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Abstract

Background: DNA methylation is an epigenetic mechanism of genomic regulation involved in the maintenance of
homeostatic balance. Dysregulation of DNA methylation status is one of the driver alterations occurring in neoplastic
transformation and cancer progression. The identification of methylation hotspots associated to gene dysregulation
may contribute to discover new prognostic and diagnostic biomarkers, as well as, new therapeutic targets.

Results: We present EpiMethEx (Epigenetic Methylation and Expression), a R package to perform a large-scale
integrated analysis by cyclic correlation analyses between methylation and gene expression data. For each gene,
samples are segmented according to the expression levels to select genes that are differentially expressed. This
stratification allows to identify CG methylation probesets modulated among gene-stratified samples. Subsequently,
the methylation probesets are grouped by their relative position in gene sequence to identify wide genomic
methylation events statically related to genetic modulation.

Conclusions: The beta-test study showed that the global methylation analysis was in agreement with scientific
literature. In particular, this analysis revealed a negative association between promoter hypomethylation and
overexpression in a wide number of genes. Less frequently, this overexpression was sustained by intragenic
hypermethylation events.
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Background
Cancer is a multifactorial disease characterized by multi-
step transformation processes associated with accumula-
tion of several molecular alterations. Microenvironmental
selective pressure favors molecular changes that are
involved in the development of cancer hallmarks, such as
proliferation, resistance to apoptosis, senescence, angio-
genesis, invasion and metastasis [1]. DNA mutations
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occurring in driver genes involved in carcinogenesis are
not alone capable of explaining the tumor heterogeneity.
In this context, epigenetic changes can affect gene func-
tion and disrupt signaling pathways involved in normal
cell homeostatic balance without genomic sequence alter-
ation [2]. Within epigenetic mechanisms, the methylation
of DNA is a highly stable marker of gene regulation and
other epigenetic events such as histone modifications [3].

Of note, DNA methylation is a mechanism by which
the DNA methyltransferases (DNMTs) transfers a methyl
group to cytosine of palindromic CpG dinucleotides of
DNA sequence [4, 5]. The maintenance of methylation
pattern during DNA replication is mostly due to DNA
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methyltransferase 1 (DNMT1) enzymatic activity result-
ing in methylation of new double-strands hemimethy-
lated DNA [6]. Conversely, DNA methyltransferase 3
alpha (DNMT3A) and DNA methyltransferase 3 beta
(DNMT3B) are responsible for the de novo DNA methy-
lation occurring during embryogenesis and genomic
imprinting in germ cells. Dysregulation of DNMTs activity
was associated to aberration of DNA methylation patterns
observed in tumor cells, including global hypomethyla-
tion and localized hypermethylation in several genomic
regions [7, 8].

To date, the relationship between DNA methylation
and transcriptional activity has been widely documented,
in particular concerning the inverse correlation between
promoter methylation and gene expression. The hyperme-
thylation of promoter region may affect gene transcription
by interfering with transcription initiation. Mechanis-
tically, the methylation of cytosine within consensus
binding sites may reduce the affinity of sequence-specific
transcription factors. Furthermore, methylated DNA
binding proteins (MDBP) may be recruited on methy-
lated sequences activating transcriptional repression.
In addition, gene expression repression may be medi-
ated by sequence-independent methylation events,
such as, histones modification and chromatin structure
changes [9, 10].

Although the role of promoter methylation in gene
regulation was widely described, the regulatory func-
tion of methylation status of intergenic and intragenic
regions was not yet clarified. High-throughput technol-
ogy and bioinformatics analysis may be the appropriate
tools to investigate the functional role of global methyla-
tion patterns in gene regulation [11]. Most recently, [12]
demonstrated that gene expression of several genes was
positively correlated with intragenic methylation of the
same gene and inversely correlated with the majority of
histone modifications. It was proposed that methylation
of particular CpG region may affects transcriptional elon-
gation, intragenic activation (enhancing) and alternative
splicing [12–15].

