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Abstract

Background: In the last decade and a half it has been firmly established that a large number of proteins do not
adopt a well-defined (ordered) structure under physiological conditions. Such intrinsically disordered proteins (IDPs)
and intrinsically disordered (protein) regions (IDRs) are involved in essential cell processes through two basic
mechanisms: the entropic chain mechanism which is responsible for rapid fluctuations among many alternative
conformations, and molecular recognition via short recognition elements that bind to other molecules. IDPs
possess a high adaptive potential and there is special interest in investigating their involvement in organism
evolution.

Results: We analyzed 2554 Bacterial and 139 Archaeal proteomes, with a total of 8,455,194 proteins for disorder
content and its implications for adaptation of organisms, using three disorder predictors and three measures. Along
with other findings, we revealed that for all three predictors and all three measures (1) Bacteria exhibit significantly
more disorder than Archaea; (2) plasmid-encoded proteins contain considerably more IDRs than proteins encoded
on chromosomes (or whole genomes) in both prokaryote superkingdoms; (3) plasmid proteins are significantly
more disordered than chromosomal proteins only in the group of proteins with no COG category assigned; (4)
antitoxin proteins in comparison to other proteins, are the most disordered (almost double) in both Bacterial and
Archaeal proteomes; (5) plasmidal proteins are more disordered than chromosomal proteins in Bacterial antitoxins
and toxin-unclassified proteins, but have almost the same disorder content in toxin proteins.

Conclusion: Our results suggest that while disorder content depends on genome and proteome characteristics, it
is more influenced by functional engagements than by gene location (on chromosome or plasmid).
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Background
Prokaryotic plasmids are extrachromosomal non-obligatory
DNA molecules that replicate independently. They are
transmitted between organisms by horizontal gene transfer
and may be considered as mobile genetic elements, like
transposons or prophages [1].
Plasmid backbone genes encode for proteins that are

mostly involved in replication, copy number, partitioning,
stability, etc. [2]. However, most plasmid genes encode for
proteins with an unknown function. According to the Clus-
ters of Orthologous Groups (COGs) classification, more
than 25% of plasmid proteins have not been assigned to
COGs [3]. Also, it was estimated that 13% of plasmid

proteins belong to the so-called singleton ORFan category,
consisting of proteins with no sequence homologies in
other genomes, which are characterized by relatively short
lengths, rapid evolution and are encoded by gene lower GC
contents (it was shown that genes with a lower GC content
tend to evolve at a faster rate as compared to genes with a
higher GC content, although many other factors may also
contribute to the evolutionary rate of proteins [2, 4]). These
proteins have novel functions and are mostly annotated as
hypothetical proteins of unknown function [5].
Aside from backbone genes, plasmids also contain

genes that are involved in adaptive traits, such as the
ability to exploit new environments or compounds,
pathogenesis and antibiotic resistance. Of special interest
are toxin/antitoxin genes and their products, because
they often contribute to the maintenance of plasmids or
genomic islands [6]. Toxin/antitoxin systems are found
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in plasmids and phages, as well as in chromosomes.
They invade Bacterial genomes through horizontal gene
transfer and participate in a wide range of cellular events,
such as plasmid maintenance (via the mechanism of post-
segregation killing), dormancy and persistence, phage
defense, general stress response, etc. At present, toxin/anti-
toxin systems are classified according to their genetic
structure and regulation into six types (I-VI) [7, 8]. They
are composed of closely linked genes encoding a stable
toxin, typically a low molecular weight protein, which
causes growth arrest by inhibition of essential cellular pro-
cesses (including DNA replication, translation, cell division,
etc.), and its cognate labile antitoxin, which can either be a
non-coding RNA (types I and III) or a small protein (types
II, IV, V, and VI), which protects the host from the toxin’s
deleterious effect. During normal growth conditions, the
antitoxins must be constantly synthesized in order to in-
hibit their cognate toxins. The function of chromosomally
encoded toxin/antitoxin systems is less clear [9]. In terms
of their structure-function relationship, it is of special
interest that antitoxins often lack a well-defined 3D struc-
ture, i.e. they are intrinsically disordered [7].
Intrinsically disordered proteins (IDPs) and intrin-

sically disordered (protein) regions (IDRs) within
structured proteins are defined by the absence of a
stable tertiary structure and a corresponding high de-
gree of flexibility under physiological conditions [10].
IDPs usually lack rigid three-dimensional structures
“due to diminished hydrophobic interactions deter-
mined by the specific amino acid (AA) compositions
which are typically depleted in hydrophobic, order-
promoting residues, but are enriched in polar and
charged disorder-promoting residues” [11]. IDPs were
recently reviewed in a special edition of Chemical Re-
views [12] and described in detail in the monograph
[13]. Since IDPs are a challenge to study experimen-
tally, a number of prediction tools (currently, over 60)
have been developed [14, 15].
IDPs perform their function via two basic mechanisms:

(1) the entropic chain mechanism which is responsible
for rapid fluctuations among many alternative conforma-
tions, providing different biological functions to IDPs
(such as linkers, spacers, bristles or springs), and (2) by
molecular recognition via short recognition elements,
that bind to other molecules such as: performed struc-
tural elements, molecular recognition features, or short
linear motifs [16]. Functional classification of proteins
according to COGs shows that proteins belonging to the
Metabolism group (Me) have a lower disorder content
than proteins in Cellular processes and signaling (Cp)
and Information storage and processing (Isp) groups
[17], i.e. the structural disorder is enriched in proteins
involved in signaling and regulatory functions and de-
pleted in enzymes [18].

