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Abstract

Background: Transcription regulation is a major controller of gene expression dynamics during development and
disease, where transcription factors (TFs) modulate expression of genes through direct or indirect DNA interaction.
ChIP sequencing has become the most widely used technique to get a genome wide view of TF occupancy in a cell
type of interest, mainly due to established standard protocols and a rapid decrease in the cost of sequencing. The
number of available ChIP sequencing data sets in public domain is therefore ever increasing, including data
generated by individual labs together with consortia such as the ENCODE project.

Results: A total of 1735 ChIP-sequencing datasets in mouse and human cell types and tissues were used to perform
bioinformatic analyses to unravel diverse features of transcription control. 1- We used the Heat*seq webtool to
investigate global relations across the ChIP-seq samples. 2- We demonstrated that factors have a specific genomic
location preferences that are, for most factors, conserved across species. 3- Promoter proximal binding of factors was
more conserved across cell types while the distal binding sites are more cell type specific. 4- We identified combinations
of factors preferentially acting together in a cellular context. 5- Finally, by integrating the data with disease-associated
gene loci from GWAS studies, we highlight the value of this data to associate novel regulators to disease.

Conclusion: In summary, we demonstrate how ChIP sequencing data integration and analysis is powerful to get new
insights into mammalian transcription control and demonstrate the utility of various bioinformatic tools to generate
novel testable hypothesis using this public resource.
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Background
The diversity of mammalian organs and tissues is mani-
fested through differences in the gene expression across
cell types with the same DNA sequence. To achieve this,
specific sets of genes are activated or silenced during
development using instructions which include epigenetic
and transcription control mechanisms [1]. Throughout
development and differentiation, the fate of each cell type
is primarily controlled by gene regulation, where genomic
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regulatory elements receive and execute transcription sig-
nals, dependent on their epigenetic state and chromatin
accessibility, controlling the expression of key develop-
mental factors [2]. The chromatin immuno-precipitation
followed by high throughput sequencing (ChIP-seq) tech-
nology successfully maps the protein-DNA interaction at
genomic locations in a cellular context [3, 4]. ChIP-seq
has been used for the profiling of histone modifications
and binding sites of other proteins. In particular, tran-
scription factors (TF) are key players in the regulation
of cell-specific gene expression. ChIP-seq of a TF allows
the mapping of target regions in both promoters (the

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-018-2377-x&domain=pdf
mailto: anagha.joshi@roslin.ed.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Devailly and Joshi BMC Bioinformatics 2018, 19(Suppl 14):409 Page 2 of 176

region surrounding the gene start, containing regulatory
elements) and at gene-distal regions, including enhancers
(regulatory elements located far from the corresponding
gene start), and allows the subsequent identification of
specific sequence motifs bound by a given TF.

The high throughput sequencing data generation is now
no more a barrier, but this data is not yet used to its
full potential by analysis and integration. The explosion
of data has therefore opened new avenues of research.
New methods and tools have been developed to facil-
itate this data-driven biology. The ENCODE consor-
tium has provided in-depth analyses of the TF ChIP-seq
generated [5–10]. Despite this, the data remains glob-
ally under-exploited and new analyses are both neces-
sary and feasible. Furthermore, other available ChIP-seq
datasets have not been investigated as thoroughly as the
ENCODE dataset.

We therefore collected ChIP sequencing data from
diverse compendia including [11] and consortia [12, 13],
resulting in 928 ChIP sequencing samples for transcrip-
tion related factors in around 100 cell lines and tissues in
human and 807 samples in around 50 cell lines and tis-
sues in mouse. We performed a systematic analysis of this
data to understand diverse aspects of transcription con-
trol across mammalian cell types (Fig. 1). This work is
built onto and expands analyses and tools we previously
published [14, 15].