The knowledge of mechanisms by which DNA methy-
lation patterns modulate gene expression may contribute
to develop new therapeutic strategies to overcome methy-
lome alterations of cancer cells. The identification of
methylation hotspots associated to cancer transformation
and progression may pave the way to design new diag-
nostic and prognostic biomarkers. On this basis, several
bioinformatics tools have been developed, such as FEM
and MethylMix, aimed to correlate methylation levels
with gene modulation [16, 17].

Here, we present EpiMethEx (Epigenetic Methylation
and Expression), a R package to identify methylation
hotspots as well as extended genomic regions that are
involved in regulation of their relative genes. In particular,

EpiMethEx introduces the possibility to identify methyla-
tion alterations of wide genomic regions involved in gene
expression modulation. More specifically, it not only iden-
tifies the single methylation hotspots (CG probeset), but
it also finds extended methylation regions (methylation
groups) by grouping the CG probesets according to spe-
cific genomic regions (TSS1500, TSS200, 3’UTR, body,
etc) and CpG islands responsible of the modulation of the
same methylated gene. These CG probesets stratifications
are performed because the methylation phenomena usu-
ally involves extended genomic regions, especially in the
body of gene.

The package performs cyclic correlation analysis
between gene expression and methylation levels of each
gene. EpiMethEx has been tested on a large series of data
including both DNA methylation and gene expression
profiling of melanoma samples obtained from The Cancer
Genome Atlas (TCGA) [18]. A further analysis was per-
formed using the GSE84750 superseries dataset including
both microarray expression and methylation profiling of
24 prostate cancer patients [19].

Implementation
Development of the R package
The EpiMethEx package has been developed using the R
language, and makes use of the doParallel package (a “par-
allel backend” for the foreach package) in order to speed-
up the execution through the possibility to parallelize the
foreach cycles. The analysis workflow implemented inside
the package consists of 3 main steps: gene expression anal-
ysis, Cytosine-Guanine (CG) methylation probesets pre-
processing, CG probesets grouping and analysis (Fig. 1);
also, a supplementary step named Data filtering can be
performed.

Gene expression analysis
The first step of the algorithm executes the analysis
of the gene expression datasets of tumor samples that
report the expression levels of genes in a wide number
of samples. For the purpose of the EpiMethEx Beta-test,
we selected the datasets that refer to the methylation
status and gene-expression data of biopsies of patients
afflicted with melanoma, which can be found on the
The Cancer Genome Atlas (TCGA) portal. To this
end, datasets coming from the SKCM gene expression
(Pancan Normalized) [https://genome-cancer.ucsc.edu/],
the SKCM DNA methylation Methylation450k [https://
genome-cancer.ucsc.edu/] and Probeset annotation
[https://www.ncbi.nlm.nih.gov/], are used. In particu-
lar, the first dataset includes the expression levels of
all genes included in RNAseq analysis; the second one
includes all the methylation data, and the third one
includes all the information about CG dinucleotides
probesets.

https://genome-cancer.ucsc.edu/
https://genome-cancer.ucsc.edu/
https://genome-cancer.ucsc.edu/
https://www.ncbi.nlm.nih.gov/
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Fig. 1 EpiMethEx analysis workflow. Step 1 is represented by gene expression analysis; step 2 consists of CG methylation probesets preprocessing
and step 3 deals with CG probesets grouping and analysis

It is worth noting here that the main role of the Probeset
methylation data is to link the gene expression data with
the methylation data, as this dataset allows to know which
CG is inside a gene. For the sake of simplicity, we will then
avoid to talk about this dataset and we will suppose that
a direct association between the gene and methylation
datasets already exists.

All datasets are loaded in memory. Then, data prepro-
cessing and cleaning is executed i.e., all the genes hav-
ing null values across all samples are removed from the
analysis.

The first dataset (gene expression) contains, for each
gene, the TCGA samples gene expression values. The
methylation dataset contains, instead, the TCGA sample
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methylation levels for each CG. Of course a many-to-
many relation among genes and CGs may exist. The gene
expression dataset is initially put in a descending order
according to the TCGA sample gene expression value. We
note here that for each gene we can obtain a different
order of the TCGA samples.