Taxonomically, IDPs are present in the proteomes of
all of the three superkingdoms (Archaea, Bacteria and
Eukarya), as well as in their viruses. The analysis of dis-
order content revealed that Bacteria have a slightly
higher level of protein disorder than Archaea. Depend-
ing on the predictor and measure used, the disorder
content varies in the range of 12 to 32% for Archaea,
and 18 to 35% for Bacteria [17, 19, 20]. Eukarya gener-
ally contain higher disorder content, ranging from 35 to
50%, while in viruses the disorder content varies to a
large extent from 2.9 to 23.1% [21].
The aim of this work was to examine protein disorder

contents: (1) in Bacterial and Archaeal plasmids and to
compare them with those in chromosomes; (2) in Bac-
terial and Archaeal plasmids and chromosomes as a
function of genome size, proteome size, average protein
length and GC percentage; (3) in plasmid-encoded pro-
teins classified according to COGs, and (4) in toxin and
antitoxin plasmid- and chromosome-encoded proteins,
as a specific group of proteins with known functions.
Our results suggest that while disorder content depends
on genome and proteome characteristics, it is more in-
fluenced by functional engagements than by gene loca-
tion (on chromosome or plasmid).

Dataset
The dataset was collected in May 2015 from the
NCBI database (currently available at ftp://ftp.ncbi.
nlm.nih.gov/genomes/archive/old_refseq/Bacteria/)
and the toxin/antitoxin database (http://202.120.12.
135/TADB2/). Material downloaded from NCBI site
includes COG functional classification of proteins.
Only proteins that were already included in the
downloaded material were selected from toxin/anti-
toxin database. In addition, we calculated a number
of genome and proteome characteristics from the
downloaded sequences; these included genome size,
number of chromosomes, number of plasmids, the
percentage of GC nucleotides, proteome size and
average protein length.
The dataset included 2554 Bacterial and 139 Archaeal

organisms with 2842 chromosomes (2703 in Bacteria,
139 in Archaea) and 2063 plasmids (2040 in Bacteria, 23
in Archaea). The maximum number of plasmids in a
Bacterial organism is 39, in an Archaeal organism is 2.
The distribution of organisms related to the number of
plasmids and chromosomes is shown in Table 1. There
are 8,455,194 different proteins – 8,158,660 Bacterial
(7,919,866 chromosomal and 238,794 plasmidal) and
296,534 Archaeal (295,083 chromosomal and 1451 plas-
midal). The Additional file 1: Figure S1 presents the dis-
tribution of protein number and average length over
subsets of the material in the dataset.
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Proteins are assigned to COG categories (20 in total),
which are further grouped in the COG groups as pro-
teins participating in Cellular Processes (Cp), Informa-
tion Storage and Processing (Isp), Metabolism (Me), as
Poorly characterized (Pc) proteins and as proteins Not
in COGs (N.C.) [3]. Proteins labeled as “unknown”
(COG determined but not cited in the downloaded ma-
terial) were added to the N.C. group (7161 Bacterial and
50 Archaeal). The protein distribution according to
COG groups and categories is presented in Additional
file 1: Figures S2 and S3, respectively. The total number
of proteins in COG groups are slightly higher than the
number of different proteins because there are proteins
that have been assigned to more than one COG group
or category.
There are 11,564 toxin/antitoxin proteins included in

the dataset. The distribution of toxin/antitoxin proteins
over COG groups in the subsets (chromosomes and
plasmids) is shown in the Table 2 and Additional file 1:
Table S1.

Methods
Intrinsically disordered proteins
We could not use data from databases containing pre-
calculated disorder level (such as [22, 23]) because of the
small intersection of protein sets in our material and in
these databases. For example, MobiDB includes only 5%
of proteins from our dataset (comparison was done by
using corresponding UniProt ids). The disorder level for
each residue of each protein in our dataset was calcu-
lated using three different disorder predictors: PONDR
VSL2b® [24], IsUnstruct [25] and IUpred-L [26].
These predictors are widely used and are based on dif-

ferent approaches. VSL2b is a combination of neural
network predictors for both short and long disordered
regions. IsUnstruct is based on an approximation of the
Ising model, a mathematical model of ferromagnetism in
statistical mechanics, using penalty for changing be-
tween ordered/disordered states among neighboring
amino acids; IUPred-L (long) assigns a disorder score to
an amino acid based on the pairwise interaction energy
score. Since the VSL2b predictor predicts well both short
and long disordered regions while the IUPred-L predicts
long disordered regions better than short ones, it is