Fig. 1 Summary of the analyses performed. Each blue point indicates
that the corresponding dataset was used to perform the analysis

Results and discussion
HeatChIPSeq for identification of global relationships
across experiments
We analysed four large resources of ChIP-seq datasets,
with between 156 and 690 transcription Factor (TF) ChIP-
seq experiments from mainly the ENCODE datasets in
human (hg19) [12] and mouse (mm10) [13] as well as
the CODEX datasets [11] for human (hg19) or mouse
(mm10). The number of peaks varied greatly across exper-
iments. For example, a ZNF274 ChIP-seq in HeLa-S3 cell
line had only 74 peaks while a CFOS ChIP-seq in MCF10A
cell line sample had over 91,000 peaks in the ENCODE
human data. We used the HeatChIPseq web tool (Fig. 2),
a part of Heat*seq [14] to explore the global relationships
across samples by clustering correlation heatmaps from
peak overlap data (see methods).

In each datasets we noted similar groupings (Fig. 2). A
large fuzzy cluster grouped ChIP-seq experiments with
many peaks at promoter regions. This cluster included
all RNA polymerase II (RNAPII) ChIP-seq experiments.
Gene promoter coordinates were also included in this
cluster (Fig. 2a-d, green lines). We noted that many tran-
scription factors clustered according to the cell type rather
than the factor. For example, Max and Myc clustered
together in NB4 cell line, and also together in K562 cell
line in the human ENCODE dataset. The same observa-
tion was true in mouse, where Max and Myc clustered
together in MEL cell line and also together in CH12.LX
cell line in the mouse ENCODE dataset. On the other
hand, a very well defined cluster comprised of CTCF
and cohesin ChIP-seq experiments from diverse cell types
(including RAD21, SMC3, ZNF143) was present in all
human and mouse datasets. Other individual clusters
had peaks with little or no overlap with promoter or
CTCF clusters. Many of these experiments tended to form
small clusters of either chromatin regulators or enhancer-
binding transcription factors. Globally, but with excep-
tions, binding profiles of two distinct TFs in the same cell
type tended to be more different that binding profiles of
the same TF in two different tissues.

The Heat*seq tool allows easy sub-selection of samples
in each dataset based on factor or cell type. Figure 2e
contains all TF ChIP-seq experiments done in HUVEC
(Human Umbilical Vein Endothelial Cells) in the human
ENCODE dataset. It illustrates the three main groups
of experiments: a tight CTCF cluster, a fuzzy promoter-
proximal cluster including RNAPII, MAX and CMYC
ChIP-seq experiments, and a cluster with more distal-
binding factors such as CJUN, CFOS, and GATA2.

HeatChIPSeq can also be used to explore the fraction
of cell-specific binding sites for different factors. Figure 2f
includes selected experiments from the mouse ENCODE
dataset in liver and heart. CTCF and RNAPII exper-
iments from both tissues clustered together, reflecting



Devailly and Joshi BMC Bioinformatics 2018, 19(Suppl 14):409 Page 3 of 176

Fig. 2 Correlation between ChIP-seq experiments in four datasets. a-d Correlation heatmaps of all ChIP-seq experiments included in four datasets:
A: ENCODE human, B: ENCODE mouse, C: CODEX human, D: CODEX mouse. Specific clusters are highlighted with annotation after hierarchical
clustering of the correlation matrices. TSS locations were added as a track in each heatmaps and are shown in green. e A subset of panel A restricted
to samples from HUVEC. f A subset of the ENCODE mouse dataset showing that while CTCF and RNAPII ChIP-seq clustered together in heart and
liver tissues, EP300 ChIP-seq are clustered by tissue. g Subset of the CODEX mouse dataset including all ChIP-seq done in mouse embryonic stem
cells. Major clusters have been annotated
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mostly shared occupancy between tissues. EP300, on the
other hand, formed two separated clusters, one for each
tissue, reflecting a higher proportion of tissues specific
binding sites.

