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Abstract

Background: In recent decades, detecting protein complexes (PCs) from protein-protein interaction networks
(PPINs) has been an active area of research. There are a large number of excellent graph clustering methods that work
very well for identifying PCs. However, most of existing methods usually overlook the inherent core-attachment
organization of PCs. Therefore, these methods have three major limitations we should concern. Firstly, many methods
have ignored the importance of selecting seed, especially without considering the impact of overlapping nodes as
seed nodes. Thus, there may be false predictions. Secondly, PCs are generally supposed to be dense subgraphs.
However, the subgraphs with high local modularity structure usually correspond to PCs. Thirdly, a number of available
methods lack handling noise mechanism, and miss some peripheral proteins. In summary, all these challenging issues
are very important for predicting more biological overlapping PCs.

Results: In this paper, to overcome these weaknesses, we propose a clustering method by core-attachment and local
modularity structure, named CALM, to detect overlapping PCs from weighted PPINs with noises. Firstly, we identify
overlapping nodes and seed nodes. Secondly, for a node, we calculate the support function between a node and a
cluster. In CALM, a cluster which initially consists of only a seed node, is extended by adding its direct neighboring
nodes recursively according to the support function, until this cluster forms a locally optimal modularity subgraph.
Thirdly, we repeat this process for the remaining seed nodes. Finally, merging and removing procedures are carried
out to obtain final predicted clusters. The experimental results show that CALM outperforms other classical methods,
and achieves ideal overall performance. Furthermore, CALM can match more complexes with a higher accuracy and
provide a better one-to-one mapping with reference complexes in all test datasets. Additionally, CALM is robust
against the high rate of noise PPIN.

Conclusions: By considering core-attachment and local modularity structure, CALM could detect PCs much more
effectively than some representative methods. In short, CALM could potentially identify previous undiscovered
overlapping PCs with various density and high modularity.
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Background

Protein complexes are a group of proteins that interact
with each other at the same time and space [1]. Iden-
tifying PCs is highly important for the understanding
and elucidation of cell activities and biological functions
in the post-genomic era. However, the identification of
PCs based on experimental methods is usually costly and
time-consuming. Fortunately, with the development of
high-throughput experimental techniques, an increasing
number of PPINs have been generated. It is more con-
venient to mine PCs from PPINs. Thus, computational
methods are used to detect PCs from PPINs. Generally,
PPINs are represented as undirected graphs, and thus
the problem of identifying PCs is usually considered as a
graph clustering problem. Recently, many graph clustering
methods have been proposed to predict PCs.

Related work

In this study, we divide graph clustering methods into two
categories: hard clustering methods and soft clus-
tering methods. Hard clustering methods produce
non-overlapping predicted clusters, and soft clustering
methods produce overlapping predicted clusters. Hard
clustering methods include the Markov cluster (MCL)
[2], restricted neighborhood search clustering (RNSC)
[3], Girvan and Newman (G-N) [4], and a speed and
performance in clustering (SPICi) [5] methods. Gavin
et al. [6] showed that many PCs share some “module” in
PPINs. However, these hard cluster methods can only pre-
dict non-overlapping clusters. In fact, according to the
CYC2008 hand-curated yeast protein complex dataset [7],
207 of 1628 proteins are shared by two or more pro-
tein complexes. This shows that some PCs have highly
overlapping regions [6, 8, 9]. As a result, some soft cluster-
ing methods have been developed to discover overlapping
PCs from PPINSs, and these soft cluster methods further
could be roughly divided into three categories.

The first category is the mining clique methods, which
includes CFinder [10], clique percolation method (CPM)
[11], and clustering based on maximal cliques (CMC) [12].
These methods aim to extract maximal cliques [13] or
near-cliques from PPINs because maximal cliques and
near-cliques are considered as potential PCs. Neverthe-
less, finding all cliques is a NP-complete problem from
PPINs and is therefore computationally infeasible. Fur-
thermore, the requirement that a protein complex is
always taken as a maximal clique or near-clique is highly
restrictive.

The second category is the dense graph clustering meth-
ods. To overcome the relatively high stringency, majority
of researchers focus on identifying densely connected sub-
graphs by either optimizing an objective density function
or using a density threshold. Some typical methods, such
as molecular complex detection (MCODE) [14], repeated
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random walks (RRW) [15], DPClus [16] and IPCA [17],
and CPredictor2.0 [18], etc. Liu et al. studied a set of
305 PCs, which consists of MIPS [19], CYC2008 [7] and
Aloy [20], and found that for 40% of PCs, the density
is less than 0.5 [20]. Furthermore, although the density
function provides a good measurement for the prediction
of complexes, and its results depend on cluster size. For
example, the density of a cluster containing three proteins
is 1.0, whereas the density of a cluster with eight proteins
could be 0.45. Therefore, these methods discard many
low-density protein complexes. Meanwhile, PPINs with
noise (high false positive rate and high false negative rate)
are produced by high-throughput experiments. Due to the
limitations of the associated experimental techniques and
the dynamic nature of protein interaction maps, the dense
graph clustering methods are sensitive to noisy data.

The third category is the heuristic graph cluster-
ing methods. In recent years, some researchers have
attempted to detect PCs by using methods in rele-
vant fields. For examples, PEWCC [21], GACluster [22],
ProRank [23], and clustering with overlapping neighbor-
hood expansion (ClusterONE) [24], and they are repre-
sentative methods for this category. From the standpoint
of the results, the heuristic graph clustering methods are
effective for the identification of PCs. However, these
methods neglect a lot of peripheral proteins that connect
to the core protein clusters with few edges [25]. Thus, it
is clear that different proteins are different importance for
different PCs [26, 27]. Moreover, some heuristic methods
are more sensitive to the selection of parameters.

In addition to the abovementioned methods, some
existing methods combine different kinds of biological
informations to predict PCs. These biological informa-
tions include functional homogeneity [28], functional
annotations [18, 29, 30], functional orthology information
[31], gene expression data [32, 33] and core-attachment
structure[33—35]. Although various types of additional
biological informations may be helpful for the detection
of PCs, the current knowledge and technique for PC
detection are limited and incomplete.

