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Abstract

Background: To ensure cancer patients are stratified towards treatments that are optimally beneficial, it is a priority
to define robust molecular subtypes using clustering methods applied to high-dimensional biological data. If each
of these methods produces different numbers of clusters for the same data, it is difficult to achieve an optimal
solution. Here, we introduce “polyClustR”, a tool that reconciles clusters identified by different methods into subtype
“communities” using a hypergeometric test or a measure of relative proportion of common samples.

Results: The polyClustR pipeline was initially tested using a breast cancer dataset to demonstrate how results are
compatible with and add to the understanding of this well-characterised cancer. Two uveal melanoma datasets
were then utilised to identify and validate novel subtype communities with significant metastasis-free prognostic
differences and associations with known chromosomal aberrations.

Conclusion: We demonstrate the value of the polyClustR approach of applying multiple consensus clustering
algorithms and systematically reconciling the results in identifying novel subtype communities of two cancer types,
which nevertheless are compatible with established understanding of these diseases. An R implementation of the
pipeline is available at: https://github.com/syspremed/polyClustR

Keywords: Clustering methods, Subtype community, Reconciliation methods, Network analysis, Hypergeometric
test, Breast cancer, Uveal melanoma, Hierarchical clustering, K-means clustering, Non-negative matrix factorization

Background
Recently, advances in omics technologies have lead to
large volumes of data being collected on molecular pro-
files, including gene expression, in various cancers. Can-
cers of all types exhibit inter-tumoral (between patient)
heterogeneity that can be quantified in part by gene ex-
pression. This heterogeneity can help explain the differ-
ential prognosis in cancer patients treated with the same
therapies. A well-established example is the specific effi-
cacy of trastuzumab (Herceptin) in HER2-positive breast
cancer [1]. Previously, we suggested potential differential
cetuximab (anti-EGFR therapy) responses in colorectal
cancer (CRC) subtypes that we defined previously [2].
More recently, trials of oxaliplatin in Stage II and III

CRC found that its effectiveness may be limited to one
of these subtypes [2, 3]. In pancreatic cancer, we ob-
served a relatively increased response to gemcitabine in
quasi-mesenchymal (QM) subtype cell lines compared
to classical subtype cell lines [4]. This result corrobo-
rates with the finding by Mofitt et al., that patients with
the basal-like pancreatic cancer subtype (equivalent to
our QM subtype) have improved response to adjuvant
therapy compared to those with the classical pancreatic
cancer subtype [5]. Similarly, we showed potential
subtype-specific therapies using a panel of breast cancer
cell lines and drug response analysis [6]. Nevertheless,
for accurate prediction of therapy responses, the chal-
lenge lies in defining robust and clinically relevant
subtypes.
In breast cancer, where current opinion lies with the

existence of 5 intrinsic gene expression subtypes (basal,
HER2/ERBB2, luminal A, luminal B, and normal-like),
studies have variously reported a number of gene
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expression subtypes ranging between 4 [7] and 10 [8].
While multiple factors are involved in this apparent dis-
crepancy in defining a number of cancer subtypes, the
clustering methodologies employed can significantly
contribute to this difference. There are various clustering
algorithms that are regularly employed for this purpose,
and each has its own strengths according to the under-
lying structure of the data it is applied to. As clustering
algorithms have a huge range of potential applications,
selection of the appropriate algorithm to use in any
given situation can be difficult. At the same time, the
need for the user to inspect the results of each algorithm
over a range of numbers of clusters (k) and select the
optimal solution are often subjective. This situation has
been improved by the adoption of various consensus
clustering techniques, which allow for visual and quanti-
tative examination of multiple re-runs of the same algo-
rithm so the effects of random starting points can be
taken into consideration.
Nevertheless, the use of consensus clustering does not