In Fig. 2g, we selected all experiments from mouse
Embryonic stem cells from the mouse CODEX datasets.
It allowed characterising further the factors that are nei-
ther mainly associated with RNAPII nor CTCF co-factors.
We detected a well defined cluster of members from the
polycomb complexes PRC1 and PRC2, as well as two clus-
ters composed of pluripotency factors (and other TFs):
the first cluster had experiments enriched with promoter-
proximal peaks and included factors involved in transcrip-
tion initiation process or enriched at promoters including
Myc and Gata4, while the second cluster, including Sox2,
Nanog, Oct4 and Esrrb experiments, had mostly promoter
distal peaks. The same factor in the same cell type studied
by different labs clustered together with few exceptions
such as one Nanog sample in ES cells (GSM1090230)
which was closely associated with Kdm4c rather than
other Nanog samples.

Genomic location preference of transcription factors
The cluster analysis in the previous section indicated
that some factors had a majority of their peaks close
to gene transcription start sites (TSS) while others were
mostly found at promoter-distal regions. We investigated
this further by annotating each transcription factor peak
(from the human an mouse ENCODE datasets) by its
closest GENCODE gene TSS [16, 17] (see methods), and
obtained for each factor the fraction of peaks overlapping
a TSS, upstream to, or downstream to the nearest TSS
(Fig. 3a and b). We divided experiments in three groups:
Green labelled experiments (Fig. 3a and b) have more
peaks located downstream of a TSS than upstream. This
group includes ChIP sequencing experiments for the elon-
gation specific pol II phosphorylated on serine 2, as well
as ChIP-seq against ZNF274. ZNF274 (Fig. 3c) has more
than 50% of its peaks downstream to the closest TSS, in
agreement with Frietze et al. noting that ZNF274 binds the
3’ ends of zinc-finger genes [18]. S2-phosphorylated forms
of RNAPII ChIP-seq, a modification reflecting the tran-
scription elongation phase [19], also showed a bias toward
more peaks downstream the nearest TSS. On the other
hand, experiments indicated with magenta colour (Fig. 3a
and b) constituted of experiments with higher fraction
of peaks located upstream a TSS than downstream. It
included RNA polymerase III and its co-factor TFIIIC
(and to a lesser extent RPC155 and BRF1). The third
groups contained the majority of experiments with about
similar numbers of peaks upstream and downstream of
TSS (Fig. 3a and b). Sorting the experiments in the third
group by the fraction of peaks overlapping a TSS revealed
a continuum, from factors with over 80% of there peaks

at a TSS (including most RNAPII or some BRCA1 ChIP-
seq experiments, Fig. 3e) to factors with less than 20% of
peaks at a TSS (including most CTCF or MAFK ChIP-seq
experiments, Fig. 3d).

Most factors showed a conserved fraction of pro-
moter proximal peaks across experiments and or cell
types. Nonetheless, we noted a few inconsistent cases.
For example, six of eight CFOS ChIP-seq in the human
ENCODE datasets had less than 10% of the peaks over-
lapping a TSS (Fig. 3f), while one experiment had around
30%, and another around 50% of their peaks overlapping
a TSS. In the absence of biological replicates, it is diffi-
cult to conclude whether these differences reflect a real
biological phenomenon or are simply due to technical
biases [20].

For each TF, we compared the fraction of peaks over-
lapping a TSS in mouse and human (Fig. 3h). For
most factors, their promoter proximal or distal prefer-
ence was conserved, with an overall correlation of 0.83
(P-value < 10−10). ETS1 and ZKSCAN1 had a greater
fraction of peaks near TSS in human than in mouse, but
the lack of replicates hindered assessing whether this is
true biological difference or a technical variation. Over-
all, the linear regression slope was less than one, i.e. most
factors had a higher promoter-bound fraction of peaks
in human compared to mouse. It is unclear whether this
reflects gene annotation differences between the species,
gene density differences, or different affinity for promot-
ers in different species.