Finally, the gene expression dataset is divided in three
equally spaced groups, always according to the sample
gene expression, in order to create, for each gene, Up,
Medium and Down expression groups. (see Fig. 1, step 1).

The calculation of the Fold Change (FC) among the
groups (i.e., Up vs Medium) is then executed. This step is
important to let to the user to estimate, besides of any sta-
tistical significance, the real biological difference between
the mean expression levels of two different groups. To this
end, the mean of each group is determined, taking also
into account the nature of the data (linear or logarithmic).
The function calcFC() has been specifically designed to
calculate the FC of two values. It takes two inputs:

• The input matrix containing the expression values of
selected gene for each expression group.

• A Boolean value indicating whether data are linear or
not.

The function checks whether the two mean values are
concordant or not: if it is the case, the FC is determined as
the ratio between the absolute values of the maximum and
the minimum; otherwise, it is computed as the difference
between the maximum and the minimum. The sign of the
FC is positive if the minimum between the two mean val-
ues is lesser than the maximum; otherwise it is negative.
As an example, the FC of Up vs Medium groups is positive
if mean(MID) < mean(UP), negative otherwise. If data are
logarithmic, the FC is computed instead as the power of
2 raised to the difference between the maximum and the
minimum values.

Once all the FC values have been calculated, the
t-student test is applied for each matrix pair (Up vs
Medium, Up vs Down, Medium vs Down) through the
function t_tester(), which takes two input matrices repre-
senting two groups. The function checks first whether the
difference between the two arrays is equal to zero or not,
in order to exclude all genes whose the difference value
between the two arrays is equal to zero. Then, it applies
the t.test() function (provided by R).

CG probeset pre-processing
The pre-processing analysis is performed in order to
assign to each CG probeset the corresponding gene,
the position within the region of the assigned gene
(TSS1500, TSS200, 3’UTR, 1stExon, Body and 5’UTR)
and the relative position within CpG islands, including
proximal regions (Shore, Shelf ) according to Infinium

HumanMethylation450 BeadChip (450k) platform
(GPL13534) annotation information. The adapted format
of CG probesets assumed for the annotation of this plat-
form was used as the input layout for the annotation of
other methylation datasets that users would analyze with
EpiMethEx.

This step uses the Probset dataset, as it also contains
the information about the position of the CG inside the
gene. In particular, the dataset contains all the CG infor-
mation, including the genes where the CGs are located
and the relative position inside the assigned gene and the
relative position within the CpG island (Island, Shore and
Shelf regions). As already said, several CG probesets may
be mapped on different regions of the same gene, due to
several transcript isoforms. Likewise, overlapping genes
(i.e, promoter region of one gene and 3’UTR of the adja-
cent gene or genes mapped in opposite strands) may have
the same CG probesets.

In order to have a unique “cg-gene-ID-position” cor-
respondence, the dataset is preprocessed to obtain a
one-to-one relation. These CG values are then grouped
by considering the gene they belong to, their posi-
tion, the CpG island. As a result, CG probeset IDs
are duplicated to cover all transcript isoforms and
overlapping genes, (i.e. cg02626719_1stExon_ARMCX2
vs cg02626719_5’UTR_ARMCX2). The resulting CG
probeset annotation matrix is then used to extrapolate
from SKCM DNA methylation (Methylation450k) dataset
(https://genome-cancer.ucsc.edu/), the methylation levels
of CG probesets relative to each gene analyzed in step 1.

Then, the segmentation of ordered CG methylation val-
ues is executed, for each CG, using the same TCGA gene
expression order obtained from the sorting of the first
dataset.

CG probesets grouping and analysis
The data obtained from the preprocessing is then used to
calculate the following statistical values:

• Median of CG methylation levels stratified according
Up, Medium and Down gene expression group.

• Beta-difference and p-value of each methylation
levels of CG probesets among gene expression group
pair (Up vs Medium, Medium vs Down and Up vs
Medium).