mitigate the effect that algorithm choice has on the clus-
tering solution. The application of different consensus
clustering algorithms leads to different numbers of sub-
types (numbers of clusters, k), and hence, defining the
optimal number of clusters is often challenging. This is
due to various factors in the design of the algorithm:
whether it is ‘greedy’, that is, if it makes the locally
optimal choice at each individual stage at the possible
expense of finding a global optimum; whether cluster
centroids must be located at data points; how iterative
algorithms evaluate their convergence to a solution; the
“shape” of the discovered clusters; and the metric used
to measure sample similarity are some examples [9]. The
high dimension of biological data can also demand unrea-
sonable computational time and create a large search do-
main for the optimal solution. This makes the use of a
single algorithm to cluster gene expression profiles, as is
often done in subtyping studies, risky. In addition, the
clusters found may well be valid, but information about
either larger stratification of the data or small but distinct
sub-subtypes of low frequency may be lost [10]. It is for
this reason that finding methods of reconciling optimal
clustering solutions identified by different algorithms is
necessary. Cluster reconciliation not only validates the
clusters from different algorithms – it can also reveal in
greater detail the structure in the data on the macro and
the micro scale, from broad classifications resulting from
a handful of important functional groups, to rarer and less
well-defined sub-subtypes [10, 11].
Here, we demonstrate how to identify optimal solutions

and define subtype “communities” by reconciling clusters
identified from three different consensus clustering
methods - hierarchical clustering (HC) [12, 13], k-means
(KM) [14], and non-negative matrix factorization (NMF)

[15]. The clusters were further reconciled using at least
two approaches. The first, a hypergeometric test to deter-
mine the probability that two clusters share the same sam-
ples by chance, was previously used to successfully
reconcile subtypes of CRC found via clustering in two
studies which found three and five optimal subtypes, re-
spectively [2, 10, 16]. It was determined via this analysis
that the three subtypes could be appropriately divided into
the five sub-subtypes. When four further studies into CRC
were published, finding between 3 and 6 optimal clusters
[17–20], the Jaccard index was applied to help understand
the relationships between these solutions and find
“consensus molecular subtypes” (CMS) [11]. The second
and a new reconciliation measure used here – calculating
the relative proportion of samples in a smaller cluster
present in a larger one (termed PMI) – differs from mea-
sures of cluster similarity such as the Jaccard index in
order to give sub-subtypes a high score, even if they are
much smaller than a larger cluster (see Methods section).
All the above reconciliation methods are part of our

new framework or package called “polyClustR”. The
framework is flexible that other methods can be
included any time. Here, we demonstrate how our new
pipeline can be used to identify breast cancer gene ex-
pression “subtype communities” and to compare with
existing intrinsic subtypes [7]. Moreover, we have
applied this to uveal melanoma gene expression profiles
to define novel gene expression “subtype communities”
with different prognosis and chromosomal aberrations
associated with them.

Methods
Datasets
The breast cancer dataset (Chin, et al.) [21] consists of 118
gene expression profiles of 12,703 genes generated from
frozen resected samples. Patients in this cohort were mostly
early-stage, and were a mixture of node- and ER-positive
and -negative. The discovery uveal melanoma dataset
(GSE22138 [22]) consists of gene expression profiles of
42,346 genes for 63 untreated patients, chromosome 3
monosomy status and follow-up metastasis-free survival in-
formation. The validation dataset (GSE44295 [23]) contains
58 gene expression profiles (only the tumor samples were
considered) for 24,526 genes from enucleation specimens,
with metastasis-free survival information [24].

Finding the optimal number of clusters
It is not optimal for each of the above clustering
methods to find a local solution which depends on the
initial conditions, rather than a robust clustering that is
stable over various input parameters. To address this,
we used consensus clustering approaches that repeat
several iterations of the same algorithm using different
random starting points, and can also perform the
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clustering over different subsets of samples. Consensus
clustering for each algorithm was performed over a
range of k-values from 2 to 10 and over multiple subsets
of the data (80% of samples randomly selected for each
of 100 runs). The results of the consensus clustering
were then inspected in order to determine the optimal k.
Determining the optimal k from visual inspection alone
is subjective, and so quantification of the consensus
clustering is required. Here, the cophenetic correlation
coefficient [25] and the silhouette width [26] were used
to score each clustering. As there is no “gold standard”
method for the selection of the value of k, the tool user
is prompted to choose the number of clusters they wish
to use for each algorithm downstream reconciliation
based on this output. This allows for flexibility based on
the goals of the analysis, as the user can choose a high
value of k if the objective is to, perhaps, identify novel
subgroups of a well-characterised cancer, or to choose a
low value of k if this solution is more robust.