Our work

Although previous methods can effectively predict the
PCs from PPINS, the internal organizational structure of
the PCs is usually ignored. Some researchers have found
that the PCs consist of core components and attachments
[6]. Note that Core components are a small group of core
proteins that connect with each other, and have high func-
tional similarity. Core components play a significant role
in the core functions of the complex and largely determine
its cellular function. Meanwhile, attachments consist of
modules and some peripheral proteins. Among the attach-
ments, there are two or more proteins are always together
and present in multiple complexes, which authors call
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“module” [6, 9], for examples, the overlapping nodes F
and G in Fig. 1 consist of a module. In this paper, we
consider the PCs have core-attachment and local mod-
ularity structure. Local modularity means that the PCs
have more internal weighted than external weighted con-
nections. Figure 1 shows the model of overlapping PC
structure.

CALM method is based on the seed-extension
paradigm. Therefore, CALM mostly focuses on the
following two aspects: the selection of the seed nodes
and CALM starts from a seed node and continuously
check its neighboring nodes to expand the cluster. In this
work, on the one hand, according to core-attachment
structure, the consideration of core nodes as seed nodes
to predict complexes is very important, and by contrast
many current methods simply select seed nodes through
their degree and correlative concepts. Because of this,
they could not distinguish between core nodes and over-
lapping nodes. As a result, these methods mistake and
miss a number of highly overlapping PCs. For instance,
two highly overlapping PCs may be identified as a fake
complex, whereas they are actually functional modules.
Our findings suggest that node betweenness and node
degree are two good topology characters to distinguish
between the core nodes and overlapping nodes. On the
other hand, PCs tend to show local modularity with dense
and reliable internal connections and clear separation
from the rest of the network. Thus, we use a local mod-
ularity model incorporating a noise handling strategy to
assess the quality of the predicted cluster. Furthermore,
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we design a support function to expand the cluster by
adding neighboring nodes.

The experimental results have shown that CALM
could predict overlapping and varying density PCs from
weighted PPINs. Three popular yeast PPI weighted net-
works are used to validate the performance of CALM, and
the predicted results are benchmarked using two refer-
ence sets of PCs, termed NewMIPS [36] and CYC2008
[7], respectively. Comparison to ten state-of-the-art rep-
resentative methods, the results show that the CALM
outperforms some computational outstanding methods.

Methods

In this section, we will introduce some basic preliminar-
ies and concepts at first. We then describe the CALM
algorithm in the following subsections.

Preliminaries and concept

Mathematically, a PPI network is often modeled as an
undirected edge-weighted graph G = (V,E, W), where V
is the set of nodes (proteins), E = {(u,v)|u,v € V} is the
set of edges (interactions between pairs of proteins), and
W : E — N7 is a mapping from an edge in E to a reliable
weight in the interval [0, 1].

As shown in Fig. 2, using this model for a given PPI
weight network, and all the nodes in the PPI network can
be classified into four types. First, we consider that a node
is a “core node” in a complex if: (a) As described by Gavin
et al, it shows the degree of similarity of physical associ-
ation, high similarity in expression levels, and represents

. core node

Complex1

' overlapping node

Module

Cores

Fig. 1 Definition and terminology are used to define overlapping PCs architecture. An example of overlapping PCs, whose core components consist
of core nodes in the dashed circle. A PC consists of core components and attachments. Additionally, attachments consist of modules and some
peripheral nodes. Note that among the attachments, a “module” is composed of overlapping nodes, and the rest of nodes are called peripheral
node. The three types of nodes are marked by different colors. Two overlapping PCs are circled by solid lines

peripheral node

Attachments

Complex2
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Fig. 2 The formation process of a protein complex. The four type of nodes are marked by different colors. a the deep red protein represents the
seed protein; b these red proteins inside the red dotted circle constitute a complex core; € these green proteins inside the green dotted circle

represent peripheral proteins; d the yellow proteins inside the yellow dotted circle represent overlapping proteins; e the chocolate yellow proteins
represent interspersed node; f complex core, peripheral proteins, and overlapping proteins inside the blue circle constitute a protein complex; An
example illustrates the clustering process. This simple network has 22 nodes, and each edge has weight 0.2 except (0,1),(0,2),.., and (3,4). The node 0
is taken as a seed protein and the initial cluster {0} is constructed. In the greedy search process, the neighbors of the node 0 include {1,2,3,4,5,8,9}.
The node 1 has the highest support function Wgossm-m = 0.295 according to support function (Eq. (7)). We add node 1 to the cluster, and if
the value of local modularity score increases, then this cluster is {0, 1}. Similarly, the nodes 2, 3, and 4 are added to the cluster in sequence and now
the neighbors of node 0 include 5, 8,9 are left, the node 5 has the highest support function, but when the node 5 is added to the cluster
{0,1,2,3,4}, its local modularity score decrease. Thus the node 5 is removed from the cluster and this greedy is terminated. Now the cluster
{0,1,2,3,4} constitutes the complex core. We do the next greedy search to extend the complex core to form the whole complex. Furthermore, for
the complex core {0, 1,2, 3,4}, its neighboring nodes have the nodes 5, 6, 7, 8, and 9, we repeat iteration this process for the cluster until the cluster

isn't change and save it as the first cluster. Similar, the next search will start from the next seed node to expand the next cluster

the functional units within the complex; (b) Core nodes
display relatively high weighted degree of direct physical
interactivity among themselves and less interactions with
the nodes outside the complex; (c) Each protein complex
has a unique set of core nodes. The second category is
“peripheral node” A node is considered as a peripheral
node to a complex if: (a) It interacts closely with the core
of the complex and shows greater heterogeneity in expres-
sion level. (b) It is stable and directly reliable with complex
core. The third category is the “overlapping node” A node
is considered to be an overlapping node to a complex if: (a)
It shows a higher degree and node betweenness than its
neighboring nodes. (b) It belongs to more than a complex.
(c) It interacts closely with the core nodes. All remaining
nodes are classified as “interspersed node’; which is likely
to be the noise in PPI network.

