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Abstract

Background: Despite the rapid progress of protein residue contact prediction, predicted residue contact maps
frequently contain many errors. However, information of residue pairing in β strands could be extracted from a
noisy contact map, due to the presence of characteristic contact patterns in β-β interactions. This information may
benefit the tertiary structure prediction of mainly β proteins. In this work, we propose a novel ridge-detection-
based β-β contact predictor to identify residue pairing in β strands from any predicted residue contact map.

Results: Our algorithm RDb2C adopts ridge detection, a well-developed technique in computer image processing,
to capture consecutive residue contacts, and then utilizes a novel multi-stage random forest framework to integrate
the ridge information and additional features for prediction. Starting from the predicted contact map of CCMpred,
RDb2C remarkably outperforms all state-of-the-art methods on two conventional test sets of β proteins
(BetaSheet916 and BetaSheet1452), and achieves F1-scores of ~ 62% and ~ 76% at the residue level and strand
level, respectively. Taking the prediction of the more advanced RaptorX-Contact as input, RDb2C achieves
impressively higher performance, with F1-scores reaching ~ 76% and ~ 86% at the residue level and strand level,
respectively. In a test of structural modeling using the top 1 L predicted contacts as constraints, for 61 mainly β
proteins, the average TM-score achieves 0.442 when using the raw RaptorX-Contact prediction, but increases to
0.506 when using the improved prediction by RDb2C.

Conclusion: Our method can significantly improve the prediction of β-β contacts from any predicted residue
contact maps. Prediction results of our algorithm could be directly applied to effectively facilitate the practical
structure prediction of mainly β proteins.

Availability: All source data and codes are available at http://166.111.152.91/Downloads.html or the GitHub address
of https://github.com/wzmao/RDb2C.

Keywords: β-β pairing, Residue contact prediction, Contact map, Ridge detection, Random forest, Protein structure
prediction

Background
Since Anfinsen’s dogma [1] was firstly introduced, pre-
diction of the tertiary structures of proteins has become
the Holy Grail in structural bioinformatics. Although
practical tertiary structure prediction generally requires
intensive sampling in the conformational space, the
computational consumption could be greatly alleviated

with the knowledge of residue pairs that are in contact
in the native conformation. For instance, L/8 (L is the
protein length) native residue contacts are sufficient to
guide a protein to fold into its correct 3D structure [2].
The residue contact information could be predicted
from amino acid sequences. Prediction results are fre-
quently output as a score matrix that lists the possibility
of each residue pair to be close in the native conform-
ation, but could also be plotted as an image that is
known as the predicted residue contact map. It was re-
ported that predicted residue contacts with an accuracy
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of 22% or higher could be used as restraints to positively
contribute to the practical protein structure prediction
[3]. Consequently, protein residue contact prediction has
attracted more and more attention, particularly with the
significant improvement of prediction accuracy in recent
years [4, 5]. Theoretically, native residue contacts that
are essential for protein structure or function could be
inferred from correlated mutations of residue pairs in
evolution. With sequence data accumulated at an unpre-
cedented speed, extraction of such coevolution informa-
tion from multiple sequence alignment (MSA) has
become more and more practicable [6–9].
Many early residue contact prediction methods were

derived from statistics and information theory, like
OMES [10], MI [11], MIp [12] and SCA [13]. However,
these methods ignore the transitive correlation between
residues and thus generate many false positive results.
The inverse covariance matrix and pseudo-likelihood
maximization were introduced subsequently to eliminate
transitivity in methods such as DCA [14], PSICOV [15],
plmDCA [16], GREMLIN [17], CCMpred [18], FreeCon-
tact [19] and PconsC2 [20]. These methods effectively
reduce false positive predictions by globally considering
all inter-residue correlations. More recently, methods
like MetaPSICOV [21], SAE-DNN [22], DeepConPred
[23], NeBcon [24] and RaptorX-Contact [25–27] inte-
grated sophisticated machine-learning techniques to fur-
ther enhance the prediction accuracy. In the latest
CASP12 competition, RaptorX-Contact achieved the
best performance in the category of template-free mod-
eling targets.
In spite of the general improvement, none of existing

methods can attain a robust and steady prediction
among all protein targets, mainly because the reliability
of coevolution information is guaranteed only when a
sufficiently large number of homologous sequences are
present in the MSA. Indeed, many protein families lack
enough homologous sequences for reliable inference of
residue contacts [23], and the predicted residue contact
maps of these targets may be dominated by false posi-
tives, which hinders the subsequent protein structure
prediction/modeling. However, even in the highly noisy
residue contact maps for these small-family protein tar-
gets, characteristic patterns of specific structural motifs
could be identified, because a collective pattern of mul-
tiple residue contacts is less likely to be perturbed by in-
dividual prediction errors and therefore could be more
reliably identified than a single residue contact. Good
exemplar structural motifs include parallel and anti-
parallel β strands, where consecutive residue pairs from
individual β strands establish repetitive contacts in the
diagonal and off-diagonal directions on a residue contact
map, respectively. Hence, it is possible to identify the
residue pairing in interacting β strands from a predicted

