Correction to: The cytidine deaminase under-representation reporter (CDUR) as a tool to study evolution of sequences under deaminase mutational pressure

Maxwell Shapiro ${ }^{1}$, Stephen Meier ${ }^{1}$ and Thomas MacCarthy ${ }^{1,2^{*}}$

Correction

Following publication of the original article [1], the authors reported that Figs. 1 and 3 were interchanged. The original article has been corrected.
The correct versions of the figures are given below:

Accepted: 21 June 2018

Published online: 04 July 2018

Reference

1. Shapiro M, et al. The cytidine deaminase under-representation reporter (CDUR) as a tool to study evolution of sequences under deaminase mutational pressure. BMC Bioinformatics. 2018;19:163. 10.1186/s12859-018-2161-y

[^0]

Fig. 1 gc3 shuffle method. The choice of codons in the 4th nucleotide in the sequence (lle) was determined by the probabilities as follows: since there is an overall GC content of 60% at the 3 rd position of the codons in the subject sequence, the ATC codon will be chosen with 0.6 probability. Since the AT content is then 0.4 , the other two codons ATT and ATA are chosen randomly with equal probability, conditional on the 40% AT content. Note that the shuffling occurs iteratively throughout sequence, not just one codon at a time

Fig. $\mathbf{3}$ dn23 shuffle method. First the dinucleotide frequency is calculated for the 2 nd and 3 rd codon positions of the original sequence. Then for each amino acid, codons are chosen based on the appropriately normalized probabilities for the dinucleotides available for that amino acid

[^0]: * Correspondence: thomas.maccarthy@stonybrook.edu
 ${ }^{1}$ Department of Applied Mathematics and Statistics, Stony Brook University, 100 Nicolls Road, Stony Brook, NY, USA
 ${ }^{2}$ Laufer Center for Physical and Quantitative Biology, Stony Brook University, 100 Nicolls Road, Stony Brook, NY, USA

