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Abstract

Background: Large sequence datasets are difficult to visualize and handle. Additionally, they often do not represent a
random subset of the natural diversity, but the result of uncoordinated and convenience sampling. Consequently, they
can suffer from redundancy and sampling biases.

Results: Here we present Treemmer, a simple tool to evaluate the redundancy of phylogenetic trees and reduce their
complexity by eliminating leaves that contribute the least to the tree diversity.

Conclusions: Treemmer can reduce the size of datasets with different phylogenetic structures and levels of
redundancy while maintaining a sub-sample that is representative of the original diversity. Additionally, it is possible to
fine-tune the behavior of Treemmer including any kind of meta-information, making Treemmer particularly useful for
empirical studies.
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Background
The number of genome sequences deposited into reposi-
tories such as NCBI and EBI is increasing rapidly. This
wealth of data is at the same time a great opportunity
and a challenge for biologists. Large datasets are difficult
to visualize and use in downstream analyses. Addition-
ally, being the product of different studies, downloaded
datasets are often redundant and suffer from sampling
biases. Several software packages such as CD-HIT [1]
are available to reduce redundancy in a collection of
amino-acid or nucleotide sequences [2]. Essentially,
these methods cluster together sequences with a se-
quence identity higher than a certain threshold (specified
by the user), and then select a representative sequence
from each cluster for further analysis. While such
methods are very efficient and can handle millions of
sequences in a short time, they cannot be applied to

whole genome data and do not consider phylogenetic
relationships between sequences. To overcome these
limitations, methods that reduce the size of datasets
based on phylogenies instead of sequence similarity are
needed. To date, two software packages have been devel-
oped for such purpose:

1) Tree pruner [3] is a tool to manually select and
prune leaves/branches from a phylogenetic tree.

2) Treetrimmer [4] automatically reduces the number
of leaves in a tree to few representatives for each
user-defined operational taxonomical unit (OTU),
like genus or species.

While both of these methods address the problem of
size reduction in phylogenetic trees, they have some
limitations: Tree pruner [3] can be very useful for man-
ual curation, however it is not an automatic method,
and it relies on subjective decisions by the users. Tree-
trimmer [4] is fully automatic, however it is based on
user-defined OTU. For some datasets, information on
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the taxonomy might not be available and, more import-
antly, taxonomic categories are only a very rough proxy
for genetic diversity.
Here we present Treemmer, a simple tool based on an

iterative algorithm to reduce size and evaluate redun-
dancy of phylogenetic datasets. In contrast to previous
methods, Treemmer can automatically process any
phylogenetic trees with branch lengths and does not re-
quire additional information. Treemmer prunes leaves
from a phylogenetic tree while minimizing the loss of
genetic diversity. At each iteration, all pairs of neighbor-
ing leaves are evaluated, the pair with the shortest dis-
tance between leaves is selected, and one leaf is pruned
off. The user can evaluate the redundancy of the dataset
through the plot of the decay of the relative tree length
and decide how many leaves to retain, or at what pro-
portion of the original tree length to stop trimming. We
applied Treemmer to two datasets (Mycobacterium tu-
berculosis and influenza A virus) and show that it can re-
duce their size and redundancy while maintaining a
subset of samples that are representative of the overall
diversity and topology of the original phylogenetic tree.

Methods
Implementation
Treemmer is written in python and uses the ETE library
[5] to work with tree structures. Joblib [6] was used to
parallelize the search of neighboring leaves (step1).
We present here the algorithm implemented in

Treemmer:

Step 1) Given a phylogenetic tree, Treemmer iterates
through all leaves, for each leaf it identifies the

immediate neighboring leaves (separated by one node).
If it does not find any immediate neighbor, it extends
the search to leaves separated by two nodes. The result
of this step is a list of pairs of neighboring leaves and
their genetic distances measured as the sum of the
lengths of the branches separating the two leaves.
Step 2) Treemmer selects the pair of leaves with the
shortest distance among all the pairs of neighboring
leaves, then it prunes a random leaf belonging to the
pair. In case there are several equidistant pairs,
Treemmer selects one at random. After pruning, all
pairs of neighboring leaves containing the pruned leaf
are eliminated from the list (Fig. 1).