Hypergeometric test
Previous work has used the hypergeometric test to
determine if different algorithms’ subtypes correspond to
one another [10]. In this pipeline, comparisons can be
made between any number of clustering algorithms. The
hypergeometric test-based false discovery rate (FDR)-ad-
justed p-value indicating the significance of the size of
the overlap between two clusters was used.

Proportion of maximum intersection (PMI)
We introduce the following proportion of maximum
intersection, PMI; for clusters A and B, of arbitrary size:

PMI ¼ A∩Bð Þ
min Aj j; Bj jf g

The measure above gives the proportion of samples
shared between two clusters out of the maximum pos-
sible samples shared (that is, the number of samples in
the smaller cluster). If, for example, A contains more
samples than B, PMI is 0 when none of the samples of B
are in A and 1 when all of the samples of B are in A.
This measure has an advantage over alternatives such as
the Jaccard index (used in our previous publication [11])
in this context, for the reason that in having different
values of k clusters from different algorithms will inher-
ently be of different sizes. If the same number of clusters
were being compared between algorithms then Jaccard
index would give a good measure of cluster overlap.
Using our alternative metric gives the same weight to
clusters of the same size which are directly analogous
between algorithms, as it does to clusters identified via
one algorithm which are sub-subtypes of a cluster found
by a different algorithm.

Network community detection
The FDR values produced by the hypergeometric tests
and the PMI scores can be represented as edge weights
in an undirected network, where vertices are clusters as
discovered by the various algorithms. This network can
be subjected to community detection, where groups of
well-connected vertices (clusters) are identified. In the
label propagation method [27] each vertex is initialized
with a different label, before then being assigned the
label that is most common amongst its direct neighbors.
This process continues iteratively until convergence. A
variant of the label propagation algorithm [27], which
takes into account the weight of edges connecting the
vertices, is used here.

Statistical analysis
FDR values for enrichment of gene sets were reported as
calculated by the Broad Institute’s GSEA software [28].
P-values generated by hypergeometric tests were
FDR-corrected for multiple testing. Kaplan-Meier ana-
lysis was used to assess survival and the statistical ana-
lysis were from log-rank test. Prediction analysis of
microarrays (PAM) analysis to generate centroids and
assign subtypes using Pearson correlation and gene
expression data was done as previously described [11].

Software
Code for hierarchical and k-means consensus clustering
was adapted from the ConsensusClusterPlus v1.36.0 [29]
R package. NMF was performed via the nmf v0.20.6 R
package [30]. The igraph R package v1.0.1 [31] was used
for plotting networks and community detection. Silhouette
width was calculated and plotted using the silhouette func-
tion from the R package cluster v2.0.4 [32]. Survival analysis
was performed using the survival v2.39–5 R package [33].
The pipeline described in this paper is publicly available on
GitHub at https://github.com/syspremed/polyClustR.
Clustering parameters for the pipeline are: Consensus
resamplings: 100; Proportion of items sampled per
subsample: 0.8; Clustering distance: Euclidean; Heirarchical
linkage method for subsampling: Average; Heirarchical
linkage method for consensus matrix: Average.

Results and discussion
An overview of the tool
Our reconciliation method (Fig. 1) uses a matrix of pre-
processed and normalized gene expression (or any other
similar data) and performs the following: a) applies dif-
ferent consenusus clustering methods (including NMF,
HC and KM) and uses statistical scores (specific to each
method described below) for each clustering to allow the
user to choose the optimal number of clusters; and b)
reconciles the results from different clustering methods
and identifies a consensus solution by creating network
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of clusters that defines “communities” of integrated sub-
types using methods such as the hypergeometric test
and PMI. We then identify the optimal “communities”
with highest average silhouette width [26] and compare
this reconciliation to known subtypes, if they exist, for
that set of samples. To illustrate this, we used published
gene expression profiles from breast cancer and uveal
melanoma as examples.