Transcription hotspots are enriched strongly both at
promoter proximal and distal regions
We further clustered ChIP-seq experiments using only
the promoter proximal or the promoter distal peaks sep-
arately, in the six human and the two mouse for cell
lines with more than 30 ChIP-seq experiments. In the
human ENCODE dataset, six cell lines (A549, GM12878,
H1-hESC, HeLa-S3, HepG2, and K562), with a total of
474 experiments were selected (Fig. 4a and b). From the
553,211 regions bound by at least one factor in the 474
experiments, 300,901 were promoter proximal ( <1 kb
from the nearest TSS), and 144,514 were distal to a TSS
( >10 kb). In the mouse ENCODE dataset, two cell lines
(CH12 and MEL), with a total of 88 experiments were
selected (Fig. 4c and d). From the 221,772 regions bound
by at least one factor in the 88 experiments, 33,171 were
promoter proximal ( <1 kb from the nearest TSS), and
101,150 were distal to a TSS ( >10 kb from the nearest
TSS). We calculated the Pearson correlation coefficient
between each pair of peak lists for the promoter prox-
imal regions (Fig. 4a and c), and for the distal regions
(Fig. 4b and d). The hierarchical clustering of the resulting
correlation matrix for each of the two sets demonstrated
that promoter regions share binding sites for many more
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Fig. 3 Distribution of peak distances from the nearest TSS. a and b Stack view of all TF ChIP-seq experiments in human a and mouse b ENCODE
datasets. For each ChIP-seq, fraction of peaks overlapping a TSS (white), upstream (blue) or downstream (red) of the nearest TSS was computed.
Experiments were sorted according to the fraction of the peaks overlapping a TSS, to the exclusion of experiments showing more than 50% of peaks
upstream (pink side bar) or downstream (green side bar) of the nearest TSS. c and g A focus on the experiments showing more than 50% of peaks
upstream (pink side bar) or downstream (green side bar) of the nearest TSS. c: in human. g in mouse. d MAFK ChIP-seq experiments have few peaks
overlapping a TSS. e BRCA1 ChIP-seq experiments have most of their peaks overlapping a TSS. f C-Fos ChIP-seq experiments have a variable fraction
of peaks overlapping a TSS. h Fraction of peaks overlapping a TSS was compared between mouse and human for each TF present in both datasets.
x-axis: fraction of peaks overlapping a TSS in human. y-axis: fraction of peaks overlapping a TSS in mouse. Grey cross: Range of the Median Absolute
Deviation (MAD) of the fraction of peaks overlapping a TSS in cases where several experiments where done for a given TF. Blue line: linear
regression. Doted red line: x = y line. cor: Pearson correlation coefficient

factors compared to the distal regions. Indeed, correla-
tion values between experiments were on average higher
at promoter-proximal sites than at distal sites. The factors
studied in the same cell type clustered together more often

at the distal regions than at the promoter regions. The
promoter proximal clustering in both human and mouse
represented a tight CTCF/SMC3/RAD21 cluster and
a large dispersed multi-factor cluster including diverse
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factors. At distal regions, the CTCF/SMC3/RAD21 clus-
ter remained intact but many other experiments clustered
according to their cell line of origin, meaning that TF
binding at distal regulatory regions tends to be cell type
specific.

Transcription factor hotspots are defined as genomic
regions occupied by many factors in a given cellular
context. They overlap with regulatory regions that are

highly important for cell identity [21]. We characterized
transcription hotspots in human and mouse datasets by
computing the TF binding density, i.e. the fraction of
ChIP-seq experiments in each cell type with a peak in
a given genomic region. The clustering of TF density
for all genomic regions by k-means clustering (Fig. 4e
and f) demonstrated that transcription factors hotspots
are promoter proximal and distal. Transcription factor