• Pearson correlation and p-value among gene
expression levels and relative CG methylation levels.

The aforementioned statistical indicators can also be com-
puted for CGs probeset methylation groups (grouped in
Up, Medium and Down according to the gene expression
groups), that can be grouped according to the position of
the relative gene elements and the position of CpG island.
Grouping of CG methylation data is then performed
according to the following criteria:

https://genome-cancer.ucsc.edu/
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• Grouping of CG probesets within gene regions: all
CG probesets belonging to the same gene region
(TSS1500, TSS200, 3’UTR, 1stExon, Body and 5’UTR)
of the selected gene are grouped , the methylation
levels are retrieved for each CG probesets and finally
ordered according gene expression levels to generate
grouped GC probeset matrix.

• Grouping of CG probesets within Island positions:
The grouping is executed on grouped CG probesets
within Island positions and adjacent Shore and Shelf
regions of each gene, the methylation levels are
retrieved for each CG probesets and finally ordered
according gene expression levels to generate grouped
GC probeset matrix.

• Grouping of all CG probesets within the same gene:
All CG probesets that refer to a specific gene are
grouped to analyze the role of global methylation of
gene sequence in its regulation.

The strategy to perform such analyses is similar to the
one used for the gene analysis. For each gene the grouped
CG methylation dataset is divided in three equally spaced
groups, according to the sample gene expression order, to
create, for each gene, Up, Medium and Down methylation
groups. β-difference is then calculated on each group in
respect to the others, as the difference among the medians
of the Up, Medium and Down groups. Non-parametric
Kolmogorov-Smirnov test is then used to assess statisti-
cal significance among these groups since the methyla-
tion data commonly fails the normality test (Shapiro-Wilk
Normality Test). Finally, Pearson correlation is performed
to statistically confirm the relationship between methyla-
tion status and gene expression modulation.

Datasets pre-processing
As reported in READ ME file matrix data (expression
and methylation data) must be upload on EpimethEx
already pre-normalized according to the selected plat-
form. Gene probeset annotation must be performed using
gene symbols (Entrez gene, RefSeq, etc.) according the
gene ID reported in the methylation annotation file. Pro-
betes collapsing is required to obtain unique ID gene
annotated row data. Methylation data must be upload
as Beta values without probeset annotation processes.
In order to test the package, a Beta-test was performed
on a large series of data including both DNA methyla-
tion and gene expression profiling obtained from Skin
Cutaneous Melanoma available on The Cancer Genome
Atlas (TCGA) [11]. Furthermore, to ensure the smooth
functioning with other datasets, it has been partially
tested on the prostate cancer dataset GSE84750 [19] avail-
able on the Gene Expression Omnibus DataSets (GEO
DataSets) portal. The SKCM TCGA dataset included
473 melanoma samples with available RNAseq (Pancan

Normalized) expression levels and microarray methyla-
tion data (Illumina Methylation 450k platform) normal-
ized according the TCGA portal. In particular, TCGA
dataset was already log2(x+1) transformed and normality
test was performed in order to asses the normal dis-
tribution of the data (data not show). The Beta value
methylation data were assumed with non-linear distribu-
tion. The quantile normalized data matrix of prostate
cancer dataset was manually annotated and several row
data referred to a single-gene were collapsed by select-
ing those with the highest variance value. For each
dataset samples of which both expression and methylation
data were available, were selected. Methylation Methy-
lation data are reported as average Beta signal and do
not require any pre-processing procedures. Annotation
datasets (TCGA and GEO DataSets) were adapted accord-
ing to the annotation format described in the GitHub
documentation.

Data filtering of EpiMethEx output data.
To further evaluate the biological significance of the
methylation hotspots involved in gene regulation mech-
anisms, EpiMethEx output data was filtered using an
additional R script (Additional file 1) implemented for
this purpose. The script implements six types of filters,
each one having different conditions combined through
Boolean operators.