Application to reconcile breast cancer “subtype
communities” with intrinsic subtypes
Breast cancer subtypes defined by multiple clustering methods
For this purpose, we used breast tumor gene expression
data (n = 118; Chin data set) from a published study
[21]. Details of initial clustering of this dataset and selec-
tion of k clusters for each algorithm are provided in
Additional file 1: Figure S1A-D. Initially, we applied
NMF to the 2258 most highly variable genes from this
Chin data set as selected by standard deviation (SD > 0.8).
We identified highest cophenetic correlation coeffi-
cient of 0.9997 for NMF kNMF = 2 followed by 0.9962
at kNMF = 6. Silhouette width also showed peaks at
kNMF at 2 and 6 (Additional file 1: Figure S1A-B). In
this work, as the downstream reconciliation methods
will pool any similar clusters together, we choose the

higher value of k where the cophenetic correlation
coefficient and silhouette width are approximately
equal between different values of k. In addition, we
assessed the consensus matrix for each k and evalu-
ated the number of outlier samples (less the better)
in each cluster. This allows us to retain the finer
stratification of the initial clustering, while simultaneously
assembling information about broader biological charac-
teristics from the subsequent reconciliation. As such, we
chose kNMF = 6, and named the clusters breast cancer
(b)NMF1 to 6. Overall, known subtypes of these samples
[21] were significantly associated with these clusters
(Fisher’s exact test; p < 0.001). Specifically, the clusters
bNMF1, bNMF3 and bNMF4 were significantly associated
with luminal A, basal and luminal B, respectively (hyper-
geometric test; false discovery rate; FDR < 0.01) (Fig. 2a).
The basal subtype was also border-line significantly asso-
ciated (FDR = 0.2) with bNMF5, suggesting the existence
of a sub-subtype of basal breast cancer that was not iden-
tified earlier when subtypes for this dataset were predicted
by correlation with intrinsic subtype signatures [34] [7].
bNMF2 and bNMF6 were not significantly associated with
any of the published subtypes. Gene set enrichment
analysis (GSEA) of these unidentified subtypes revealed
associations with metaplastic breast cancer (bNMF2,

Fig. 1 An overview of our pipeline for cluster reconciliation. Gene expression – or other equivalently structured molecular data – is input as a
genes by samples matrix. This data is then fed through multiple consensus clustering algorithms (in this case, HC, KM and NMF) to produce
multiple clustering solutions. The quality/robustness of the clusters is assessed. These clusters from multiple clustering methods are then
reconciled to create “subtype communities” of similar clusters from across the algorithms’ solutions, by applying community detection to
networks representing the similarity between clusters from all the algorithms
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FDR < 0.01) and with 17q21-q25 amplicon gene sets
(bNMF6, FDR < 0.1) (Additional file 2: Figure S2A-B).
Overall, application of NMF to the Chin data set
identified clusters that partially overlapped with pub-
lished subtypes, and others with interesting breast
cancer biology.
Since NMF identified extra subtypes in the Chin data

set, we applied two additional clustering methods – con-
sensus hierarchical clustering (HC) and k-means (KM).
When we applied consensus hierarchical clustering to
the same data, kHC = 2 and kHC = 6 had the highest sil-
houette widths. (Additional file 1: Figure S1A and C).
The cophenetic coefficient after kHC = 6 does not in-
crease significantly and the consensus plot showed well--
defined clusters (Additional file 1: Figure S1A and C).
Hence, we chose six HC clusters (as it reduces the hetero-
geneity and further downstream reconciliation will group
any similar clusters together). The clusters from HC for
breast cancer data were defined as breast cancer (b)HC.
As with the NMF clusters, these clusters were significantly
associated with the known subtypes of these samples
(Fisher’s exact test; FDR < 0.001). The bHC1, bHC3 and
bHC6 clusters were significantly (hypergeometric test;
FDR < 0.01) associated with basal, luminal A and

normal-like subtypes, respectively (Fig. 2b). Both bHC2
and bHC5 were significantly (FDR < 0.01) associated with
the luminal B subtype. bHC4 was marginally significantly
associated with the luminal A subtype, and bHC5 with the
ERBB2 (HER2) subtype, with less significance (FDR < 0.2;
Fig. 2b).
Additionally, we applied consensus KM clustering to