expected that the former will predict a higher disorder
content than the latter (as is the case in the D2P2 data-
base (http://d2p2.pro/)). The disorder content predicted
by IsUnstruct is between these two. Predictions were
performed for all 8,455,194 proteins using IUPred-L and
IsUnstruct predictors, whereas VSL2b performed predic-
tions for 8,448,127 proteins (since other protein se-
quences contain some amino acid tags that VSL2b does
not recognize). Haloarchaean proteomes, due to adaptive
pressure, have specific AA contents, which lead to IDP
prediction errors as revealed by Xue et al. [19, 20], and
Syutkin and all [27], and were accordingly excluded from
the analysis.
We calculated three measures of protein disorder con-

tent in Bacteria and Archaea proteomes in three data
collections: complete genomes, chromosomes and plas-
mids. The first measure is the averaged fraction of disor-
dered AAs by proteins in a proteome (percentage of all
predicted disordered AAs in a protein and then averaged
by all the proteins in the proteome). The second meas-
ure is the percentage of AAs in long (> 30 AA) disor-
dered regions; this was averaged over all of the proteins
in a proteome. The last measure is the percentage of
proteins (in a proteome) with at least one long disor-
dered region. Having calculated the disorder of a prote-
ome, disorder of a collection of proteomes (set of
organisms, set of chromosomes, set of plasmids) was cal-
culated as the average disorder over all the proteomes in
the collection [28, 29].

Disorder content of different COG groups
Functional classification by COGs is the result of protein
sequence homology, implying their structural and thus
functional similarity. We chose the COG functional clas-
sification (among different existing ones) because most
genomes are COGged and COG annotations are easily
accessible [3]. We extended our previous research on
COG-related disorder to three separate data subsets -
complete genomes, chromosomes and plasmids from
the superkingdoms Bacteria and Archaea, and COG
functional groups and categories (A-Z). The main reason
for this type of analysis was to determine the sources of
(possible) different levels of disorder in proteomes of dif-
ferent DNA molecules (chromosomes, plasmids) and

Table 1 Organisms in the dataset

Without plasmids With plasmids

#Organisms #Phyla #Classes Total 1 chr > 1 chr Total 1 chr (1pls/> 1pls) >1 chr (1pls/> 1pls)

Total 2693 41 80 1796 1717 79 897 844 (434/410) 53 (28/25)

Archaea 139 6 17 119 119 0 20 20 (17/ 3) 0

Bacteria 2554 35 63 1677 1598 79 877 824 (417/407) 53 (28/25)

There are 12 organisms with 10 or more plasmids, with one chromosome each, 8 of which from the phylum Spirochaetes, one from the phylum Proteobacteria,
and three from the phylum Firmicutes. There are 115 Bacterial organisms with 2 chromosomes and 17 Bacterial organisms with 3 chromosomes. All Archaeal
organisms have exactly 1 chromosome
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complete genomes, i.e. whether there is an increased (or
decreased) number of proteins in disorder-abundant
COGs, or disorder-abundant (or depleted) content of
proteomes in general.
Since a large number of proteins belong to the “Not in

COG” (N.C.) group, we repeated the complete analyses
for a reduced dataset that consisted of “mostly COGged”
organisms so as to be able to compare and verify the re-
sults obtained for the whole dataset. We analyzed only
those organisms where the total length of proteins in the
N.C. group was at most 20% of their total proteome
length. The selected subset includes 4,332,156 proteins.
Number of organisms, chromosomes and plasmids in
the subset is shown in Additional file 1: Table S2.

Statistical analysis
All the calculations (average protein length, GC percent,
etc.) were performed on a per- organism bases. The same
also holds for plasmids and chromosomes. In order to in-
vestigate the linear (or at least monotonic) relationship be-
tween different phenomena, we calculated Pearson’s linear
correlation coefficients. The difference in the distribution
of the disorder content among different data collections
was tested using the Mann-Whitney-Wilcoxon U test of
equality of medians and Student’s t-test of equality of
means. The impact that that different attributes have on
protein disorder is estimated by developing a disorder pre-
diction model using IBM InfoSphere Warehouse Intelli-
gent Miner. Intelligent Miner is IBM’s commercial data
mining software included in InfoSphere® Warehouse
which is a suite of products that combines the strength of
DB2 with a data warehousing infrastructure from IBM®
(https://www.ibm.com/). It includes variety of algo-
rithms for mining association rules, clustering, classi-
fication (prediction), sequential patterns, regression,
and time series. IBM Intelligent Miner can perform
mining functions against traditional relational data-
bases or flat files, and is able to work with large
quantity of data that cannot fit into memory. Predic-
tion algorithm generates, as a component of predic-
tion model, an estimation of the impact of the input
components on model, which is in this research used
to estimate impact of protein characteristics on pro-
tein disorder.