Step 2 can be repeated any number of times before go-
ing back to step 1, this behavior can be controlled with
the option -r (–resolution). With the default value (-r =
1), only one leaf is pruned (step 2) before the set of
neighboring leaves is recalculated (step 1). With higher
values of -r = x, step 2 is repeated x times (x leaves are
pruned) before recalculating the set of neighboring
leaves (step 1). Since step 1 is the most computationally
intensive part of the algorithm, the option -r can speed
up the running time of Treemmer considerably.
Steps 1 and 2 are repeated until one of the three pos-

sible stop criteria is reached:

Stop option 1) The tree is pruned until there are three
leaves left (default). At each iteration, the relative tree
length (relative to the input tree) and the number of
leaves in the tree are stored. Treemmer outputs the
plot of the decay of the relative tree length (RTL,
compared to the original tree). The RTL decay is a

Fig. 1 The core routine of Treemmer (with -r = 1): at each iteration the pair of closest leaves is identified and one of the two leaves is pruned
from the tree, minimizing the loss of diversity.
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function of the redundancy of the dataset and of the
phylogenetic structure of the tree. The RTL decay plot
is a useful tool to evaluate the redundancy of the
datasets and how much of the diversity is lost at each
iteration.

Stop option 2) With the stop option -X ( –stop_at_
X_leaves) the user sets the number of leaves that
should be retained in the reduced dataset. Treemmer
prunes the input tree until the specified number of
leaves is reached and outputs the list of retained leaves
and the pruned tree. The output tree is useful for a
quick evaluation of the reduced datasets but should not
be used for further analysis, a new tree should be
inferred with the reduced dataset.

Stop option 3) With the stop option -RTL ( –stop_at_
RTL) the user sets a threshold on the RTL of the
reduced dataset. When the pruned tree RTL falls below
the specified value, Treemmer stops pruning and
outputs the list of retained leaves and the pruned tree.
The output tree is useful for a quick evaluation of the
reduced datasets but should not be used for further
analysis, a new tree should be inferred with the reduced
dataset.

Support values
Treemmer can read and process trees with support
values, however these will be ignored by the software.
Support values are a measure of confidence in the in-
ferred topology, and they give no information on the re-
latedness of two leaves, therefore Treemmer does not
consider them.

Polytomies
Treemmer can process trees with polytomies, however,
very large unresolved polytomies (with thousands of
leaves) increase considerably the number of pairs of
neighboring leaves, slowing down the calculation. With
the option -p / –solve-polytomies all polytomies in the
tree are resolved randomly with branch lengths set to
zero.

Pruning options
In many studies is often the case that particular clades
or geographic locations are known to be oversampled,
and it would be desirable to subsample such subset leav-
ing the rest of tree as it is.
To cope with such situations and to increase the flexi-

bility of Treemmer, we implemented three options (-lm,
-mc and -lmc) to specify which set of leaves should or

should not be pruned. With these options it is possible
to:

– select specific clades that should be pruned (or that
should not be pruned)

– prune (or not prune) only leaves originating from (a)
specific country(ies) (or any other type of meta
information)

– prune the tree maintaining a user-specified number
of representatives for each country (or any other
type of meta information)

– any combination of the analyses above.

We provide a short tutorial with examples and instruc-
tions on how to use these options together with the
software.

Mycobacterium tuberculosis dataset
We downloaded Illumina reads of 12,866 isolates of M.
tuberculosis that we identified in the sequence read arch-
ive (SRA) repository. These represent the large majority
of M. tuberculosis genomes currently available in the
public domain.
Illumina adaptors were clipped and low quality reads

were trimmed with Trimmomatic v 0.33 (SLIDINGWIN-
DOW:5:20) [7]. Reads shorter than 20 bp were excluded
for the downstream analysis. Overlapping paired-end
reads were then merged with SeqPrep v 1.2 [8] (overlap
size = 15). The resulting reads were mapped to the re-
constructed ancestral sequence of the M. tuberculosis
complex [9] with the mem algorithm of BWA v 0.7.13
[10]. Duplicated reads were marked by the MarkDupli-
cates module of Picard v 2.9.1 [11] The RealignerTarget-
Creator and IndelRealigner modules of GATK v 3.4.0
[12] were used to perform local realignment of reads
around InDels. Pysam v 0.9.0 [13] was used to exclude
reads with alignment score lower than (0.93*read_
length)-(read_length*4*0.07)): this corresponds to more
than 7 miss-matches per 100 bp. SNPs were called with
Samtools v 1.2 mpileup [14] and VarScan v 2.4.1 [15]
using the following thresholds: minimum mapping qual-
ity of 20, minimum base quality at a position of 20,
minimum read depth at a position of 7X, minimum per-
centage of reads supporting the call 90%, maximum
strand bias for a position 90%.
Strains with average coverage < 20 X were excluded.