Identifying overlapping nodes

Two or more overlapping nodes in static PPI networks
always gather together to form “module” which is an indis-
pensable feature that plays important roles at various lev-
els of biological functions. Moreover, overlapping nodes

participate in more than one PC. Overlapping nodes are
identified in order to prevent their use as seed nodes,
which could lead to the result that some high overlap-
ping PCs are wrongly predicted, whereas in fact it is a
functional module. Furthermore, it is necessary to explain
the differences between the two concepts. Li [37] believes
that functional modules are closely related to protein
complexes and a functional module may consist of one
or multiple protein complexes. Li [37] and Spirin [49]
have suggested that protein complexes are groups of pro-
teins interacting with each other at the same time and
place. However, functional modules are groups of proteins
binding to each other at a different time and place.

To better understand the difference between protein
complexes and functional modules, we give a example that
Complex1 and Complex2 are protein complexes, but a
combination of both Complex1 and Complex2 could con-
stitute a functional module when overlapping nodes such
as F or G are used as seed nodes in Fig. 1. In this case,
some high overlapping PCs could be mistaken or omit-
ted, and then it may mistakenly predict that Complexl
and Complex2 constitute a predicted PC, and Complex1
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and Complex2 may be omitted in some previous methods.
Therefore, we need to identify overlapping nodes. In
social network analysis, degree and betweenness central-
ity are commonly used to measure the importance of
a node in the network. Here, we find that the degree
and betweenness are effective for the identification of
overlapping nodes. The degree and node betweenness of
overlapping nodes are larger than the average of all their
neighboring nodes because overlapping nodes participate
in multiple complexes.

Foranodev € V,N(v) = {u | (v,u) € E} denotes the
set of neighbors of node v, deg(v) = |[N(v)| is the num-
ber of the neighbors of node v. Given a node v € V, its
local neighborhood graph GN, = (V,, E,) is the subgraph
formed by v and all its immediate neighboring nodes with
the corresponding interactions in G. It can be formally
defined as GN,, = (V,,E,), where V,, = (v} U{u | u €
V, (u,v) € E}, and EV={(ui,uj) | (ui, uj) € E,uj,uj € VV}.

We define the average weighted degree of GN, as
Avdeg(GN,) and calculate it according to Eq. (1).

Zue Vi deg(u)

Avdeg (GN,) = A

(1)
Theoretically, |V, | represents the number of local neigh-

borhood subgraphs GN,with nodes, and }_,, deg(u)

represents the sum of deg(u) for all nodes in V;,.

The node betweeness, B(v), is a measure of the global
importance of a node v, and it can assess the fraction of
shortest paths between all node pairs that pass through
the node of interest. A more in-depth analysis has been
provided by Brandes et al. [38—40]. For a node v, its node
betweenness (B(v)) is defined by Eq. (2).

B(v) = Z‘ 352 ) )

s#Ev#ELEV st

Herein, &, is the number of shortest paths from node s
to t and ;¢ (v) is the number of shortest paths from node
s to ¢ that pass through the node v. For each node v, the
average node betweenness of its local subgraph GN, is
defined as the average of B(u) for all u € V,, and written as
AvgB(GN,) in Eq. (3).

5 uen, B

AvgB (GN,) = il
12

3)

Algorithm 1 illustrates the framework of identifying the
overlapping nodes. For each node v in the whole PPIN, if
the degree of v is larger than or equal to Avgdeg (GN,), i.e,
deg(v) > Avdeg (GN,), and the betweenness of v is larger
than AvgB (GN,), i.e ,B(v) > AvgB(GN,). If and only if
these two conditions are satisfied, the node v is classified
as an overlapping node in lines 2-13.
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Algorithm 1 Identification of overlapping nodes algorithm

Input: The weighted PPI network G = (V,E, W).
Output: Ouns:the set of overlapping nodes.
1: initialize Ons = ¢, B:storing the betweenness value of
all nodes;
: for each nodev € V do
compute deg(v) according to Eq. (1);
compute B(v) according to Eq. (2);
N (v): the neighbor of v; // N(v) represents the set
of direct neighbors of node v
6: deg(v) = IN(v)|; // compute the degree of v
7: construct the neighborhood subgraph of v, GN,;

A 4

8: compute the average weighted degree of
GN,, Avdeg(GN,);
9: compute the average node betweenness of GN,,

AvgB(GN,);

10: if (deg(v) > Avdeg(GN,)) A (B(v) > AvgB(GN,))
then // two conditions are satisfied, it is called an
overlapping node.

11: insert v into Ous; // save node v
12: end if
13: end for

14: return Oumus.

Selecting seed nodes

The strategy for the selection of seed nodes is very impor-
tant for the identification of PCs. However, most of exist-
ing methods are based primarily on node degree for the
selection of seed nodes. However, this strategy is too sim-
plistic to detect overlapping PCs. A previous study [41]
has observed that the local connectivity of a node plays a
crucial role in cellular functions. Therefore, in this paper,
we use some topology properties including degree, clus-
tering coefficient and node betweenness to assess the
importance of nodes in a PPIN.

Furthermore, Nepusz et al. [24] concluded that network
weight can greatly improve the accuracy of identifica-
tion PCs. Therefore, we use weighted PPINs described in
Ref [24] to predict PCs. The definitions of node degree
and clustering coefficient could be extended to their cor-
responding weighted versions as described in Egs. (4)
and (5).

degy() = Y

ueN);(v,u)eE

Wy,u (4)

The small-world phenomenon tends to be internally orga-
nized into highly connected clusters and has small char-
acteristic path lengths in biological networks [42-44].
This corresponds to the local weighted clustering coef-
ficient (LWCC). The LWCC(v) of a node v could mea-
sure its local connectivity among its direct neighbors.
The LWCC,,(v) of a node v is the weighted density of
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the subgraph GN, formed by N, and their correspond-
ing weighted edges, and thus we define its LWCC,,(v) as
follows Eq. (5).