Results and Discussion
Disorder content of Bacteria and Archaea
The results of disorder content analysis in Bacteria and
Archaea were generally in accordance with our previous
findings [17] and the results of others (e.g. [22]). For all
three predictors and all three measures, Bacteria exhibit
significantly more disorder than Archaea (ranging on
average from 6.88 to 23.53% for Bacteria and 3.35 to 20.
77% for Archaea, for the percentage of disordered AAs

and different predictors; similar results were obtained
for other measures, see Fig. 1). The Student’s t-test for
equality of means resulted in a p-value < 0.01. The abso-
lute values differed among the predictors and among the
measures, but the relationship between the disorder con-
tent in Bacteria and Archaea generally remained the same.
This relationship was confirmed by the high values ob-

tained for Pearson’s correlation coefficients for different
measures of disorder and different disorder predictors
(correlation coefficients ranging from 0.88 to 0.98 for
different measures on the same predictors and from 0.74
to 0.81 for different predictors and the same measure).
The difference in disorder content in Bacteria and Ar-
chaea is not a consequence of different proteome sizes –
we compared Archaea with subset of Bacterial pro-
teomes with similar proteome sizes (up to 4000 proteins)
and observed the same difference in disorder content in
favor of Bacteria (see Fig. 2).
In further analysis we applied all three predictors and

used all three (highly correlated) disorder measures;
however, for clarity, we have presented in the main text
each result by just one predictor and one measure (we
used the percentage of AAs in long (> 30 AA) disordered
regions, unless otherwise specified), while some results
for other predictors and measures are presented in Add-
itional file.

Disorder content of chromosomes and plasmids
A comparative analysis of the disorder content in proteins
encoded by plasmids and chromosomes was performed for
the first time. It revealed that in both Bacteria and Archaea
plasmid-encoded proteins contain considerably more IDRs
than proteins encoded on chromosomes (Fig. 3 represents
these findings for long disorder measure and the IsUn-
struct predictor; similar findings for all the three measures
and all the three predictors, for different data subsets -
plasmids, chromosomes, genomes with and without plas-
mids, are presented in Additional file 1: Figure S4). These
findings are statistically significant according to the Mann-
Whitney nonparametric test and Student’s t-test (for the
IsUnstruct predictor and the percentage of disordered
AAs, the p-value < 0.00001). Also, the range of IDR con-
tent is much larger for plasmid encoded proteins in com-
parison to chromosome encoded ones (0 to 40 and 2 to
17% for plasmids and chromosomes, respectively).
Relatively wide range of IDP content was also observed

for viral and bacteriophagal proteomes [20]. Many of them
have high IDP content, especially those with increased
proteome size, which is similar to plasmids [20, 30]. In
order to enable replication, viral proteomes have been
shaped by interactions with the host proteome, i.e. they
have evolved to mimic host cellular processes and to inter-
fere with them. This is possible due to the higher content
of IDPs [20] because of their special functional attributes,
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as observed in viral proteins which display a high occur-
rence of disordered segments, a feature that might endow
viral proteins with increased structural flexibility and ef-
fective ways to interact with host components [31]. The
increased disorder content in plasmids is thus not surpris-
ing since both plasmids and phages need to be incorpo-
rated into a living cell and utilize host molecular machine
in order to proliferate [32].

Disorder content of chromosomes and plasmids vs.
genome and proteome characteristics
Our detailed analysis of proteins encoded by Bacterial chro-
mosomes and plasmids revealed a general increase in dis-
order content as a function of genome size, G +C content
and proteome size, while average protein length exhibits less
obvious relationship to disorder level (Fig. 4 represents these
findings for G +C content, long disorder measure and the
IsUnstruct predictor; results for other three characteristics -
genome size, proteome size and average protein length, for
the same disorder measure and the IsUnstruct predictor, for

both Archaea and Bacteria, are presented in Additional file
1: Figure S5). Similar holds for Archaeal chromosomes and
plasmids, although this trend is less expressed, due to
smaller number of Archaeal genomes, as well as smaller
range of the corresponding characteristics (proteome size,
G +C content and especially genome size).
Specifically, there is an apparent increase in disorder

content for G +C content larger than 50%, that can be ex-
plained by the fact that a high percentage of GC in codons
results in an increased presence of disorder promoting
amino acids (such as Gly, Ala, Arg, and Pro) [17, 18]. The
relatively uniform disorder content for genomes that have
a G +C content between 30 and 50% can be explained by
the selective alteration in the G +C content on third and
first positions in codons, and consequently only a change
in codon usage and not in AA usage. As it concerns prote-
ome size, a larger proteome implies more complex inter-
action networks and thus higher disorder content, since
one of the main functions of IDPs is in molecular inter-
action and recognition.

Fig. 1 Disorder content in Archaea and Bacteria. Disorder content is predicted using three predictors (IUPred-L, IsUnstruct and VSL2b) and
three measures
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Correlation analysis shows a statistically significant
positive linear correlation between disorder content of
Bacterial chromosome and plasmid proteomes and each
of the genome/proteome characteristics - G + C content,
proteome and genome size and average protein length,
except for average protein length of plasmids. Archaeal
chromosomal proteomes exhibit statistically significant
correlation between disorder content and G + C content,
genome and proteome size. Archaeal plasmids (the sam-
ple being rather small) do not exhibit any significant cor-
relations with genome/proteome characteristics except
for G + C content (see Table 3).