Additionally, we excluded genomes with more than 50 %
of the SNPs excluded due to the strand bias filter. Fur-
thermore, we excluded genomes with more than 50% of
SNPs with a percentage of reads supporting the call in-
cluded between 10% and 90%. Finally, we filtered out ge-
nomes with phylogenetic SNPs belonging to different
lineages of MTB, as this is an indication that a mix of
strains was sequenced.
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After filtering, we obtained 338,553 positions with less
than 10% of missing data were polymorphic in at least
one strain. After eliminating strains with more than 10%
of missing data at these positions, the final dataset com-
prised 10,303 strains with high-quality genomes (Add-
itional file 1: Table S3).
The phylogenetic tree was inferred with FastTree [16]

with options -nocat -nosupport and -fastest.

Influenza A dataset
The influenza A virus tree was download from next-
strain [17] on the 1st of December 2017. In the time
calibrated downloaded tree, few branches had small
negative values, these were poorly supported branches
that were collapsed before running Treemmer.
To run TempEst [18] we used the “divergence tree”

corresponding to the same Influenza dataset used in the
other analyses.

Results
Analysis of a Mycobacterium tuberculosis dataset
To demonstrate one possible application of Treemmer,
we analyzed a Mycobacterium tuberculosis (MTB) tree
built from the variable nucleotide positions of 10,303
isolates. More information on the dataset and on the
pipeline used to build the tree is available in the
Methods section and in Additional file 2: Table S1. This
collection of genome sequences of MTB was not sub-
sampled a priori, but represents all high-quality MTB
genome sequences that we were able to retrieve from
public repositories. This dataset is the result of several
years of sampling by the scientific community, and while
it covers most of the known diversity of MTB, it is
highly redundant and suffers from sampling bias. One
important source of redundancy originates from projects
that analyzed individual MTB outbreaks with whole gen-
ome sequencing methods. In these projects, several
identical or very similar strains were sequenced. Add-
itionally, some phylogenetic lineages of MTB (i.e., L2
and L4) are overrepresented compared to others, mostly
because they are predominant in countries where sam-
pling was particularly extensive (Additional file 3: Table
S2). We then tested whether Treemmer is able to reduce
the redundancy and the sampling bias of this dataset.
We analyzed the decay of the relative tree length with

four different values of -r: 1, 10, 100 and 1,000. We
found that the RTL decay starts slowly and accelerates
after about half of the leaves have been pruned. This
confirms the high redundancy of this MTB dataset:
pruning thousands of leaves affected the tree length only
marginally, indicating that there were strains very similar
to the pruned ones retained in the tree. Additionally, we
found that the trajectories of the decay were overlapping
and indistinguishable for -r = 1, -r = 10 and -r = 100.

While for -r = 1,000, the decay was comparable to the
other values of -r until the number of leaves reached
about 6,000, and it was slightly faster with fewer leaves
(Fig. 2). This finding suggests that the value of -r does
not influence the results of Treemmer as long as it is
two orders of magnitude smaller than the number of
leaves. This is important for the analysis of large trees,
because increasing the value of the -r option can consid-
erably reduce the running time of Treemmer. While this
result should be valid in general, we suggest, when pos-
sible, to start the analysis of new datasets running
Treemmer with several different values of -r and com-
paring the results.
To obtain a reduced tree maintaining 95% of the ori-

ginal tree length, we ran Treemmer with the stop option
-RTL 0.95. This resulted in a tree with 4,919 leaves,
therefore Treemmer reduced the size of the dataset by
more than 50 % while retaining 95% of the diversity
(measured as tree length). The resulting dataset has the
same phylogenetic structure of the full-size original, is
easier to handle, and can be used as a starting point for
the downstream analysis (Fig. 3).

Analysis of the influenza dataset
We showed that Treemmer can reduce a redundant
dataset while maximizing the retained diversity. Next,
we tested Treemmer on a dataset with different charac-
teristics and phylogenetic structure. To do this we used
a time-calibrated influenza A / H3N2 tree with 2,080
viral sequences downloaded from Nextstrain [17]. In
contrast to the MTB dataset, this dataset is already a

Fig. 2 Plot of the relative tree length decay for the MTB dataset. Four
different analysis were run with -r = 1 (black dots), -r = 10 (red dots) ,
-r = 100 (blue dots) and -r = 1000 (green dots). The slow decay of the
RTL is due to the high redundancy of the dataset. The RTL decays for
-r = 1, 10 and 100 are overlapping and indistinguishable.
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a b

Fig. 3 Comparison of original (a) and reduced (b) tree of the MTB dataset, with 10,303 and 4,919 leaves, respectively. The scale bar indicates
expected substitution per position (only polymorphic nucleotide positions were included in the alignment). The different lineages of TB are
labeled (Maf : Mycobacterium africanum (L5 and L6) + animal lineages).

a b

Fig. 4 Comparison of original (a) and reduced (b) tree of the influenza A virus dataset, with 2,080 and 250 leaves, respectively. The scale bar
indicates years.