Fig. 4 TF peaks farther from TSS are more cell type-specific than peaks overlapping a TSS. a-d Correlation heatmaps of TF ChIP-seq experiments in
human (A and B) or mouse (C and D) datasets from only the peaks at less than 1 kb from the nearest TSS (A and C) or from only the peaks at 10 kb or
more of the nearest TSS (upstream or downstream). Colour side bars indicate the cell of origin of the ChIP-seq experiments. Only experiments
performed in cell types with more than 30 ChIP-seq experiments are shown. e and f K-means clustering of highly-bound regions in human e and
mouse f. TF density: proportion of ChIP-seq experiment with a peak at a given location. Top colour bars: proportion of peaks upstream (blue), at
(white), or downstream of (red) the nearest TSS. Very highly bound regions in all cells tend to mostly overlap a TSS. Cell specific highly bound regions
tends to be more distal. A large lowly TF-bound cluster of genomic regions was removed from the figure for clarity in both human and mouse
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hotspots that are shared by all cell types are mostly found
at the promoter regions, while transcription hotspots that
are cell type specific are mostly found at non-promoter
regions. This is in full agreement with our previous
findings.

Combinatorial control of transcription
Mammalian transcription factors are known to work
together by binding at the promoter or enhancer regions
to activate or repress downstream target genes [22–24].
Importantly, individual transcription factors known to
function combinatorially, i.e. even when expressed at high
levels, are not sufficient to activate specific gene expres-
sion programs when alone [25]. To unravel the combina-
torial control of transcription factors in a cellular context,
we grouped factors according to the cell type in mouse
and human for cell types with at least 6 factors stud-
ied. We then built a M*N matrix of all binding events
(peaks) for each cell type where M represents the loci
(genomic location) bound by at least one factor in that
cell type and N being the number of factors studied by
ChIP sequencing in that cell type. For each cell type, there
were 2N-1 combinations of binding patterns possible. We
evaluated likelihood of frequency of these combinatorial
patterns to occur by chance by comparing to 100 random
datasets generated such that the total number of binding
events for each factor was preserved (i.e. the number of

non-zeros in each column of M*N matrix were unaltered
during randomizations). This analysis re-discovered the
transcription factors of the same family (e.g. SMC fam-
ily members in murine ES cells, CEBP family members
in murine macrophages, Stat family members in murine
dendritic cells) known to bind to overlapping genomic
locations due to highly similar sequence motifs, or the
components of known complexes or well studies interac-
tions (Table 1). CTCF, RAD21 and ZNF143 form a part
of cohesin complex and clustered together in the global
clustering considering all peaks. Accordingly, they were
enriched across multiple cell types. In agreement with
the literature, in mouse ES cells, 2350 genomic loci were
occupied only by Oct4, Sox2 and Nanog (Bonferroni cor-
rected P-value <10−256) [22]. In mouse MEL cells, Gata1
and Scl were co-bound at 1123 (Bonferroni corrected
P-value <10−256) genomic loci [26]. Interestingly, we iden-
tified some novel combinatorial relationships whose func-
tional relevance needs further investigation. For example,
in mouse ES cells, 2655 genomic loci were co-occupied
only by Suz12 and Sox2 (Bonferroni corrected P-value
<10−256) and in human GM12878, ETS1 co-occupied
1090 binding sites only with EGR1 (Bonferroni corrected
P-value <10−256) and 1249 binding sites only with P300
(Bonferroni corrected P-value <10−256).

Interestingly, there were a number of cases of combina-
torial control where the two factors did not share most of

Table 1 Top 3 significant associations between factors in mouse and human cell types