Disorder content in different COG groups in
chromosomes and plasmids
Our analysis showed that in both Bacteria and Archaea
complete proteomes the Metabolism (Me) COG group
of proteins has the lowest disorder content among all
COG groups, while Not in COGs (N.C.) and Poorly
characterized (Pc) are abundant in IDR content. Figure 5
presents the overall long-disorder level per COG groups
of proteins in Archaea and Bacteria, obtained by the
IsUnstruct predictor. Additional file 1: Figure S6 repre-
sents the corresponding data for all the three measures.
Impact of different protein characteristics (super king-

dom, chromosome/plasmid, COG group, toxin type) on
protein disorder is represented through a data mining

model for prediction percentage of protein disorder
based on the specified organism characteristics. Predic-
tion is obtained by using the IBM Intelligent Miner tool
which identifies the characteristics having the highest
impact on the prediction model. Figure 6 graphically
represents impact of specific characteristics used in the
model for predicting percentage of protein disorder. The
results show that the COG classification has the highest
impact on disorder content, even higher than G + C
content.
If we consider the chromosome- and plasmid-encoded

proteins separately with respect to COG groups, then the
overall increased level of disorder in plasmid-encoded
proteins could have two different causes:

(a) because plasmids are abundant in proteins in COG
functional groups with higher disorder, or

(b) because the disorder level per protein is higher in
plasmid proteins than in chromosome proteins in
the same COG groups.

The obtained results show that:

(a) Plasmids are not abundant in proteins classified in
COG groups with higher disorder, except for the
Not in COGs (N.C.) group (69% in plasmidal vs
56% in chromosomal proteins), as shown in Fig. 7.

Fig. 2 Disorder content in long (>30AA) disordered regions in Bacteria and Archaea with small proteomes. The disorder content represents the
percentage of amino acids in long disordered regions, predicted by the IsUnstruct predictor. Since Archaea proteome size is in range of 1000 to
4000 proteins, only Bacteria in the same range are selected, in order to emphasize the difference in predicted disorder content between Bacteria
and Archaea with similar proteome sizes. The box diagrams in the paper follow the usual representation: 1) the horizontal line inside a box
represents the median value (50% of the samples is lower and 50% of the samples are higher than median); 2) lower box bound represents first
quartile value (25% of data are lower and 75% are higher than first quartile); 3) upper box bound represents third quartile value (75% of data are
lower and 25% are higher than third quartile); 4) the box height represents interquartile range (IQR); in the case of normal distribution, IQR = 1.35 x
σ; 5) the whiskers (vertical lines above and under the box) ranges up to the highest datum within 1.5 x IQR of the upper quartile and down to
the lowest datum within 1.5× IQR of the lower quartile; 6) the dots above the top whisker and under the bottom whisker represent outliers, i.e.
the samples that are out of the range (in some of the diagrams each sample is represented as a dot, and outliers are not specifically highlighted,
because it is obvious which samples lay out of the whiskers range); 7) in some of the diagrams the red dot represents the mean value
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Fig. 3 Disorder content in long (>30AA) disordered regions in Bacteria and Archaea per gene location. The disorder content represents the
percentage of amino acids in long disordered regions, predicted by the IsUnstruct predictor. The proteomes are divided in protein sets encoded
by chromosome/plasmid DNA. The overall organisms disorder content is almost the same as in the chorosome-encoded proteome subset

Fig. 4 Disorder content in long (>30AA) disordered regions in Bacteria by gene location, as a function of G + C content. Disorder is predicted by
the IsUnstruct predictor
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Additional file 1: Figure S7 presents the distribution
of proteins per COG groups in more detail.

(b) Plasmid proteins are more disordered than
chromosomal proteins in the N.C. group, as also
shown in Fig. 7 for the Is Unstruct predictor and
percentage of disordered AA (the corresponding
results for other predictors and measures are
presented in Additional file 1: Figure S8). The result is
statistically significant (Student’s t-test, p value < 0.05).

Plasmids encode for a small number of proteins in all
the COG groups and categories, except in N.C. group. IDR
content in plasmid encoded proteins is higher or similar as
in chromosome encoded proteins for all COG categories
(see Fig. 8 for percentage of disordered AA per COG cat-
egories in Bacteria; similar data for other measures and for
Archaea are presented in Additional file 1: Figure S9).

Disorder content of Bacterial and Archaeal COG groups
and categories reveals similar distribution, however, due to
significantly smaller protein sample of Archaea they will
not be discussed further, except for the N.C. group of pro-
teins. According to ACLAME database [2] on plasmid
encoded proteins, main functional categories found on
plasmids belong to Isp and Cp COG groups, almost twice
as many proteins as in functional categories in Me COG
group. This may suggest the functions of N.C. group pro-
teins in our dataset.
Further analysis of proteins not categorized according

to COGs (N.C. group) in chromosomes and plasmids re-
vealed that:

1. In Bacteria and Archaea, proteins belonging to N.C.
group are most abundant among both chromosome
and plasmid encoded proteins, as presented in

Table 3 Statistical correlation between predicted disorder content and organism characteristics

Bacteria Archaea

Complete Seg1 Seg2 Seg3 Seg4 Complete Seg1 Seg2 Seg3 Seg4

Chromosomes Avg.
protein
len.