Menardo et al. BMC Bioinformatics  (2018) 19:164 Page 5 of 8



sub-sample of all the available influenza A genome se-
quences, filtered to reduce redundancy and to achieve
an equitable temporal and geographic distribution [17].
Additionally, the influenza A tree has a different shape
compared to the MTB tree: while the MTB tree com-
prises well-defined lineages that coalesce close to the
root of the tree, the influenza tree is bushy and has a
ladder-like structure (Fig. 4).
We found that the trajectory of the RTL decay was

steeper compared to the MTB dataset. The greater
steepness of the RTL decay compared to the MTB
tree is due to the reduced redundancy of the viral
dataset: pruning few leaves reduces the tree length
considerably. Additionally, we found that the decay of
the relative tree length was not very different with
three different values of -r: 1, 10 and 100 (Fig. 5).
This confirms what we already observed during the
analysis of the MTB dataset: the value of -r does not
influence the results of Treemmer as long as it is
smaller than two orders of magnitude compared to
the number of leaves of the input tree.
We then used Treemmer to subsample 250 leaves

from the original influenza tree, corresponding to less
than 40% of the original tree length. We found that
the reduced tree has the same shape and phylogenetic
structure of the original tree, demonstrating that
Treemmer can be used to reduce the size of non-
redundant datasets maintaining a representative set of
samples (Fig. 4).

Trimming trees for molecular clock analysis
One of the reasons to reduce the size of a dataset is to
analyze it with a molecular clock. Often the main object-
ive of such analyses is to estimate the age of the most
common recent ancestor (MRCA) or other internal
nodes of the tree. In these cases, it is important to avoid
that Treemmer prunes the MRCA node. This can be
achieved protecting the outgroup(s), using the -lm op-
tion or reintroducing it in the reduced dataset. If there is
no known outgroup and the samples were collected at
different time points, we suggest to check the time
structure of the reduced dataset with TempEst [18].
TempEst positions the root in the point of the tree that
best fit a strict clock model and performs root-to-tip re-
gression to estimate the age of the MRCA and the sub-
stitution rate. In particular, the best-fit root position in
the original dataset should not be on a branch that is ab-
sent in the reduced dataset, and the root-to-tip regres-
sion should give similar estimations of the MRCA age
and of the substitution rate.
We used TempEst [18] to explore the time structure

of the influenza dataset at different levels of reduction.
We trimmed the influenza tree inferred under a no-
clock model (the “divergence” tree in Nextstrain) at 99%,
90%, 75% and 50% of the relative tree length. Applying
the best-fitting root method, we observed that the
MRCA of the complete dataset was not pruned in any of
the reduced trees, and that the root-to-tip regression
yielded similar estimations of the substitution rate and
age of MRCA for all trees (Additional file 4: Figure S1
and Additional file 1: Table S3).

Stochastic component of Treemmer
The algorithm implemented in Treemmer is not deter-
ministic: when the pair of leaves with shortest distance is
selected, one of the two leaves is pruned at random.
Additionally, if there are several pairs with same (short-
est) distance, a pair is picked at random. We investigated
the effect of the stochastic component of Treemmer on
the output of the software, repeating the RTL decay ana-
lysis showed in Figs. 2 and 5, 100 times for each datasets.
We found that the difference in RTL between runs in-
crease with increasing iterations, and reaches maximum
of about 1% of the RTL for the TB dataset, and about 2.5%
of the RTL for the influenza dataset (Additional file 5:
Figure S2 and Additional file 6: Figure S3).
Although these differences are limited, we recommend

running Treemmer several times, and if possible to stop
trimming before the point of maximum variability be-
tween runs is reached.