the Chin data set. While both the cophenetic coefficient
and silhouette width showed highest peaks at kKM = 3
and 4 (after kKM = 2), we observed that consensus
clustering at these kKM values did not show clear con-
sensus clusters. There were not large differences in
cophenetic coefficient, silhouette width and consensus
clusters at kKM between 4 and 7 (Additional file 1: Figure
S1A and D). Hence, we chose kKM = 7 as an optimal
cluster. All of these KM clusters (defined as breast can-
cer (b)KM were significantly or marginally significantly
associated with known breast cancer subtypes (Fig. 2c;
Fisher’s exact test; p < 0.001), unlike the NMF and HC
clusters. Specifically, bKM1 and bKM4 were associated
with basal, bKM2 with luminal B and bKM3, bKM5 and
bKM6 with luminal A (hypergeometric test; FDR < 0.01).
bKM7 was significantly associated with the ERBB2 sub-
type, which was not highly significant with any NMF or

a b

c

Fig. 2 Breast cancer subtypes and their association with intrinsic subtypes – application of polyClustR. a-c Heatmaps of similarity of each set of
clusters generated by consensus a NMF, b HC and c KM to the known breast cancer subtypes of each sample using 118 breast cancer samples
from the published Chin dataset [21] is shown. A hypergeometric test was used to test the significance of overlap between the clusters and the
known subtypes. bNMF, bHC and bKM represent NMF, HC and KM breast cancer subtypes, respectively. Norm – normal-like, LumA – luminal A
and LumB – luminal B subtypes. FDR – false discovery rate
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HC clusters. bKM3 was marginally associated with the
normal-like subtype (FDR = 0.08). Direct comparison of
the two basal clusters through GSEA revealed enrich-
ment of multiple gene sets associated with invasive
breast cancer, immunity and cytokines (Additional file 2:
Figure S2C-F; with FDR < 0.2). This clearly suggests that
different clustering algorithms have the inherent capacity
to identify distinct clusters. Here, KM has identified
clusters with more significant association to all the pub-
lished subtypes.

Identification of breast cancer “subtype communities”
The existence of multiple clustering solutions defined by
different algorithms poses the question of what number
of clusters is optimal, and how they reconcile between
different methods. To address these questions, we chose
two different reconciliation methods – hypergeometric
test and PMI. The results from each of the reconciliation
methods are discussed below.
Previously, we have used the hypergeometric test to

assess enrichment of samples between two CRC clas-
sifications (including ours) as a means of reconciling
subtypes [10]. Similarly, we have used this analysis
here to reconcile breast cancer clusters between the
three different (NMF, HC and KM) algorithms
utilized above. Subsequently, in order to group those
clusters with significant similarity into “subtype
communities”, we performed network community

detection by applying weighted label propagation
method (using FDR values as edge weights) [27]. As a
result, we observed six “subtype communities”
(groups of clusters; bHYP1–6) based on this analysis
(Fig. 3a).
There was significant association with the known

subtypes and these communities (Fisher’s exact test;
p < 0.001). We observed that five communities were
primarily and significantly (hypergeometric test; FDR
< 0.05) associated with published breast cancer sub-
types – bHYP3 and bHYP4 with luminal A, bHYP2
with luminal B, and bHYP1 and bHYP6 with basal
(Fig. 3a and Additional file 3: Figure S3A). Four of
the communities (bHYP1–4) contained clusters from all
three clustering algorithms (Fig. 3a). Interestingly, each of
the luminal A and basal subtypes were split into two com-
munities. One basal community (bHYP6) contained the
immune-enriched bKM4 cluster. One of the luminal A
communities (bHYP3) contained a number of samples
from the ERBB2 subtype in a cluster that was enriched for
a metaplastic breast cancer signature (bNMF2; Fig. 3a and
Additional file 3: Figure S3A), while the other (bHYP4)
contained some luminal B samples in the 17q21-q25
amplicon-enriched cluster (bNMF6; Fig. 3a and
Additional file 3: Figure S3A). Finally, there was a com-
munity (bHYP5) with mixture of normal-like and
ERBB2 subtype samples. This community was the
most mixed in terms of intrinsic subtypes. Overall,