1 Filtering of data according to the median values
among methylation stratification levels: The first
filter is used to assess all the groups that have an
ascending or descending order according to their
methylation median values (i.e., median_down <

median_mid < median_up or, conversely,
median_down > median_mid > median_up).

2 Filtering of data according to β-difference: This
filter is applied on the β-difference values obtained
from the calculation of β-difference for the Up vs
Medium, Up vs Down or Medium vs Down
methylation groups. This filter extracts only data
whose β-difference is greater or equal to a specific
value that can be considered relevant from the
biological point of view (i.e., only Medium data that
present a β-difference in respect to Down data that is
>0.1). Consequently, the relative gene expression
values are purged accordingly.

3 Filtering of data according to the methylation
stratification levels p_value: This filter is applied
on the p_values coming from the KS test among the
Up vs Medium, Up vs Down or Medium vs Down
stratification levels. It can be set lower or equal to a
given threshold (i.e., p < 0.01). This filter extracts
only data that present a given “statistically
significant” difference, according to the KS test,
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among the stratification levels (i.e., Up vs Medium,
Up vs Down or Medium vs Down).

4 Filtering of data according to FC: The fourth filter
is applied on the FC values obtained from the
calculation of FC for the Up vs Medium, Up vs Down
or Medium vs Down gene expression groups. This
filter extracts only data whose FC is greater or equal
to a specific value that can be considered relevant
from the biological point of view (i.e., only High data
that present a FC in respect to Medium data that is
>2). Of course, the relative methylation values are
purged accordingly to the FC filtering on the gene
expression data.

5 Student t-test p_value filtering: This filter is
applied on the p_values coming from the Student
t-test among the Up vs Medium, Up vs Down or
Medium vs Down gene expression levels. It can be
set lower or equal to a given threshold (i.e., p < 0.01).
This filter extracts only data that present a given
“statistically significant” difference among the gene
expression groups (i.e., Up vs Medium, Up vs Down
or Medium vs Down). The corresponding
Methylation data are purged accordingly.

6 Filtering of data according to Pearson correlation
p_value: The last filter is used to select only (gene
expression and methylation) data whose Pearson
correlation p_value is lower or equal a given specific
level of significance (i.e., p < 0.05). It is used to select
all the data that present a “statistically significant”
correlation between gene expression and
methylation levels.

All filters are applied in succession to select methylation
probesets and regions with potential biological mean-
ing. Percentage of positively and negatively correlated CG
probesets or methylation Groups categorized according to
gene position and CpG islands were evaluated including
all CG probesets filtered according to filtering criteria pre-
viously describe. Output graphs were obtained by using
Excel functions (Figs. 2, 3 and 4). A Further filtering pro-
cesses was performed to select the Top 50 CG probesets or
methylation groups showing higher correlation rate with
related genes (Additional files 2 and 3).

Results and discussion
EpiMethEx beta-test results
The correlation analysis performed with EpiMethEx
allows to obtain 4 different data matrices (.csv for-
mat) named “CG_by_position”, “CG_Individually”,
“CG_of_genes”, and “CG_Island” containing r correla-
tion coefficient, p_value, mean, beta_difference, and
fold change values obtained by several statistical tests
(Additional file 2). For the SKCM TCGA dataset, a total
of 20,530 genes and 485,577 CG probesets were analyzed,

all referring to 473 different TCGA samples. Using a
workstation with 32 Gb of RAM and 8 cores, it was possi-
ble to analyze a maximum of 1000 genes at a time before
running out of memory. The parallelized code required,
using all the available cores, approximately 1 h for each
execution (1000 genes). To ensure proper functioning of
EpiMethEx with a different datasets (TGCA RNAsew
dataset vs Illumina microarray dataset), we partially ana-
lyzed the prostate cancer dataset considering only the first
15,000 genes (Additional file 3). The data obtained from
the Beta-tests performed on the two different datasets
were subsequently validated by manually evaluating the
correlation analysis between the gene expression and
methylation levels of a selected group of genes (data not
shown).