Correlation coef. 0.1042 −0.1278 −0.0714 0.1220 0.2643 0.1480 −0.3819 0.3125 0.1829 –

Sample size 2554 40 921 1504 89 139 6 124 9 0

Significance of CC < 0.0001 0.4319 0.0303 < 0.0001 0.0123 0.0821 0.4550 0.0004 0.6376 –

G + C
content

Correlation coef. 0.6060 0.3054 0.2793 0.2741 0.3052 0.2667 −1.000 0.0653 0.1818 0.7369

Sample size 2554 151 1043 756 604 139 2 77 54 6

Significance of CC < 0.0001 0.0001 < 0.0001 < 0.0001 < 0.0001 0.0015 – 0.5726 0.1883 0.0947

Proteome
size

Correlation coef. 0.2950 0.1345 0.0689 0.3442 0.2377 0.2978 0.0817 0.5330 – –

Sample size 2554 1128 1118 276 32 139 115 24 0 0

Significance of CC < 0.0001 < 0.0001 0.0212 < 0.0001 0.1902 0.0004 0.3854 0.0073 – –

Genome
size

Correlation coef. 0.3019 0.1592 0.1562 0.1159 0.8357 0.3585 0.3341 −0.8534 – –

Sample size 2554 1469 995 87 3 139 136 3 0 0

Significance of CC < 0.0001 < 0.0001 < 0.0001 0.2851 – < 0.0001 < 0.0001 – – –

Plasmids Avg.
rotein
len.

Correlation coef. −0.0570 0.7456 0.0207 −0.1596 0.2914 0.0408 / −0.0671 −1.0000 /

Sample size 877 4 371 491 11 20 1 17 2 0

Significance of CC 0.0916 – 0.6911 0.0004 0.3846 0.8644 – 0.7980 – –

G + C
content

Correlation coef. 0.3324 0.4513 0.0693 0.0844 0.3494 0.5399 0.5155 0.0494 −0.6586 /

Sample size 877 123 319 230 205 20 6 8 5 1

Significance of CC < 0.0001 < 0.0001 0.2171 0.2022 < 0.0001 0.0140 0.2952 0.9075 – –

Proteome
size

Correlation coef. 0.1976 0.4958 0.0008 −0.1792 0.4609 0.0863 0.0866 0.1977 / /

Sample size 877 215 392 238 32 20 13 7 0 0

Significance of CC < 0.0001 < 0.0001 0.9874 0.0056 0.0079 0.7175 0.7785 0.6709 – –

Genome
size

Correlation coef. 0.2048 0.4079 0.0518 0.1335 0.5414 0.0645 −0.1670 −0.9999 / /

Sample size 877 259 460 137 21 20 17 3 0 0

Significance of CC < 0.0001 < 0.0001 0.2676 0.1199 0.0113 0.7870 0.5218 – – –

The table represents the statistical correlation between predicted disorder content and different organism characteristics. The disorder content is predicted using
IsUnstruct predictor and measured as a percentage of amino acids in long disordered regions (> = 30AA)
For each sample set (Archaeal/Bacteral chromosomes, plasmids) and each of the observed characteristics, the samples are additionally classified in 4 segments
(quarters) by range of the observed characteristics. Correlations are computed for the whole sample and additionally for each of the segments, to find out if the
correlation is stronger for some segment (quarter) of the characteristics’ range. The significant correlations are emphasized in boldface
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protein distribution according to COG groups and
categories for Bacteria in Fig. 9 (see Additional file 1:
Figure S3 for Archaea and detailed data).

2. The average length of proteins in the N.C. group is
lower in comparison to other COG groups, for both

chromosome encoded and plasmid encoded
proteins. The majority of N.C. proteins from
Bacterial plasmids and both Archaeal plasmids and
chromosomes, are hypothetical. The fraction of
hypothetical proteins encoded by Bacterial

Fig. 5 Disorder content in long (>30AA) disordered regions for different clusters of orthologous groups of proteins (COG groups) in Archaea and
Bacteria. Disorder is predicted by the IsUnstruct predictor. COG groups are: Cp – Cellular Processes, Isp – Information Storage and Processing, Me
–Metabolic, N.C. – Not in COG, Pc – Poorly characterized. The box diagrams in the paper follow the usual representation (see Fig. 2 caption
for details)

Fig. 6 Impact of the attributes on disorder content, Variable COG denotes a COG group of a gene/protein (similarly for GC, Superkingdom. Toxin type,
Chromosome/plasmid). Bar sizes denote level of impact of each characteristics on protein disorder. “Importance” on the diagram actually means
impact. The highest impact on the percentage of protein disorder has COG group (N.C., Cp, Isp, Pc, Me) the protein belongs to (52.25%), then the
percentage of GC nucleotides (38.60%), while impact of other characteristics is considerably lower (Superkingdom - 5.78%, Chromosome/plasmid -
2.96% i Toxin type - 0.41%)
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chromosomes in the N.C. group is lower than the
fraction of non-hypothetical proteins (41 and 59%,
respectively). The opposite holds for Bacterial plas-
mids (54 and 46% respectively). The most of all hypo-
thetical proteins belong to N.C. group, i.e. 77% for
Bacterial chromosomes encoded proteins (Table 4).