a b

Fig. 3 Subtype communities of breast cancer identified using polyClustR. a A hypergeometric (HYP) test and b PMI was used to assess the
significance of the overlap between each pair of clusters using the Chin breast cancer data set [21]. The resulting FDR corrected p values/PMI
values were plotted as edge colours/weights in this network, with each node representing a cluster. The size of each node represents the
number of samples that cluster contains, and those nodes in a lighter shade represent clusters with associations to known subtypes that are not
significant (FDR corrected p > 0.05). Gray shading marks dense groups of clusters that are defined as subtype communities by network
community detection. bHYP and bPMI represent HYP and PMI subtype breast cancer communities, respectively. Average silhouette width is
shown for each of the subtype communities. Here, all the HC, KM and NMF represent bHC, bKM and bNMF breast cancer subtypes, respectively
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hypergeometric test-based reconciliation expanded the
breast cancer subtypes to 6 communities.
Our PMI method is similar to the Jaccard analysis that

we used recently to reconcile CRC subtypes as a part of
the CRCSC [11], with the difference that it weights
sub-groups of a larger cluster as strongly as identical
clusters of the same size (see Methods). Here, we applied
the PMI method to reconcile subtypes from NMF, HC
and KM similar to what we performed using the hyper-
geometric test. Unlike the hypergeometric method, PMI
identified five communities (bPMI1 to 5; Fig. 3b and
Additional file 3: Figure S3B), four (bPMI2 to 5) of
which were analogous to hypergeometric communities
(bHYP2, 3, 4 and 5). The final community (bPMI1) was
a combination of the two basal hypergeometric commu-
nities (bHYP1 and 6). These communities were signifi-
cantly associated with known subtypes, overall (Fisher’s
exact test; p < 0.001). As expected, four of the five com-
munities represent luminal A (bPMI3 and 4), luminal B
(bPMI2) and basal (bPMI1) communities (hypergeo-
metric; FDR < 0.05). The other community (bPMI5) was
a mixture of HER2/ERBB2 and normal-like (Fig. 3b and
Additional file 3: Figure S3B).
The merging of the bHYP1 and bHYP6 communities

into bPMI1 is due to the large differences in scale of the
edges connecting bHC1 to bNMF5/bKM4 and bHC1 to
bNMF3/bKM1 in bHYP1 and bHYP6 versus bPMI1 (Fig.
3). FDR-corrected p-values between bHC1 and bNMF5/
bKM4 were 11–14 orders of magnitude larger than those
between bHC1 and bNMF3/bKM1 (despite still being sig-
nificant). Conversely, the weakest connection to bHC1 in
bPMI1 is a PMI value of 0.64, versus 0.77 for bNMF5 to
bKM4 and 1.0 for bHC1 to bNMF3 and bHC1 to bKM1
(Fig. 3). This could indicate that the PMI method is able
to detect the canonical basal subtype, while the hypergeo-
metric reconciliation is able to find a sub-stratification of
this subtype in this breast cancer data set.
To choose the optimal “subtype communities” be-

tween HYP and PMI communities, we calculated the sil-
houette width [26] for all samples in the different
communities (Fig. 3 and Additional file 4: Figure S4).
The average silhouette widths for HYP communities
were 0.06 and that for PMI communities were 0.07.
Hence, PMI communities with highest average silhouette
width were chosen as optimal.
This application of the pipeline to a well-characterised

cancer has demonstrated its ability to identify new bio-
logically distinct “subtype communities” of patients,
alongside those subtypes which have already been exten-
sively described. We next sought to apply this pipeline
to a cancer with molecular subtypes that have not been
explored so comprehensively, uveal melanoma – al-
though classes at the gene expression level are known
[35–37].