Discussion
An important trend in phylogenetic research is the de-
velopment of methods and software that can handle big

Fig. 5 Plot of the relative tree length decay for the influenza A virus
dataset. Three different analysis were run with -r = 1 (black dots),
-r = 10 (red dots) and -r = 100 (blue dots). For this dataset the decay
was faster than for the MTB dataset. This is due to the different
structure of the phylogenetic trees and to the reduced redundancy
of the viral dataset.
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datasets. Thanks to software such as FastTree [16] and
Dendroscope [19], it is now possible to build and
visualize trees with hundreds of thousands of sequences.
However, many kinds of analyses, including bootstrap,

using a molecular clock or fitting a codon substitution
model, are impractical or impossible to perform with
very large sequence datasets. To address these limita-
tions, we developed Treemmer, a tool to reduce the size
and redundancy of phylogenetic datasets while maintain-
ing a representative diversity. In contrast to methods
based on sequence similarity, Treemmer selects a repre-
sentative subsample considering the phylogenetic rela-
tionships between samples and their phylogenetic
distance on the tree.
Implicitly, Treemmer adopts a complex definition of

diversity that include two basic metrics: genetic distance
(branch length) and topological distance (number of in-
ternal nodes separating two leaves) (see Vellend et al.
2011 [20] for an overview on methods to measure phylo-
genetic diversity). At each iteration, Treemmer identifies
the pair of leaves with the minimum genetic distance
among all pairs of leaves with a topological distance
(number of nodes in between) smaller than 3, and prune
a random leaf of the selected pair.
With the RTL decay plot, it is possible to evaluate the

reduction of the tree length when the size of the dataset
is reduced. Treemmer can sample reduced datasets of
any size, selecting the balance between size and diversity
that best fits the purpose of the user.
The steepness of the RTL decay depends on the level

of redundancy of the dataset but also on the structure of
the phylogenetic tree. For example, the RTL decay of a
tree with few very long branches and several short ones,
will have a slower decay compared to a tree with equal
number of leaves and all branches with similar length.
Additionally, sequences of bad quality, or badly aligned,
often produce long branches, and long branches are
more likely to be retained by Treemmer, thus enriching
bad quality sequences in the dataset. A sensitive ap-
proach to bad quality sequences or alignments before
inferring the tree is therefore critical.
While the output of Treemmer can be used in many

downstream analyses, it should not be considered as a ran-
dom unbiased sample: the number of leaves belonging to
different clades in the reduced dataset depends on the gen-
etic diversity of the different clades and not on the abun-
dance of different clades in nature; highly diverse clades
will be represented by more leaves than less diverse ones,
irrespectively of the frequency of such clades in natural
populations. Additionally, some phenomena, e.g. recent fast
speciation or population growth can result in large clades
with short branches that would be pruned by Treemmer.
Therefore, users interested in such phenomena should be
careful when using Treemmer in their pipelines.

Conclusions
We developed Treemmer, a tool to reduce the size of
large phylogenetic datasets maintaining a sub-sample
that is representative of the original diversity. With
Treemmer it is possible to reduce the size of datasets
that are too large for specific analysis, additionally the
possibility of including many kind of meta-information
makes Treemmer particularly flexible and useful for em-
pirical studies.

Availability and requirements
Project name: Treemmer
Project home page: https://git.scicore.unibas.ch/TBRU/

Treemmer
Operating system: platform independent
Programming language: Python
Other requirements: ETE3 and Joblib
License: GPL

Additional files

Additional file 1: Table S3. Results of the root-to-tip regression analysis
performed with TempEst onto the influenza tree at different levels of
reduction. (TXT 269 bytes)

Additional file 2: Table S1. Accession numbers used for the MTB tree.
(TXT 341 kb)

Additional file 3: Table S2. Number of leaves per lineage in the
complete and reduced MTB tree showed in Fig. 3 (TXT 174 bytes)

Additional file 4: Figure S1. Root-to-tip regression for the complete
influenza dataset (2063 leaves, black dots and black regression line, in
gray the 99% confidence interval) and four reduced trees (orange: 99% or
RTL , red: 90% of RTL, green: 75% of RTL, blue: 50% of RTL. All trees were
re-rooted with the best-fit method implemented in TempEst. (PDF 12 kb)

Additional file 5: Figure S2. Plot of 100 RTL decays (-r =100) for the TB
dataset (black dots). All decays are similar. Red dots indicates the range
of RTL among the different runs for the corresponding iteration, the
variability among runs increases slowly at first, it reaches a maximum of
1% when the tree is reduced to 20% of the RTL. (PDF 25 kb)

Additional file 6: Figure S3. Plot of 100 RTL decays (-r =10) for the
Influenza dataset (black dots). All decays are similar, but there is a larger
variability compared to the TB dataset. Red dots indicate the range of
RTL among the different runs for the corresponding iteration, the
variability among runs increases steadily and it reaches a maximum of
2.5% when the tree is reduced to 40% of the RTL. (PDF 56 kb)

Abbreviations
MRCA: Most recent common ancestor; MTB: Mycobacterium tuberculosis;
OTU: Operational taxonomical unit; RTL: Relative tree length
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