3. In N.C. group, the average length of hypothetical
proteins is much smaller in comparison with
non-hypothetical proteins (i.e. for Bacterial
chromosome encoded proteins the ratio is 210/
345 AA, and for Bacterial plasmid encoded pro-
teins the ratio is 192/334 AA). The differences

Fig. 7 Disorder content of Bacterial COG groups in plasmids and chromosomes expressed as the percentage of disordered AAs

Fig. 8 Disorder content of different COG categories and data subsets for Bacteria. Plasmid-encoded proteins in Not in COG (N.C.) and Poorly characterized
(Pc) groups have higher disorder content than chromosome-encoded ones, while in most of the categories in Cellular processes (Cp), Information storage
and processing (Isp) and Metabolism (Me) COG groups, plasmid-encoded proteins have similar or lower disorder content than chromosome-encoded ones
(Cell motility (N), Cell cycle control, cell division, chromosome partitioning (D) and Intracellular trafficking, secretion, and vesicular transport (U) COG
categories in Cp group, Translation, ribosomal structure and biogenesis (J) COG category in Isp group, Energy production and conversion COG (C), Amino
acid transport and metabolism (E), Carbohydrate transport and metabolism (G), Lipid transport and metabolism (I), Inorganic ion transport and metabolism
(P) and Secondary metabolites biosynthesis, transport, and catabolism (Q) in Me group. For all measures and Archaea see Additional file 1: Figure S9
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are not so distinct for proteins in other COG
groups (Table 4).

4. Bacterial hypothetical proteins in the N.C. group
contain 61 - 96% higher disorder contents than non-
hypothetical proteins, depending on the disorder
measure (see Fig. 10 for Bacteria, and Additional file
1: Figure S10 for Archaea and detailed data).

It was estimated that 20–30% of Bacterial genomes are
comprised of ORFan genes. Most of these genes are
expressed, they have lower GC contents, differ in codon
usage and have evolved faster. ORFan proteins are rela-
tively small, with a specific AA composition, etc. At the
functional level, ORFan proteins are associated with regu-
latory, growth- and transport-related processes [33–35].
Mukherjee et al. [36] found that ORFan genes encode un-
structured proteins with a significantly higher fraction of
disordered AAs as compared to nonORFan genes.
These results are in agreement with our results related

to the disorder content in plasmid-encoded proteins,
their short lengths and high representation in the N.C.
group, especially with the high presence of hypothetical
proteins in the N.C. group. We may conclude that the
abundance of IDRs in plasmids is influenced by the fact
that the most of plasmid proteins belong to N.C. group,
which is rich in IDR content and hypothesize that the pro-
teins in N.C. and Pc groups of proteins, could represent
products of fast evolving genes within organisms and/or
could have been acquired by horizontal gene transfer
(HGT) by plasmids or phages from still unknown Bacter-
ial species. HGT plays an important role in Bacterial and

Archaeal evolution (it is estimated that as much as 81% of
genes have been acquired by HGT) [37, 38]. Plasmids
undergo fast rate of sequence turnover and represent key
vectors of genetic exchange between Bacterial genomes
[39]. This may explain a high number of N.C. proteins in
both Bacterial and Arhaeal plasmids and chromosomes.
Since more than 50% of all the proteins from our data-

set belong to the N.C. group, we checked the reliability
of the obtained results by repeating the previous ana-
lyses on those organisms where the total lengths of pro-
teins in the N.C. group are at most 20% of the total
proteome length. The obtained results are different in
range with respect to the complete dataset; however,
all the relationships established above are conserved
(Additional file 1: Figures S11 and S12). Bacteria still
have higher disorder content than Archaea, plasmids
have higher disorder content than chromosomes, and
N.C. proteins have a higher disorder level than other
COG groups (Additional file 1: Figure S13).

Disorder content of proteins of specific function (toxins
and antitoxins)
One specific class of plasmid-encoded proteins with
known functions are toxin/antitoxin proteins, which par-
ticipate in a wide range of cellular events. We applied
the IDP analysis of plasmid/chromosomes as well as
COG groups and categories to toxin/antitoxin proteins
in order to support the findings relating disorder content
with protein function (rather than its gene location). Be-
cause of the known involvement of structural disorder in
protein function [7], we analyzed 11,564 Type II toxin/