Application to uveal melanoma and identification of
novel “subtype communities”
Identification of subtype communities
Compared to breast cancer, uveal melanoma is a cancer
type that has not been extensively subtyped, presumably
due to its low incidence. This scarcity of samples makes
clustering a challenge – clusters discovered are less
likely to be robust due to their small size. It is in cases
such as this where the reconciliation of clusters from
multiple algorithms may present benefits in terms of in-
creasing confidence in the results of clustering.
As with the breast cancer data, we applied the three

clustering algorithms of HC, KM and NMF to a dataset
of the 6146 most variable genes (SD > 0.8) from 58
patients with uveal melanoma (GSE22138, [22]). By
performing the same assessment of cophenetic correlation
coefficient, silhouette width and consensus matrices, we
discovered four clusters by HC, six clusters by KM and
five clusters by NMF (Additional file 5: Figure S5A-D).
By reconciling these subtypes by a hypergeometric test

followed by community detection, we identified five
“subtype communities” of clusters (Fig. 4a). When we
assessed these communities for the key molecular
feature of chromosome 3 aneuploidy, we discovered a
significant association of these communities with this
feature (Fisher’s exact test; p < 0.001); one community –
melanoma mHYP2 – was significantly enriched (hyper-
geometric test; FDR < 0.001) for monosomy, and another
(mHYP5) was significantly enriched (FDR < 0.05) for
both disomy and partial monosomy (Fig. 4a and
Additional file 6: Figure S6A). Two of the remaining
three communities showed less significant associations
with chromosome 3 disomy (mHYP4) and monosomy
(mHYP1; hypergeometric test; FDR < 0.2) respectively,
while the final community (mHYP3) was not signifi-
cantly enriched for either. A similar pattern of associa-
tions was observed when assessing four “subtype
communities” defined by the PMI method (Fig. 4b), with
one community each representing monosomy and
disomy (mPMI1 and mPMI4, respectively), and one
mixed disomy/partial monosomy/monosomy community
(mPMI2) – however the association was not statistically
significant (Fisher’s exact test; p = 0.6) (Fig. 4b and
Additional file 6: Figure S6B). HYP subtypes were chosen
over PMI subtypes for significant association with known
key molecular features of uveal melanoma and having a
lower number of samples with negative silhouette width
in this cohort (Additional file 7: Figure S7).

Biological understanding of uveal melanoma subtype
communities
Next, we sought to understand these communities by
performing GSEA, and discovered that one of these
communities (mHYP1) was significantly enriched
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a b

Fig. 4 Subtype communities of uveal melanoma identified using polyClustR. a A hypergeometric (HYP) test and b PMI was used to assess the
overlap between each pair of clusters using the uveal melanoma dataset [22]. The resulting FDR corrected p values were plotted as edge colours/
weights in this network, with each node representing a cluster. The size of each node represents the number of samples that cluster contains,
and those nodes in a lighter shade represent clusters with associations to known subtypes that are not significant (FDR corrected p > 0.05). Gray
shading marks dense groups of clusters as defined by network community detection. mHYP and mPMI represent HYP and PMI subtype
melanoma communities, respectively. Average silhouette width is shown for each of the subtype communities

a b

Fig. 5 GSEA enrichment plots of a the mHYP1 uveal melanoma community, showing significant enrichment of immunity-related gene sets, and
b the mHYP3 uveal melanoma community, showing significant enrichment of neural-related gene sets. SNR - signal to noise ratio
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(FDR < 0.05) for gene sets associated with immune
pathways (e.g. T cell receptor signaling, JAK-STAT,
cytokine-cytokine receptor interactions, and IL2
STAT5 pathways; FDR < 0.05; Fig. 5a). On the other
hand, another subtype (mHYP3) was associated with
neural cell types (e.g. glioblastoma neural subtype,
neurotransmitter signaling, potassium signaling and
neuron system; Fig. 5b; FDR < 0.05). The last commu-
nities (mHYP2, mHYP4 and mHYP5) did not signifi-
cantly associate with any gene sets. This could
indicate that mHYP2 (which is enriched for chromo-
some 3 monosomy) and mHYP4 (which is borderline
enriched for chromosome 3 disomy) may be defined
by their karyotype as opposed to a coherent transcrip-
tomic pattern.

Patient prognostic differences between uveal melanoma
subtype communities
Since more than 50% of uveal melanoma patients
undergo metastasis [22], we assessed the metastasis-free
prognosis of the uveal melanoma subtype communities
using the GSE22138 [22] data set. Among the two highly
frequent communities, mHYP2 (36%) showed signifi-
cantly poorer metastasis-free prognosis, whereas mHYP5
(27%) showed better prognosis. Both mHYP4 (20%) and
mHYP1 (13%) communities showed intermediate prog-
nosis (Fig. 6a).