Global analysis of SKCM TCGA dataset
In order to evaluate the biological significance of
EpiMethEx selected genes and probesets, output data
derived from the analysis of SKCM TGCA dataset were
analyzed by using the filtering script mentioned above. We
note here that this further analysis was not performed for
the prostate cancer dataset due to partial processing of the
genes (only 15,000 out of 44,000 genes).

In Fig. 2, the percentage of CG probesets positively (light
gray boxes) and negatively (dark gray boxes) correlated
to gene expression grouped is shown, according to their
relative position in gene regions. The most CG probe-
sets positively correlated are mapped in 3’UTR (88%)
and Body (79%) regions, conversely negative correlations
were observed in TSS1500 (71%), TTS200 (90%), 1stExon
(84%). Moderate differences were obtained comparing the
CG probesets of 5’UTR region, while low difference were
observed between all positive and negative correlated CG
probesets (Fig. 2a). These results were in agreement with
the literature concerning both the well-described link
between promoter hypermethylation and gene downregu-
lation [9] and the emerging role of intragenic methylation
in regulation of gene expression [13, 14, 20].

The additional stratification for island position of the
CG probesets revealed a sensible increase of CG probsets
belonging to Island (21% vs 7%) and N_Shore (29% vs 17%)
in negative correlated CG of both TSS1500 and TSS200
regions (Fig. 2b). Among 3’UTR CG probesets, incre-
ment of CG percentages was observed in N_Shore and
S_Shore region of negative correlated probesets. Moder-
ate increase was observed for S_Shelf probesets (9% vs
0%) of positive correlated in 1st Exon CG and similar
trend was observed for Island of negative correlated CG
in 5’UTR region (12% vs 27%) (Fig. 2b). Finally, negatively
correlated CG probeset in Body region showed incre-
ment of N_Shore, Island and S_Shore groups compared
to relative regions of positive correlated CGs (Fig. 2b).
These stratification criteria showed that hypomethylation
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Fig. 2 Correlation analysis between methylation CG probesets and gene expression. The percentages of methylated CG stratified according to gene
position were evaluated (Panel a). Light and dark gray boxes identify positively and negatively correlated CG probesets, respectively. Further
stratification according Island, Shore and Shelf positions were performed (panel b)

of promoter regions was mainly associated to demethyla-
tion of the CG probesets belonging to Islands and S_Shore
of promoter. These findings highlight the importance of
the high frequency of CpG in promoter region to induce
down regulation as a result of the methylation of these
CpG sites.

Stratification of CG probesets according to Island posi-
tion showed a moderate increment of negative corre-
lated CG within Island region (60%) and adjacent N and
S_Shore regions (49% and 62%). On the contrary, Shelf
regions showed a sensitive decrement of negative corre-
lated CG (26% and 22%) (Fig. 3a). Body-associated CG
probesets mapped in Island and Shore regions showed
a decrease of about 15% compared to Shelf regions.
As consequence, an increase of CG probesets included
in TSS1500, TSS200, 3’UTR and 1stExon regions was
observed among Island and adjacent Shore regions. No
variation was observed for 5’UTR CG probesets (Fig. 3b).

A further analysis performed stratifying the Island posi-
tions CG probesets (see Fig. 3a, b) and according to gene
regions showed a similar behavior for each Island posi-
tions with significant increase of negative correlated CG
probesets included between TSS500 and 1stExon region,
while the same CG probesets were decreased within Body
regions (Fig. 3c). Overall, Island position analysis sug-
gested that hypomethylation observed in Island and Shore
regions mainly affects CG probesets included in TSS1500,
TSS200, 3’UTR, 1stExon, and 5’UTR. As consequence, the
gene overexpression was mostly related to hypomethyla-
tion of Island of body regions (Fig. 3a, b and c).

