNCs have intra-TNC variability
smaller than the inter-TNC variability. Figure 4 displays
an example of three TNCs, all with C to T substitution,
showing very different distributions. The dashed lines are
the fit of beta distributions using the parameter estimates
calculated by the method of moments. In general, the beta
distribution fits the intra-TNC error rate very well.

In genomic data analysis, when the sample size is
small, it is common to analyze data for individual genes
using information from other genes. This approach is
implemented in the limma method [34] for microarray
data analysis and the DESeq method [35] for RNAseq
data analysis. In our approach, we take advantage of the
large number of bases shared in the same nucleotide

o
o
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. 8 ccT
= g — GCG
™
[
(=) -
N
o N
g | -
o
N
& _.J
T T T T T
0.0000 0.0005 0.0010 0.0015 0.0020

Mutation Rate

Fig. 4 Examples of mutation error rate distribution of TNC with
C-T substitution. Solid lines are the probability density of the
average position-specific error rate within a TNC. The dashed
lines correspond to the fit of a beta distribution using
parameters estimated from the data
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context and use these data to model the individual base
mutation error rate. We found that the TNER method
improves the imprecise background estimate associated
with small sample size at the individual base level.

Sequence data are read counts that are best described by
distributions from discrete data families, such as the Pois-
son distribution or binomial distribution, particularly when
the read count is low and the mutation frequency is very
low, such as in ctDNA data. We found that the Poisson dis-
tribution fit the count data well in general. A more sophisti-
cated distribution that considers over-dispersion and the
zero-inflated nature of ctDNA data may further improve
the method. The TNER method is a general statistical
framework for detecting background sequencing noise, and
in theory, it can be applied to any high-throughput NGS
platform. Given the notable differences observed between
the error profiles of Illumina platforms [36], we recom-
mend that users always regenerate their own error profile
from normal samples.

Conclusions

Currently, ctDNA is rapidly becoming established as an
important tool to supplement conventional biopsies for
the early detection and molecular characterization of
cancer and the monitoring of tumor dynamics. The
TNER method provides a novel approach to effectively
reduce background noise in panel sequencing data for
more accurate mutation detection in ctDNA.

Additional file

[ Additional file 1: Figure S1. Simulation schematic. (PNG 88 kb) ]
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