residue contact map. Identification of β-β pairing would
greatly benefit the structural prediction of mainly β pro-
teins, a group of challenging protein targets with compli-
cated topologies. Arguably, structural models of mainly
β proteins are reported to be less accurate than those
of mainly α proteins, when constructed from residue
contact information with comparable levels of accur-
acies [28].
A great variety of β–β pairing prediction methods have

been developed since 1990s [29], including BetaPro [30],
MLN/MLN-2S [31], CMM [32] and BCov [33]. Among
these methods, the more recent ones, CMM and BCov,
make predictions based on coevolution features ex-
tracted from the sequence data. Unfortunately, all these
previous methods are constructed with the knowledge of
native secondary structures and therefore perform unsat-
isfyingly when fed with predicted secondary structures,
which limits their usefulness in practical protein struc-
ture prediction. As the first pure predictor modeled
without any native structural information, bbcontacts
[34] utilizes hidden Markov models to identify β-β
pairing from the residue contact map predicted by
CCMpred and exhibits a remarkable improvement in
performance over all previous algorithms.
Here, we proposed a new approach to predict β-β

pairing using ridge detection, a conception that has been
well-developed in image processing to capture the axis
of an elongated object. Ridge detection was firstly pro-
posed by Haralick [35] in 1983, and was then applied to
medical image analysis by Pizer and his co-workers
[36, 37]. Lindeberg introduced γ-normalized deriva-
tives and scale-space ridges [38] to better depict the
detailed feature of a ridge.
Unlike bbcontacts, in this work, we treated the pre-

dicted residue contact map as a raw image and
employed the ridge detection to characterize the pattern
of consecutive residue contacts for interacting β strands.
We designed a multi-stage random forest framework to
integrate all ridge-related properties and a number of
additional features to predict the β–β contacts. Starting
from contact maps predicted by CCMpred [18], our al-
gorithm RDb2C (Ridge-Detection-based β-β Contact
predictor) shows significant improvements over bbcon-
tacts at both residue and strand levels. Moreover, when
connected with the more advanced residue contact pre-
dictor RaptorX-Contact [25–27], RDb2C reaches an im-
pressively high level of prediction powers, and the
improvement in β–β contact prediction further amelio-
rates the structure prediction of mainly β proteins.

Results and discussion
Brief introduction of the model
Theoretically, consecutive residue pairs from interacting
β strands should present continuous contact points in
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the diagonal or off-diagonal directions on a native con-
tact map. Even when disguised by prediction noises, the
relative strong signals from these β–β contacts are likely
to exhibit continuous elongated distributions on a pre-
dicted contact map. Here, we adopted the ridge detec-
tion, a computer algorithm to identify elongated objects
on a 2D image, to capture the characteristic pattern of
β-β interactions from predicted contact maps. The ridge
information was extracted using the γ-normalized ridge
detection method introduced by Lindeberg [38].
Given the original predicted contact map and ex-

tracted ridge information, we then developed a novel
multi-stage random forest framework to further refine
the prediction of β–β contacts. Fig 1 shows the general
architecture of the whole algorithm. RDb2C starts from
a residue contact map predicted based on the amino
acid sequence of the target protein, e.g. by CCMpred or
by RaptorX-Contact. Besides ridge features, general
properties of the input contact map and position of the
target residue pair within the map are abstracted as map
property features and position features, respectively. The
predicted secondary structure probabilities (from
DeepCNF [39, 40]) are incorporated as additional fea-
tures. All features are fed into a 3-stage random forest
framework to predict residue pairing in interacting β
strands.
Specifically, at the first stage, we constructed 4 random

forest models with different window sizes (3 × 3, 5 × 5,
7 × 7 and 9 × 9), where the window size defines the num-
ber of surrounding residue pairs around the focus point
that are included as input features (see Methods for de-
tails). The prediction results of the first stage models

were then combined in the second stage and further op-
timized in the third stage by taking the preceding-stage
results as input features. For all stages, the random for-
est models were constructed with 500 decision trees,
with the average depth ranging from 39 to 41. The
model optimization of each stage was performed using
5-fold cross-validation on a training set containing 493
proteins. Further testing and performance evaluation
were conducted on two conventional datasets in the
evaluation of β–β contact predictors [30–34]: Beta-
Sheet916 [30] and BetaSheet1452 [33]. Notably, redun-
dancy between the training and test datasets has been
carefully removed.