Yiev, ZjeN(i)ﬁVv Wiy
INy| x (INy| — 1)

LWCCy,(v) = (5)
where % 2 iev, 2_jeN(nv, Wij is the sum of the weighted
degree of subgraph GN, and IN,| x (|N,| — 1)/2 is the
maximum number of edges that could pass through node
v. Note that 0 < LWCC < 1. LWCC,,(v) is not sensitive to
noise. Therefore, LWCC,,(v) is more suitable for the large-
scale PPINs which contains many false-positive data.

Y ey, LWCC,y (1)
INy|

where LWCC,,(v) is the local weighted clustering coeffi-
cient of the node v. Note that N, stands for the number of
the node v and all its neighbours in local subgraph. Finally,
for each node v, we compute the average LWCC,(v)
of subgraph GN, is denoted as AvgLWCC,(v) in
Eq. (6).

Central complex members have a low node between-
ness and are core nodes (also called hub-nonbottlenecks
in [39]). Because of the high connectivity inside com-
plexes, paths can go through them and all their neighbors
such as the nodes I, ] and H in Fig. 1 according to
Eq. (2). On the other hand, overlapping nodes (also called
hub-bottlenecks in [39]) tend to correspond to highly
central proteins that connect several complexes or are
peripheral members of central complexes such as the
nodes F and G in Fig. 1 according to Eq. (2) [39, 45].
We check two conditions before a node is considered
to be a seed node. First, a node v is not an overlap-
ping node, but the LWCC,,(v) value of v in GN, is still
larger than or equal to the average LWCC,, (v) value of
GN,,i.e., LWCCy,(v) > AvgLWCC, (v). Second, we check
whether the node betweenness B(v) of node v in GN,, is
smaller than the average node betweenness of its neighbor
members, i.e., B(v) < AvgB(GN,). If at least one of two
conditions is satisfied, this node is considered as a seed
node in lines 2-10. Algorithm 2 illustrates the framework
of the seed generation process.

AvgLWCC,,(v) = (6)

Introducing two objective functions

In this section, we use two objective functions to solve
a seed node is expanded to a cluster. Firstly, the sup-
port function is used to determine that the priority of a
neighboring node of a cluster. Secondly, local modular-
ity function determines whether a highest priority node is
added to a cluster.

Support function
A cluster C, is expanded by gradually adding neighbor
nodes according to the measure of similarity strategy.
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Algorithm 2 Selecting seed nodes algorithm
Input: The weighted PPIN G = (V, E, W), the set of Ons
Output: The set of seed nodes,Ss.

1: initialize Ss = @;

2. for each node v € V do

3 if v not in Ons then

4 compute the value of LWCC,, (v);

5

6

compute the value of AvgLWCC,,(v));
if LWCC,,(v) > AvgLWCC,(v)) or (B(v) <
AvgB(GN,)) then // search for two type of seed nodes
in order to detect highly dense predicted clusters and
lower dense predicted clusters.
add v into Ss;
end if
end if
10: end for
11: return Ss.

Since we suggest that the higher similarity value a neigi-
bor node u has, the more likely it is to be in the cluster
Cp. Therefore, we introduce the concept of support func-
tion to measure how similarly a node u with respect to
the cluster C,. The task of support function is to eliminate
errors when adding a node to a cluster and avoid some
peripheral proteins such as node 6 in Fig. 2 are missed.
The support (u, Cp) of anode u is connected to the cluster
C, is defined as Eq. (7).

w
support (u, Cp) = M (7)
ZveN(u) Wu,y
where u ¢ C,, and Zvecer(u) Wy, is the sum of
the weight edges connecting the node # and C,, and
> veN(u) Wy is the sum of weights degree the node u.
Obviously, it takes a value from 0 to 1.

We use an example to make some statements more
clearly. As shown in Fig. 2, the blue circle is a protein com-
plex, named C,. Supposing node 0 is a seed node, and
for its a neighboring node, its support function is calcu-
lated according to Eq. (7). On the one hand, a core node
directly connects with all nodes in C,. For the node 1,
all its neighbors are in Cp, thus the support function of
the node 1 is 1.0. Moreover, these red proteins inside the
red dotted circle constitute a complex core. On the other
hand, a peripheral node could connect to some nodes in
Cp. For instance, the number of neighbors for node 5 is 9.
However, it connects to the node 0, 1, 2, 3, 6, and 7, and
its support function is gigé = % Finally, an overlapping
node has higher degree because it has many neighbors.
However its support function is \éeroyzlow. For instance, for

XU.

. A _ 6 .
node 8, its support function is %63 = 13- In this case,

the support function of the nodes 1, 5, and 8 are 1.0, %, and

%. It is obvious that core nodes and peripheral nodes have
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priority over overlapping nodes when a node is inserted
into the cluster C,,.

The support function is very different from Wu et al.
[34]’s closeness(v, C). Wu et al’'s measure could only detect
the attachment proteins which are closely connected to
the complex core such as the nodes 5 and node 7 in
Fig. 2. But some attachment proteins that may connect
to the complex core with few edges even though its sup-
port function is relatively large. This type of attachment
proteins, for example, node 6 in Fig. 2, may be missed.

Local modularity function

Whether a neighbor node u is inserted into a cluster
Cp is decided by the local modularity score (F (Cp))
between 1 and C,. For a clear description, we first provide
some relate concepts. In an undirected weighted graph
G, for a subgraph C, (C, C G), its weighted in-degree,
denoted as weight;, (Cp), is the sum of weights of the
edges connecting node v to other nodes in C,, and its
weighted out-degree, denoted as weight (Cp), is the sum
of weights of edges connecting node v to nodes in the rest
of G(G - Cp). Both weight;, (Cp) and weightyy,; (Cp) can
be defined by Egs. (7) and (8), respectively.

weight;y, (Cp) = Z Wy (8)

vueCp,wy €W

weight oyt (Cp) = Z

veCpugCp,wy €W
In many previous methods, dense subgraphs are consid-
ered as PCs. Nevertheless, because real complexes are not
always highly dense subgraphs. Many researchers study
the topologies of protein complexes in PPINs and find
that PCs exhibit a local modularity structure. Meanwhile,
we also take into account the core-attachment structure.
Generally, a local modularity of subgraph in a PPIN is
defined as the sum of weighted in-degree of all its nodes,
divided by the sum of the weighted degree of all its nodes.
Based on these structural properties, we have improved
a local modularity function based on a fitness function
[24, 46, 47]. This function has a noise handing strategy,
which makes it insensitive to noise in PPINs. The sub-
graph of local modularity [46, 48] is defined by Eq. (10).