Validation of uveal melanoma subtype communities
Due to the low frequency of some of these communities
in this dataset (5% mHYP3, 13% mHYP1), we sought
to validate them in an independent dataset consisting
of 58 patients with uveal melanoma (GSE44295).
Patients were assigned to subtypes based on the
correlation of their gene expression profile with the
prediction analysis of microarrays (PAM) [38]
centroids of each community. 57 samples had
metastasis-free survival information. In the validation
cohort, 32% of patients were assigned to the mHYP1
(immune-enriched) group, 19% mHYP2 (monoso-
my-enriched), 12% mHYP3 (neural-enriched), 5%
mHYP4 (undetermined) and 32% mHYP5 (disomy/
partial monosomy-enriched). In terms of prognosis,
these groups showed statistically significant differen-
tial metastasis-free survival (p = 0.007; Fig. 6b). Analo-
gous to the previous dataset, mHYP2 and mHYP5
communities showed poor and good prognosis,
respectively. While mHYP1 showed intermediate
prognosis, mHYP4 couldn’t be assessed due to low
sample size of only 5% (n = 3). Interestingly and simi-
lar to the training dataset (GSE22138), 82% of
mHYP2 (monosomy-enriched) group in the validation
cohort underwent metastasis during follow-up, com-
pared to only 11% of the mHYP5 (disomy/partial
monosomy-enriched) group patients. In addition, 33%
of intermediate prognostic mHYP4 (undetermined)

a c

b d

Fig. 6 Prognosis and GSEA analysis of uveal melanoma subtype communities. a-b Metastasis-free survival in the a discovery and b validation
cohorts, respectively, was significantly different between communities. c-d GSEA enrichment plots of c the mHYP1 and b the mHYP2 uveal
melanoma communities, showing significant enrichment of class 2 published subtypes. SNR - signal to noise ratio
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and 44% mixed prognostic mHYP1 (immune-en-
riched) patients experienced metastasis. With the in-
creased sample size of mHYP3 (neural-enriched)
community, we observed that it has poor overall
survival and 57% of the mHYP3 samples underwent
metastasis (Fig. 6b). Overall, this identifies and vali-
dates novel uveal melanoma subtype communities and
their prognostic significance.

Comparison of subtype communities to known uveal
melanoma classes
Previously, transcriptomic subtypes of uveal melan-
oma have been defined by clustering of gene expres-
sion profiles. Two classes were discovered – class 1,
with good prognosis and association with chromo-
some 3 disomy; and class 2, with poor prognosis, as-
sociated with chromosome 3 monosomy and
metastasis [35–37]. To reconcile these communities
with the gene expression subtypes, we checked for
gene set enrichment of the gene signatures for class 1
and class 2 uveal melanomas in this cohort [36]. The
class 2 signature was enriched and borderline
enriched in the mHYP1 community (immune-en-
riched; FDR < 0.001; Fig. 6c) and mHYP2 (monosomy;
FDR = 0.3; Fig. 6d) groups, respectively, whereas, un-
expectedly, the class 1 signature was not significantly
enriched in any other group. This could indicate that
the class 1 signature defines a heterogeneous set of
patients who are not confined to any of our given
communities. Overall, this analysis suggests that our
novel uveal melanoma subtype communities reveal
additional heterogeneity with clinical significance that
requires further investigation.

Conclusions
These results demonstrate that no one clustering
algorithm may be relied on to produce clusters which
are robust and capture all heterogeneity in a dataset. In-
stead, multiple algorithms may be applied to the same
dataset, and their results compared and reconciled. Our
polyClustR tool provides a straightforward interface to
cluster datasets using multiple algorithms, provides sta-
tistics on the quality of each clustering, and allows the
user to fully understand how each result is related
through multiple reconciliations. The demonstration
that some low-frequency clusters – which may be lost or
discarded as outliers if only one algorithm is applied –
are consistently identified across algorithms lends cre-
dence to their validity, and here such communities were
additionally validated in an independent dataset. Thus,
the reconciliation of multiple clustering results enables
finer stratification of patients’ molecular profiles enab-
ling more focused biological profiling.
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