Figure 4 shows the frequency of GC probesets groups
significantly correlated with relative gene expression.
For each gene, CG probesets were grouped according
to the relative position within gene regions (TSS1500,
TSS200, 3’UTR, etc.) (Fig. 4a), and according to the Island
position (Island, Shore and Shelf regions) (Fig. 4b). A
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Fig. 3 Correlation analysis of CG probesets stratified according to Island positions. A) All CG probesets included in each Island position (Panel a)
were stratified for gene regions (panel b). A further analysis were performed to stratified CG probesets according to positive or negative correlation
(panel c)

further grouping analysis was performed cumulating all
GC probesets for each gene (Fig. 4c). Differential analysis
showed a higher frequency of negative correlated GC
gene position groups in promoter (TSS1500: 75%, TSS200:
90%) 1stExon (90%) and 5’UTR (85%) positions, while

opposite trend were observed for 3’UTR regions (13%).
Weak difference resulted comparing CG body groups with
a higher percentage of positive correlated methylation
groups (58% vs 42%) (Fig. 4a). According Island position,
Shelf CG groups showed higher percentage of positive
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Fig. 4 Correlation analysis of CG Groups. Before differential analysis, CG probesets were stratified according to their position respect gene regions
(Panel a) and Island positions (Panel b). Furthermore, Correlation analysis was performed grouping all GC probesets of each gene among Up
Medium and Down expression groups (panel c)

correlate groups (>80%) compared to Shore and Island
regions ranged between 44% and 57% (Fig. 4b). Finally,
negatively correlated CG probesets of all genes were
more abundant than positively correlated groups (70%
vs 30%) (Fig. 4c). This analysis allowed to determinate
the relationship between gene expression and methyla-
tion of wide genomic regions with specific functional roles
in gene regulation. Of note, differential analysis of gene
region (Fig. 4a) and Island position 4b) methylation group
showed similar results obtained through the analysis of
each CG probesets (Figs. 2a and 3a). Finally, the global
hypomethylation gene was associated to gene overexpres-
sion in selected gene according to the filtering criteria
described above (Fig. 4c). Global analysis of methylation
patterns was enriched by the lists of Top 50 GC probe-
sets or methylation groups that were more positively or
negatively correlated to gene expression (Additional files 2
and 3). Selected methylation hotspots may be validated in

vitro and in vitro experiments to verify the prognostic and
diagnostic value of these potential biomarkers.

Conclusions
In the carcinogenesis process DNA mutations are not
able, alone, to elucidate the tumor heterogeneity. Epi-
genetic mechanisms, histone modifications along with
methylations of DNA represent major causes of gene dys-
regulation and disruption of pathways that are related
to normal cell cycle. Notably, transcriptional activity is
mainly related to methylation events occurring in pro-
moter regions. The role of promoter methylation in gene
regulation has been deeply analyzed. Nevertheless, the
regulatory function of methylation status of intergenic and
intragenic regions was not yet clarified.

Nowadays, high-throughput technology and bioinfor-
matics analysis can be used to study the functional
role of global methylation patterns in gene regulation.
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These approaches allow to identify the role of intragenic
methylation beside the already known role of promoter
methylation. In particular, the expression of several genes
was positively correlated with intragenic methylation and
inversely correlated with histone modifications. It was also
proposed that the methylation of specific CpG regions
may affects transcriptional elongation, intragenic activa-
tion and alternative splicing.

The use of bioinformatics approaches may allow to iden-
tify methylation alterations that may be useful to identify
new prognostic and diagnostic biomarker and to develop
new therapeutic strategies aimed to restore the normal
methylation status.

The EpiMethEx tool, through the cyclic correlation
analysis between gene expression and methylation lev-
els for each gene, is able to identify methylation hotspots
and extended genomic regions that are involved in the
regulation of their relative genes. To test EpiMethEx, a
wide number of melanoma samples was analyzed. The
analysis allow us to identify several methylation hotspots
able to affect the expression of key genes involved in
melanoma pathophysiology. Overall, the analysis showed
a negative association between hypomethylation of pro-
moter and genes overexpression for the most modu-
lated genes in melanoma, while positive correlation was
observed in some overexpressed genes that showed intra-
genic hypermethylated hotspots. The proposed tool is also
able to perform the cyclic correlation analysis to other
cancer types and other pathological conditions by using
both methylation and gene expression datasets, when
available.
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