Fig. 9 Percentage of proteins in COG categories for Bacteria For exact data and the distribution of proteins in COG categories for Archaea, see
Additional file 1: Figure S3
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antitoxin proteins for: (a) abundance in disorder content
and (b) their presence in chromosomes and plasmids.
We chose the Type II toxin/antitoxin group as it is
among the best described in the literature and because
both toxins and antitoxins have a proteinaceous nature.
We primarily considered the results obtained on Bacter-
ial toxin/antitoxin proteins because of the small number
of Archaeal proteins. Since toxins and antitoxins are
relatively short proteins (their length is below 200 AA,
with a few exceptions), we present the percentages of
disordered AAs as a measure of disorder. The results are
presented for the disorder predictor IsUnstruct only, be-
cause it is more appropriate for short proteins and give
the most consistent results.
As can be seen in Table 2 and Fig. 11, the antitoxin

proteins in comparison to toxin and toxin-unclassified
proteins (proteins from our database that are not present
in toxin/antitoxin database), are the most disordered (al-
most double) in both Archaeal and Bacterial proteomes.
Antitoxin proteins are about one-third of the toxin-
unclassified protein length and slightly shorter than
toxin proteins. In Bacteria, the disorder content in anti-
toxin proteins encoded by plasmids is 17.6% higher than
in chromosome-encoded antitoxin proteins (42.18% /
35.86% = 1.176), whereas in toxin proteins the disorder
contents are almost equal (Fig. 12).
Bacterial proteins in the Me group have the lowest

and almost equal disorder contents, regardless of the
group to which they belong (antitoxin/toxin/toxin-un-
classified) and source (chromosome−/plasmid-encoded).
The disorder level in other COG groups (Cp, Isp, N.C.

and Pc) is higher in antitoxins than in toxins or toxin-
unclassified proteins. Also, the disorder level in Cp, Isp,
N.C. and Pc plasmid-encoded proteins is higher than in
all groups of chromosome-encoded proteins (antitoxin,
toxin and toxin-unclassified) (Fig. 13).
Previous analyses of the disorder contents of toxin/

antitoxin proteins was focused on the role of intrinsic
disorder in the functioning and regulation of Type II
toxin/antitoxin systems [7]. Type II toxins function by
inhibiting either replication or translation [8]. Antitoxin
proteins usually consist of a DNA-binding domain and a
toxin-binding domain. The toxin-binding domain is usu-
ally a C-terminal IDP region that folds upon binding to
a toxin. This domain is also important for their turnover,
i.e. susceptibility to proteolytic degradation. Less is
known about the disorder content in toxins and its role.
Our results are in accordance with previous results re-

garding the high disorder content and short protein
length of antitoxin proteins [40] and their high suscepti-
bility to proteolytic degradation, whereas their cognate
toxins are comparatively stable [8, 41]. The results for
the toxin/antitoxin proteins suggest that the protein
function has stronger influence on disorder content than
the protein gene location (on chromosome or plasmid).

Conclusion
In this paper we analyzed the disorder content in pro-
karyotic plasmid-encoded proteins. The analysis was
performed using three predictors and three measures.
All three predictors and all three measures gave highly
correlated results. The obtained results revealed that: (1)

Fig. 10 Disorder content in hypothetical proteins in comparison to non-hypothetical proteins for Bacteria. For Archaea and exact data, Additional
file 1: Figure S10
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Bacteria exhibit significantly more disorder than Archaea.
(2) Plasmid-encoded proteins have significantly higher dis-
order content than chromosome-encoded proteins in both
prokaryote superkingdoms. (3) Classification according to
COGs revealed that (a) proteins belonging to the metabolic

group have a significantly lower disorder content than pro-
teins in other groups, and that (b) plasmid-encoded pro-
teins have a significantly higher disorder content only in
the Not in COG group (where most of them are annotated
as hypothetical proteins) as compared to chromosome-

Fig. 11 Disorder level in Toxin and Antitoxin proteins (complete genomes)

Fig. 12 Disorder contents of chromosome- and plasmid-encoded toxin, antitoxin and toxin-unclassified proteins. The disorder content represents
the percentage of amino acids in disordered regions, predicted by the IsUnstruct predictor
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encoded proteins. (4) The analysis of antitoxin and toxin
proteins (Type II) showed that (a) antitoxin proteins (both
plasmid- and chromosome-encoded) contain much higher
(almost double) disorder content than either toxin or
toxin-unclassified proteins; (b) the disorder content in
plasmid-encoded antitoxin proteins is higher than in re-
spective chromosome-encoded proteins; (c) the disorder
content in plasmid-encoded toxin proteins is almost the
same as in respective chromosome-encoded proteins; (d)
Bacterial proteins in the metabolic group have the lowest
disorder content among COG groups; the disorder content
is almost not dependent on group (antitoxin/toxin/toxin-
unclassified) or source (chromosome−/plasmid-encoded).
Plasmids harbour lots of hypothetical proteins,

many of these likely being products of ORFan genes
and thus being relatively new in evolutionary terms.
These may contribute to the improved adaptability of
the organism by accommodating adaptive changes
within short time frames, a role for which structurally
disordered regions are highly suited. Our results sug-
gest that while disorder content depends on genome
and proteome characteristics, it is more influenced by
functional engagements than by gene location (on
chromosome or plasmid). Therefore, plasmid-encoded

proteins are more disordered on average because a
larger fraction of them fulfill functions that rely on
structural disorder.

Additional file

Additional file 1: This file includes additional tables and figures not
shown in the manuscript. (ZIP 6200 kb)
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