Cell type Combination 1 Combination 2 Combination 3

B cells (M) E2A, FoxO1, Pax5 E2A, Ebf1, Oct2 Pax5, Smad3, FoxO1A

T cells (M) Stat3, Stat4, Stat5,
Stat6

Stat5a, Stat5b, Stat5 Fli1, Gata3

Dendritic cells (M) Hif1a, Irf1, Maff, Relb,
Stat3, Rel, Irf2Irf4

Hif1a, Irf1, Maff, Relb,
Rel, Irf2Irf4

-

Macrophages (M) CEBPA, CEBPB CEBPA, CEBPB, PU1,
STAT1

CEBPA, CEBPB, PPARG,
PU1, STAT1

Erythroid cells (M) ETO2, GATA1, LDB1,
MTGR1, SCL

GATA1, LDB1, MTGR1,
SCL

-

MK progenitors (M) CBFB, GATA1, GATA2,
RING1B, RUNX1

CBFB, ETS1, RING1B,
RUNX1

-

MEL (M) JunD, SMC3 GATA1, SCL CMYC, MAX, MXI1,
NELFE, SCL, TBP

ES cells (M) Suz12, SOX2 E2F1, nMYC E2F1, KLF4, nMYC

A549 (H) HDAC6, P300, ELF1,
ETS1, GABP

ATF3, BRF1 RNA polII, CTCFL

GM12878 (H) SAP30, TAF7 STAT5A, BRG1 P300, ETS1

H1-hESC (H) RAD21, ZNF143 BACH1, MAFK USF1, USF2

HeLa-S3 (H) EZH2, RNA polII,
SIN3A, CJUN, CMYC

GTF2B, NR2F2 RNAPII, RBBP5

HepG2 (H) TAF1, TAF7, TEAD4 SAP30, ATF1, ATF3 PU1, STAT5A

K562 (H) GTF2F1, CTCF HDAC1, CJUN E2F6, CTCF

All associations were predicted at very high significance (all P-values <1e-256). M - mouse, H - human
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the binding sites, therefore did not cluster together in the
global clustering tree (Fig. 2) but significantly co-occupied
a relatively small but statistically significant number of
gene loci. For example, GTF2F1 and CTCF co-bound 2233
genomic regions in human K562 cell line (Bonferroni cor-
rected P-value <10−256) which were not occupied by any
other factor. Similarly, E2A, FOxO1 and Pax5 co-bound
1087 genomic regions in mouse B cells (Bonferroni cor-
rected P-value <10−256) which were not occupied by any
other factor studied. In human ES cells, 957 genomic loci
were co-occupied only by RAD21 and TEAD4 (Bonferroni
corrected P-value <10−30). This postulates site specific
role for these combinatorial interactions shadowed by the
global analysis.

DNA sequence motif preference of factors
To investigate the sequence motif preference in genome
wide biding patterns for each factor defined by ChIP
sequencing experiment in a cellular context, we com-
puted the enrichment of known motifs for each sample
using HOMER [27]. As expected, for the majority of the
experiments, we detected the sequence motif specific to
the factor as the top motif enriched for the factor. For
example, a CTCF motif was top top motif of all CTCF
ChIP sequencing experiments, a Runx1 motif was the top
motif for all Runx1 ChIP sequencing experiments, and a
GATA motif was enriched as the top motif for all GATA
(Gata1, Gata2 or Gata3) ChIP sequencing experiments
across all cell types studied in human and mouse. This
firstly confirmed the quality of the most of the data in the
compendia. This analysis furthermore highlighted known
interacting partners of some factors: all LMO2 samples
had ETS as the top motif, all MYB samples had RUNX
as the top motif and all CBFB samples had CTCF as the
top motif.

Tal1/Scl experiments had mostly ETS or RUNX or
GATA as the top enriched motif, depending upon the
cell type in which the factor was studied in both human
and mouse. Similarly, the majority of RNAPII experi-
ments across multiple cell types identified ETS as a top
enriched motif, with only a handful of cases with a cell
type motifs enriched such as GATA motif enriched in
K562 RNAPII sample, or BZIP motif enriched in HeLa-
S3 RNAPII sample. In embryonic stem cells (ESCs),
OCT4-SOX2-TCF-NANOG motif was enriched for the
ChIP sequencing of OCT4 and NANOG as expected;
this motif was top enriched motif in SMAD3, P300,
BCL11A, HDAC2 and CTBP2 samples as well. Inter-
estingly, CTCF ChIP sequencing in different cell types
did not result in enrichment of sequence motifs of cell
type specific factors. This demonstrates that CTCF acts
mainly as an insulator as well as defining gene reg-
ulatory boundaries which are largely independent of
cell type.