Wy,u )

weightiy (Cp)
F(CP): ; : ]
(weightin (Cp) + weightous (Cp) + 6 * |Vp])

Obviously, F(C,) takes a value from 0 to 1. Here, §
is a modular uncertainty correction parameter. In fact,
because of the limitation of biological experiments, nodes
with false positive and false negative interactions exist
in PPINs. Therefore, this parameter is not only a rep-
resentative of § undiscovered interactions for each node
in the cluster but also a measure to mean noise for
the cluster. The value of § depends on half of the aver-

(10)

age node degree in a PPIN under test because most of
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PPINs have a higher proportion of noisy protein interac-
tions (up to 50%) [49]. Herein, Vp| represents the size
of set C,. What's more, we choose o = 1 because it
is the ratio of the internal edges to the total edges of
the community. It corresponds to the so-called weak def-
inition of the community introduced by Radicchi et al.
[50]. In summary, we use this local modularity function in
order to find a lot of subgraphs with a high weight;, (C,)
and a low weightyy,; (Cp). This model is an easy and
efficient to detect the optimal and local modularity
cluster.

Generating candidate clusters

After obtaining all seed nodes and introducing two objec-
tive function, we use an iterative greedy search process to
grow each seed node. In our work, we use a local modu-
larity function which aims to discover various density and
high modularity PCs. In other words, PCs are densely con-
nected internally but are sparsely connected to the rest
of the PPI network. Therefore, we use a local modularity
function to estimate whether a group of proteins forming
a locally optimal cluster.

In Algorithm 3, firstly, we pick first seed node in the
queue Ss and use it as a seed to grow a new cluster in line 3.
At the same time, the selected seed node is removed from
Ss in line 4, and then we define a variable ¢ to record
the number of iterations in line 5. Secondly, we try to
expand the cluster from the seed node by a greedy pro-
cess. This greedy growth process is described in lines 6-22.
As a demonstration, we use a simple example in Fig. 2 to
explain CALM more intuitively.

In this process, for the cluster, C,, we first search for
all its border nodes that are adjacent to the node in
Cp and compute their support (u, Cp) in line 8. Then,
we calculate F(Cp,,,), and find the border node with
having the maximum support (1, C,) among all border
nodes, named u,;,,, in lines 10-11. Meanwhile, we calcu-

late F (C,

- in lines

when w4, is inserted into Cp,;

/

12-13. If F (Cpm) > F(Cp,,,), it means that the local

modularity score increases in line 14. u,,,, should be
added to the cluster C,, ;, and C,,,, is updated, i.e in line
15. Additionally, u,,,,, is removed from the set of border
nodes bn. We iteratively add the border node with having
maximum support (u, Cp+1) until the set of border nodes
is null in line 9 or the local modularity score does not
increase in line 18, otherwise this growth process finishes.
Then we let ¢ = £ + 1 to do the next iteration in lines 7-
21, the current cluster’s all border nodes are re-researched
and their support functions are re-computed in line 8, and
this greedy process is repeated for the cluster until the
cluster does not change in lines 6-22. C, is considered
as a new candidate cluster in line 23. The entire gen-
eration of candidate clusters processes terminates when
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Algorithm 3 Generation of candidate clusters
Input: The weighted PPINs G = (V, E, W) and the set of
seed Ss.
Output: The predicted clusters, C. //C is used to store
predicted clusters.
: initialize C = ,i = 0;
. while Ss!= () do
Cp, = {u;}; //insert a seed node {u;} into Cp,
Remove seed node u; from Ss;
t=0;
repeat
Crrsr = Cpis
Search for all border nodes which are named
bn, and then compute their support (u, Cpiir );
9: while lenght(bn)! = 0 do
10: Compute F (Cpm)?
11: Find the border node u,,,, with the
maximum  support (i, Cp,,,) in bn, Umax =
arg max,, support (ui, Cp

/

S A T A

t+1)?

12: Cpm = Cp,1 U {tmax}; // insert g, into
Cpt+1

13: Compute F (szH);

14 ifF(Cp,,,) > F (Cpy) then

15: Cpis1 = Cp,, 15 // update set Gy,

16: bn = bn — Uyuy; /1 remove Uy, from
bn

17: else

18: Break;

19: end if

20: end while

21: t=t + 1;// increase the number of iterations.

22: until C,,, == C,, // when C, not changes, save it.

23: C = CUCy; //Cy is recognized as a new predicted
cluster.

24: end while
25: return C;

the seed set Ss is null in line 24. At last, we return
all candidate clusters C in line 25. Algorithm 3 illus-
trates overall framework for the generation of candidate
clusters.

Merging and removing some candidate clusters

In Algorithm 4, CALM removes and merges highly over-
lapped candidate clusters as follows. For each candidate
cluster C; in lines 1-8, CALM checks whether there exists
a candidate cluster C; such that OS (Ci, C/) > w in
lines 2-3. If such C; exists, then C; is merged with C;
in line 4, and simultaneously C; is removed in line 5.
Here, OS (C,-, C]) is calculated according to Eq. (11), and
merge threshold w is a predefined threshold for merging.

Algorithm 4 Merging and removal of some candidate
clusters
Input: The candidate clusters C = Cy, Co, ..., C;.;
Output: The predicted complexes, C,;

1: for AllC; € Cdo

2 for All C; € C and C; is after C; do

if OS (C,', Cj) >= ) then //where w is a

predefined threshold for overlapping.

o

4 C; = C;UCj; /] Cj is merged with C;
5: C=C-Cj;// Cjis removed.

6: end if

7: end for

8: end for

9

: Remove candidate clusters C which contain less than
three proteins.
10: return C;

|A N B2

OS(A,B) = ————
lA| > |B|

(11)

In this paper, we set o is 1 (see “Parametric selection”
section). It means that if there are two identical candi-
date clusters, only one cluster is kept. Furthermore, we
remove the candidate clusters with the size less than 3
in line 9 because these candidate clusters could be eas-
ily considered as real complexes, which may give rise
to randomness in the final result and affect the correct-
ness of the performance evaluation. For instance, that
the size of a complex is 2: OS = ﬁ = 025 > 0.2
can be considered a protein complex. Algorithm 4 shows
the pseudo-codes of merging and removal of candidate
clusters.

CALM is different from ClusterONE

In this section, we provide a summary of the ClusterONE
of Nepusz et al. [24] and show how CALM differs from
ClusterONE.

1. We have fully considered the inherent
core-attachment organization of PCs in CALM, but
ClusterONE had not taken account of this structure.
It is the biggest difference between CALM and
ClusterONE. (see “Our work” section)

2. Though researchers believed that it is very important
to distinguish between overlapping nodes and seed
nodes, they did not distinguish between the two
because existing clustering algorithms lacked some
topological properties in the analyzed PPI networks.
However, the CALM first provides an approach to
distinguish them, because it is very important to
predict overlapping protein complexes. (see
“Identifying overlapping nodes” section)
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3. ClusterONE selects the next seed by considering all
the proteins that have not been included in any of the
protein complexes found so far and taking the one
with the highest degree again. ClusterONE ignores a
basic fact that overlapping nodes could belong to
multiple complexes according to overlapping nodes
have higher degree, and overlapping nodes are
considered as seed nodes, which can lead to some
high overlapping protein complexes being wrongly
considered as a single fake PC (In fact, they are
functional modules) or miss some high overlapping
protein complexes. The influence of this effect has
been illustrated in the “Identifying overlapping

nodes” section.

4. We propose the support function could eliminate
errors when adding a node to a cluster and avoid
some peripheral proteins are missed. The support
function has two important functions. First, one is
that it could eliminate errors. Second, it could avoid
some peripheral proteins are missed. (see “Support
function” section)

5. For ClusterONE, we think that it is too strict to make
the “cohesiveness” be larger than a threshold (1/3),
because some protein complexes have a lower
threshold (their “cohesiveness” may be smaller than
1/3), and they could be missed. Therefore, it is more
reasonable to let a predicted cluster become a locally
optimal modularity cluster. (see “Generating
candidate clusters” section)

6. ClusterONE extends a cluster (starting with a highest
degree seed) by alternately adding and deleting some
nodes to make “cohesiveness” satisfy a threshold. Our
method adds nodes greedily by the support function
to make local modularity function reach local optimal
cluster. Moreover, ClusterONE sets p to default 2. In
this paper, the value of § is half of the average node
degree in a entire PPIN. Therefore, CALM is more
adaptable to different networks. (see “Local
modularity function” section)

Results and discussion

Datasets

We use three large-scale PPINs of saccharomyces cere-
visiae of Collins et al. [51], Gavin et al. [6] and Krogan et
al. [52] to test the CALM method, and they are also used
in ClusterONE [24]. These PPINs are assigned a weight
representing its reliability thought derived from multiple
heterogeneous data sources. For Collins et al. [51], we
use the top 9,074 interactions according to their purifica-
tion enrichment score. The Gavin et al. [6] are obtained
by considering all PPINs with a socio-affinity index larger
than 5. The Krogan et al. [52] uses a variant: Krogan
core contained only highly reliable interactions (proba-
bility >0.273). Self-interactions and isolated proteins are
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Table 1 The properties of the three datasets used in the
experimental study

Dataset Proteins  Interactions  Network density ~ Average
no.of
neighbors

Collins 1622 9074 0.007 11.189

Gavin 1855 7119 0.004 8.268

Krogan core 2708 7123 0.002 5.261

eliminated from these datasets. The properties of the
three PPINs used in the experimental work are shown in
Table 1.

Table 2 gives two sets of reference PCs, which are used
as gold standards to validate the predicted clusters. The
first benchmark dataset is the CYC2008 which consists of
manually curated PCs from Wodark’s lab [7]. The second
benchmark dataset is derived from three sources: MIPS
[19], Aloy et al. [20] and the Gene Ontology(GO) anno-
tations in the SGD database [53]. Complexes with fewer
than 3 proteins are filtered from two benchmarks. There
are 236 complexes left in the CYC2008 and 328 complexes
left in NewMIPS. To illustrate that the real-world PCs are
overlapping, we compute the number of overlapping and
non-overlapping PCs in the two reference sets. The results
are shown in detail in Table 2. It is shown that 86.28% and
45.77% PCs in CYC2008 [7] and NewMIPS [36] are over-
lapping, respectively. Therefore, to improve the prediction
accuracy of graph clustering methods, it is critical that the
overlapping problem is solved.

Evaluation criteria

To assess the performance by comparison between the
predicted clusters and the reference complexes, the most
commonly method used is the geometric accuracy (ACC)
measure introduced by Brohee and van Helden et al. [54].
This measure is the geometric mean of clustering-wise
sensitivity (Sn) and the positive predictive value (PPV).
Given N complexes as references complexes and M pre-
dicted complexes, let t; represent the number of the
proteins in both the reference complex N; and predicted
complex M;. Sn (12), PPV (13), and ACC (14) are defined
as follows.

_ i muxjyil {tii}

Sn = N, (12)
Table 2 The statistics of benchmark datasets
Complex Overlapping Non-overlapping ~ The sum
dataset complexes complexes of complexes
NewMIPS 283(86.28%) 45(13.72%) 328(100%)
CYC2008 108(45.77%) 128(54.23%) 236(100%)
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Sy maxi) {t;}

PPV = (13)
ij; i1t
ACC = /S, x PPV (14)

Sn measures the fraction of proteins in the reference
complexes that are detected by the predicted complexes.
Since PPV could be maximized by putting each protein
in its own cluster, so it is necessary to balance these two
measures by using ACC. It should be noted that ACC can
not turn them into a perfect criterion for the evaluation
of complex detection methods. This is because the value
of PPV can be misleading if some proteins in the refer-
ence complex appear in either more than one predicted
complex or in none of them. There are substantial over-
laps between the predicted complexes, and this puts the
overlapping clustering methods at a disadvantage. There-
fore, the PPV value is always smaller than the actual value.
The geometric accuracy measure explicitly penalizes pre-
dicted complexes that do not match any of the reference
complexes [24].