Transcription control of disease susceptibility loci
Genetic variations can be one of the causal factors of
complex diseases. Genome-wide analysis (GWAS) stud-
ies have revealed genetic loci significantly associated with
a disease risk, but the majority of the identified loci lie
within the non-coding regions, specifically in the regu-
latory regions defined by chromatin modifications and
DNase I hypersensitive sites across cell types [28]. We
calculated the overlap of binding sites for each transcrip-
tion factor in human in each cell type with GWAS high
confidence hits and estimated the significance of over-
lap (whether or not possible simply by random chance)
using bonferroni-corrected hypergeometric test. Three
ChIP sequencing samples from the ENCODE data showed
statistically significant overlap with GWAS disease asso-
ciated loci. These tree factors, NELFE and HDAC8 in
K562 cell line and BRCA1 in GM12878 cell line, with
about 2% of the peaks for each factor in GWAS disease
associated loci, have a well-studied role associated with
cancer. BRCA1 mutations are causal for breast cancer [29].
Accordingly, the majority BRCA1 peaks overlapped with
the disease loci in breast cancer. Interestingly, 37 BRCA1
peaks overlapped with disease loci in inflammatory bowel
disease. BRCA1 also has a role as an important media-
tor of innate immunity and BRCA1 gene therapy is known
to reduce systemic inflammatory response [30]. We noted
that 12 BRCA1 target loci overlapped with genes involved
in childhood obesity. This is in agreement with a find-
ing that without BRCA1, muscle cells became diabetic
by storing excess fat [31]. Taken together, the analysis
of transcription targets using ChIP sequencing together
with disease associated loci can identify novel factors
controlling the disease phenotype.

Conclusions
As the next generation sequencing is becoming a pre-
ferred tool of the experimental groups world-wide, the
genome wide data will be ever increasing in public
domain. Understanding the potential of this data for novel
discoveries, huge efforts are ongoing in storing and assem-
bling data in public repositories and databases [32–34].
One of the major challenges now is to generate method-
ologies and pipelines facilitating computational analysis
of this large and under-exploited resource. This can be
achieved in a plethora of ways, including integrating
together with other datasets, to obtain new biological
insights. To this end, the ENCODE consortium has taken
a big initiative to provide a uniformly processed dataset
to the scientific community for computational data inte-
gration and analysis [12]. Similarly CODEX database [11]
provides a uniformly processed and analysed data from
blood and ES cells in human and mouse. The easy acces-
sibility of pre-processed data is a major facilitator for gen-
eration of novel biological hypotheses from this resource.
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In this paper, we explored multiple resources and
tools (Fig. 1), including integration with other data
resources such as GWAS catalogue. We demonstrated
the use of HeatChIPseq webtool to investigate global
relations across ChIP-seq samples. We further analysed
the genomic location preference of TFs across species.
We showed that transcription hotspots are both pro-
moter proximal and distal. We confirmed that promoter
proximal binding of factors (including at transcription
hotspots) is more shared across tissues, while the distal
binding is more cell type specific. We identified combi-
nations of factors preferentially acting together. Finally,
we integrated the data with disease-associated gene loci
from GWAS studies to highlight the value of this data to
associate novel regulators to disease.

In summary, we demonstrate potential ways to develop
new hypotheses about transcription control mechanisms.
Importantly, the above results form only the tip of the
iceberg of the potential insights from these resources.
Our analysis has allowed us to reproduce and expand
some observations previously made using these data.
This shows that the in depth analysis of such data
is still far from complete and must continue. Impor-
tantly, the analysis performed in this study can eas-
ily be extended to exploit ChIP-seq datasets in other
species or in other cellular contexts, and therefore has
the potential to significantly advance our understanding
of a wide range of both normal and pathological cellular
processes.