Therfore, Nepusz et al. [24] proposed two new mea-
sure of the maximum matching ratio (MMR) and fraction
criterion to overcome this defect. There is a difference
between the basic assumptions of MMR and ACC. The
MMR measure reflects how accurately the predicted com-
plexes represent the reference complexes by using max-
imal matching in a bipartite graph [55] to compute the
matching score between each member of the predicted
part and each member of the reference part which is com-
puted by the equation (11), and if the calculated value
is bigger than 0.25, then a maximum weighted bipartite
graph matching method is executed. Therefore we obtain
a one-to-one mapping maximal match between the mem-
ber of two sets. The value of MMR is given by the total
weight of the maximum matching, divided by the num-
ber of reference complexes. MMR offers a natural and
intuitive way to compare the predicted complexes with
a gold standard, and it explicitly penalizes cases when a
reference complex is split into two or more parts in the
predicted set, because only one of its parts is allowed to
match the correct reference complex. If P denotes the set
of predicted complexes and R denotes the set of reference
complexes, the fraction criterion Eq. (16) is then defined
as follows.

N, = |{c|ce R,Ap € P,OS(p, 1) = w}| (15)
N,

Fraction = — (16)
IR|

As mentioned below, OS(p, r) is a matching score, which
is computed to measure the extent of matching between a
reference complex r and a predicted complex p. Therefore,
it represents the fraction of reference complexes, which
are matched by at least one predicted cluster. We set this
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threshold w to 0.25, which means at least half of the pro-
teins in the matched reference complexes are the same as
at least half of the proteins in the matched predicted clus-
ter. Finally, we compute the sum of the accuracy, MMR
and fraction criteria for comparing the performance of the
complex detection methods [24].

Parametric selection

CALM method includes one adjustable parameter that
need be optimized, named OS. To understand how the
value of OS influences the composite score, we first test
the effect of using different overlapping score OS values
for protein complex prediction, and we also carried out
experiments on three datasets with OS varying from 0.1 to
1.0 and calculated the composite score. The results for the
protein complexes are detected from the three weighted
PPI networks of the yeast Saccharomyces cerevisiae are
shown in Table 1. The performance is evaluated by the
composite scores, which are calculated using CYC2008
and NewMIPS as the benchmark protein complexes. The
comparison results with respect to different overlapping
score thresholds OS are shown in Figs. 3 and 4. Note
that the results of CYC2008 and NewMIPS are shown
separately.

Experimentation with different parameter values are
performed to select the suitable parameters for CALM.
Examination of Figs. 3 and 4 clearly shows the suitable
parameters for CALM, the composite scores show similar
trends in all datasets, with the composite score increas-
ing with the increase in the overlapping score threshold
OS. Overall, we find that CALM shows a competitive per-
formance when OS = 1.0. To avoid evaluation bias and
overestimation of the performance, we do not tune the
parameter to a particular dataset, and set OS to 1.0 as the
default value in the following experiments.

It can be seen from Figs. 3a and 4a, that the compos-
ite score of CALM is always higher than other methods. It
could be seen from Fig. 3b and ¢, that when the overlap-
ping score is in the 0.1-0.4 range, the composite score from
CALM is slightly lower than the scores obtained using
other methods. However, when the overlapping score is
in the 0.4-1.0 range, the composite score from CALM is
clearly higher that those of the other methods. It can be
seen from Fig. 4b and c, that when the overlapping score
is in the 0.1-0.5 range, the composite score from CALM
is slightly lower the those for the other methods. How-
ever, when the overlapping score is in the 0.6-1.0 range,
the composite score from CALM is clearly higher than
those obtained using other methods. WEC and CPre-
dictor2.0 are insensitive to the selection of OS, because
these method for identification PCs are based on not only
topological informations but also other biological infor-
mations include functional annotations and gene expres-
sion profile. However, CALM and ClusterONE show that
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Fig. 3 Composite score using CYC2008 as benchmark with respect to
various overlapping score thresholds. Comparison of the composite
score of CALM and other three the state-of-the-art methods from
different weighted network with respect to different overlapping
scores threshold (from 0.1 to 1 with 0.1 increment). Various PPI
datasets include a Collins et al., b Gavin et al., ¢ Krogan core et al. The

value of the composite score include ACC, Fraction, and MMR

their composite scores are increasing as OS increases. It
could be seen from the above comprehensive analysis, the
experimental results show that CALM has a significant
performance advantage over the other three competing
methods in terms of the composite score in most cases.
In summary, CALM shows relatively higher robustness to
parameter choices.
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Fig. 4 Composite score using NewMIPS as benchmark with respect to
various overlapping score thresholds. Comparison of the composite
score of CALM and other three the state-of-the-art methods from
weighted network with respect to different overlapping scores
threshold (from 0.1 to 1 with 0.1 increment). Various PPI datasets
include a Collins et al., b Gavin et al,, € Krogan core et al. The value of
the composite score include ACC, Fraction, and MMR

For a fair comparison, all parameters in these compared
methods are set as suggested by their authors or to
the parameters corresponding to the best results. The
parameters used and the rationale behind the choice of
parameter values are described in the Additional file 1.