Methods
Peaks bed files where downloaded from ENCODE at UCSC
(human data, hgdownload.cse.ucsc.edu/goldenPath/hg19/
encodeDCC/wgEncodeAwgTfbsUniform/) or from the
ENCODE data portal (mouse, encodeproject.org) for a
total of 690 experiments in human and 156 experiments
in mouse. Human and mouse peak files from ChIP-seq
experiments were also downloaded from CODEX [11]
(codex.stemcells.cam.ac.uk), for a total of 238 experi-
ments in human and 651 experiments in mouse.

For each of four datasets, all peaks lists were merged
using bedtools merge [35] to find non-overlapping
peak-containing regions. The merged peaks where then
used to create a genomic regions x experiments binary
matrix where each matrix cell indicates the pres-
ence or absence of a peak at a given region in a
given experiment. This binary peak matrix was cor-
related and clustered, using Euclidean distance of the
correlation values and complete hierarchical cluster-
ing from the relevant R functions. Clustering branches
were re-ordered using the order.optimal function
from the cba package [36]. Processed data and detailed
dataset processing instructions are available through
our web application Heat*seq [14] and the related

GitHub repository github.com/gdevailly/HeatStarSeq_gh.
The mouse ENCODE dataset was implemented specifi-
cally for this study. TSS lists where obtained from GEN-
CODE [16, 17], using the median TSS for genes with
several alternative transcription start sites. CpG islands
coordinates where obtained as a bed files from the UCSC
table browser [37].

Individual peak files and merged peak lists from the
human and mouse ENCODE datasets were annotated
with the closest GENCODE [16, 17] TSS (v21 for human,
after using lift-over to convert it back to hg19, vM14 for
mouse) using Bedtools [35] closest command with the
-D parameter. Annotated peak lists were used to analyse
the distribution of peaks upstream to, at, or downstream
to the nearest TSS.

Annotated merged peak lists were used to create binary
genomic regions x experiments matrices of only the
regions at less than 1 kb from the closest TSS or only the
regions at more than 10 kb from the closest TSS. Pro-
moter proximal and promoter distal matrices were then
clustered as described before, using only experiments in
the 6 cell lines (humans) or the 2 cell lines (mouse) with
the most experiments (ENCODE data). The binary matri-
ces were used to compute the TF density of each merged
peaks for each cell line, defined as the number of experi-
ment with a peak at a given location divided by the total
number of experiments from the cell line in a dataset. TF
density matrices of merged peaks x cell line were clus-
tered using k-mean clustering to identify clusters of high
TF density that were either ubiquitous or cell-line specific.

From each matrix of non-overlapping regions x exper-
iments (ENCODE data for human and mouse), we com-
puted Transcription Factor (TF) density by dividing the
number of factors with a peak in that region by the total
number of ChIP sequencing experiments done in that
cell line, to obtain numbers between 0 and 1. The pro-
moter proximal regions were defined as within 1kb of
GENCODE TSS for both human and mouse, while pro-
moter distal were further than 1kb from the nearest TSS.
TF density matrices were then clustered using k-means
clustering.

TO study the combinatorial control of transcription
factors in a cell type, the cell types with more than 6 fac-
tors studied were chosen and over-representation of each
combination was calculated using random binding sets
and estimating Bonferroni corrected P-value. The ran-
dom binding sets maintained the same number of targets
for each TF.

The sequence motif enrichment for each ChIP-seq
sample was performed using HOMER [27] with all
peak locations as an input. A list of significantly dis-
ease associated genomic regions were downloaded from
www.ebi.ac.uk/gwas/. P values were calculated using
hypergeometric test, and were adjusted using Bonferroni

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeAwgTfbsUniform/
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeAwgTfbsUniform/
https://www.encodeproject.org/
http://codex.stemcells.cam.ac.uk/
http://www.heatstarseq.roslin.ed.ac.uk/
https://github.com/gdevailly/HeatStarSeq_gh
https://www.ebi.ac.uk/gwas/
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correction. The enriched combinatorial patterns were cal-
culated by generating random binding data keeping the
same number of peaks for each factor, and the significance
was estimated compared to 100 randomizations.
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