Comparison with existing methods
CALM has been evaluated on three PPINs by taking
into consideration NewMIPS and CYC2008 as benchmark
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datasets. The details of the experimental results are shown
in Figs. 5 and 6. Furthermore, we compare CALM with ten
existing state-of-the-art protein complex detection meth-
ods which include MCODE [14], MCL [2], COACH [34],
CORE [35], CMC [12], CPredictor2.0 [18], RRW [15],
SPICi [5], ClusterONE [24], and WEC [33]. Some of these
(such as COACH and CORE) cannot handle weights of
PPINs, and thus the weight is ignored. Here, for all com-
pared methods, similar to CALM, we exclude complex
candidates with the size of fewer than three proteins. The
aforementioned weighted PPINs are used to detect the
PCs. For CALM, we set the merging threshold w as 1.0.
We do not tune any parameters to a particular dataset, and
all parameters of CALM are set to default or are computed

—

Page 12 of 15

automatically. The performances of these representative
methods are evaluated by ACC, fraction and MMR. These
comparison approaches are provided and used in Ref [24].

The experimental results obtained using CYC2008
dataset as benchmark are shown in Fig. 5. CALM achieves
the highest fraction and MMR in three weighted PPINs.
It is obvious that CALM is much better than other pre-
diction methods in terms of fraction and MMR. For
Fraction, It means that CALM could identify more PCs.
For MMR, all other methods show obvious lower score
than CALM, indicating CALM has better performance
for the identification of overlapping complexes. Com-
pared to other methods, CALM’s ACC is a slightly lower
than the ACC of ClusterONE in the Collins datasets (a).

a CALM
WEC
ClusterONE
CPredictor2.0
SPICi
COACH
CORE

RRW

CMC

MCL
MCODE

b CALM
WEC
ClusterONE
CPredictor2.0
SPICi
COACH
CORE
RRW

CMC

MCL
MCODE

C caum
WEC
ClusterONE
CPredictor2.0
SPICi
COACH
CORE

RRW

CMC

MCL
MCODE

0.00 020 040 0.60 0.80

of three metrics on a given network. Larger scores are better

et
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Composite score

Fig. 5 Prediction performance on three PPINs and CYC2008 is used as benchmark. The comparisons are in terms of the geometric accuracy (ACC),
the fraction of reference complexes which are matched by at least one predicted cluster (Fraction), and the maximum matching ratio (MMR).
Various PPI datasets include a Collins et al., b Gavin et al,, € Krogan core et al. The total height height of each bar is the value of the composite scores
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Fig. 6 Prediction performance on three PPINs and NewMIPS is used as benchmark. The comparisons are in terms of the geometric accuracy (ACC),
the fraction of reference complexes which are matched by at least one predicted cluster (Fraction), and the maximum matching ratio (MMR).
Various PPl datasets include a Collins et al., b Gavin et al,, € Krogan core et al. The total height height of each bar is the value of the composite scores
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For the ACC, which consists of Sn and PPV, PPV tends
to be lower if there are substantial overlaps among the
detected PCs. A more in-depth analysis has been demon-
strated by Nepusz et al. [24]. On the contrary, CALM
achieves the highest fraction and MMR in all datasets,
and obviously outperforms other methods. As shown
in Fig. 5, the total height of each bar is the composite
score of three metrics (ACC, fraction, MMR) for different
methods on different PPINs. The higher score is bet-
ter. Based on all experimental results obtained using the
CYC2008 dataset and shown in Fig. 5, we could conclude
that all comparison methods have different performance
on different PPINs. Some of these are the state of art
innovative approaches such as ClusterONE, WEC, and

CPredictor2.0 developed in recent years. Nevertheless,
the performance of CALM is more stable and robust for
the three weighted PPINs used. Thus, CALM achieves
an overall best performance among the eleven methods
compared.

The results using NewMIPS as benchmark are illus-
trated in Fig. 6. The performances of all methods are
basically consistent with Fig. 5. It is obvious that CALM
dominates other methods in term of fraction and MMR.
For ACC, all other methods shows an obvious instability,
whereas CALM always stays at the second or third posi-
tion in all methods, our ACC is very close to the best. In
summary, the ACC of our method is slightly lower than
the best result. Meanwhile, CALM is quite competitive
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and the best in terms of fraction and MMR in several
PPINs. This means that CALM could identify more over-
lapping PCs. Similarly, we also compute the composite
score by using NewMIPS as benchmark as shown in Fig. 6.
Based on the result of the composite scores, CALM clearly
outperforms the other comparison methods. All in all,
comparing Figs. 5 and 6, we could conclude that for the
PPINs (Collins, Gavin or Krogan), the performance with
CYC2008 as reference set is better than NewMIPS as the
reference set because the number of PCs is higher in
NewMIPS than in CYC2008.

Conclusion

In this paper, we develop a clustering method called
CALM for PCs detection based on the core-attachment
and local modularity structure from weighted PPI net-
works. It could be seen from the experimental results
that CALM outperforms ten other state-of-the-art meth-
ods in term of three evaluation metrics. CALM consid-
ers many aspects about PPIN and PCs, including noise
data, core-attachment structure, local modularity struc-
ture, overlapping PCs and various density PCs. Therefore,
CALM could get a novel insight for predicted complexes
in bioinformatics field. For this purpose, we first iden-
tify overlapping nodes and seed nodes according to the
properties such as weight degree and node between-
ness, and then we expand each cluster from each seed
node based on the core-attachment structure. Further-
more, we generate candidate clusters by using seed selec-
tion and local and greedy search process. Note that
each seed node in PPI network is extended only once.
Finally, we merge and remove some candidate clusters,
the rest of the candidate clusters are considered as PCs.
In addition, CALM thoroughly considers two major lim-
itations in PPINs, namely, incompleteness and high noise
data. In conclusion, CALM outperforms the compet-
ing approaches and is capable of effectively detecting
both overlapping PCs and varying density PCs. What’s
more, we study some topological properties for the iden-
tification of overlapping nodes, which has not been
researched before.

In the future, firstly, we are considering more efficient
methods to improve the performance for the accuracy of
the identified overlapping complexes. Secondly, it will be
worthwhile to develop a measure for assessing the reliabil-
ity of protein interactions and so that CALM could detect
the PCs in unweighted PPI datasets. Thirdly, CALM could
be applied in related fields such as the analysis of social
networks.

Additional file

Additional file 1: Predicting overlapping protein complexes based on
core-attachment structure and a local modularity measure. (TEX 16 kb)
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