Performance evaluation of the model
The performance of RDb2C models at all stages was
evaluated in the cross-validation as well as the Beta-
Sheet916 and BetaSheet1452 test sets. Table 1 summa-
rizes the residue-level performance. Here, we adopted
the F1-score to comprehensively evaluate the prediction
results for all available residue pairs (instead of focusing
on the top-scored predictions only). Clearly, all models
show robust and balanced performance between the two
independent test sets, which indicates appropriate model
training. It is noticeable that cross-validation exhibits
lower F1-scores than the test sets. This difference may
be attributed to the presence of more small-family pro-
teins in the training set than in the test sets (Fig. 2):
18.05% of the training set proteins have less than L
sequences in the MSA (L is the protein length), whereas
the percentage reduces to only 7.21% and 1.31% in the
BetaSheet916 and BetaSheet1452 sets, respectively.
The first-stage models attain the optimal performance

at the window size of 5 in both cross-validation and test
sets. We suspect that the larger windows include more
useful information but also introduce more noises that

Fig. 1 The general flow chart of RDb2C

Table 1 Residue-level F1-scores of all models in the 5-fold
cross-validation, BetaSheet916 and BetaSheet1452 sets

Evaluation 1st stage 2nd stage 3rd stage

Cross-validation 3 × 3 44.40% 55.08% 55.87%

5 × 5 45.44%

7 × 7 44.80%

9 × 9 44.30%

BetaSheet916 3 × 3 49.41% 60.17% 61.19%

5 × 5 50.58%

7 × 7 49.86%

9 × 9 48.80%

BetaSheet1452 3 × 3 49.92% 61.09% 62.38%

5 × 5 50.97%

7 × 7 50.18%

9 × 9 49.10%
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eventually impair the model performance, and that bal-
ance of useful information and noise may be achieved at
the window size of 5. However, models constructed at
various window sizes could provide complementary in-
formation. Accordingly, the second-stage models that
combine information achieved at all window sizes ex-
hibit significant improvement (~ 10 percentage points)
in F1-scores over the first-stage ones. At the third stage,
further optimization slightly improves the F1-score to
61.19% and 62.38% in the BetaSheet916 and Beta-
Sheet1452 sets, respectively.
To justify the effectiveness of novel features we pro-

posed in this work, we evaluated the feature importance
for all first-stage models. The feature importance was
evaluated by re-conducting the model optimization and
cross-validation without the corresponding features. As
shown in Table 2, all features are essential for the model,
since removal of each type weakens the performance.
Moreover, all first-stage models exhibit a uniform trend:
the ridge features and the original CCMpred map jointly
make the major contribution to the prediction power
(see the loss of > 20 percentage points after removal of
both features). Although the ridge features are derived
from the CCMpred map, removing ridge features alone
significantly deteriorates the F1-score, especially for

models of small window sizes, possibly because these
features are capable of summarizing the local informa-
tion and depicting the local shape character of a pre-
dicted contact map. Therefore, the ridge features
introduced in this work effectively capture the residue
contact pattern of β-β interactions. In addition, the sec-
ondary structure information predicted by DeepCNF is
also constructive to our model, which is reasonable con-
sidering that proper assignment of β residues is the pre-
requisite for the prediction of β-β contacts.
As expected, when using the native secondary struc-

tures assigned by DSSP [41] instead of the predicted
ones as input, the DSSP-based models provide improve-
ment of ~ 10 percentage points to the residue-level pre-
dictions (Table 3). Thus, more accurate secondary
structure prediction algorithm could further improve the
performance potentially. Table 4 summarizes the strand-
level performance in the BetaSheet916 and Beta-
Sheet1452 sets. Notably, the strand-level performance
was only evaluated using the DSSP-based framework
due to the requirement of exact secondary structure in-
formation in the assignment of β strands. Similar to
residue-level results (see Table 1), the strand-level
models are progressively refined with stages, with the
final F1-scores reaching 75.40% and 76.55% in the Beta-
Sheet916 and BetaSheet1452 sets, respectively.

Comparison with bbcontacts
Here, we mainly compared RDb2C with bbcontacts, the
best predictor so far among all previous methods. The
performance of RDb2C and bbcontacts could be fairly
compared since both methods take CCMpred contact
maps as input. Fig 3 presents the Precision-Recall (PR)
curves of RDb2C and bbcontacts at the residue and
strand levels in the BetaSheet916 and BetaSheet1452
sets, respectively. At the residue level, RDb2C outper-
forms bbcontacts on the whole range, especially in the
region of high-Precision values. Specifically, with the
sacrifice of Recall, RDb2C could approach the Precision
level of 90–100%, which means that top-scored predic-
tions of RDb2C are almost error-less and thus can be
directly applied to practical structure prediction. In con-
trast, bbcontacts can only access the Precision level of
70–80%. As for the strand-level results, despite the
crossing of PR curves, RDb2C outperforms bbcontacts in

Fig. 2 The cumulative distributions for training and test sets with
the respect of N/L. N is the number of sequences in the MSA and L
is the protein length. There are more proteins in the training set
with limited numbers of homologous sequences (N/L < 1) than in
the BetaSheet916 and BetaSheet1452 sets

Table 2 The feature importance in the first-stage models

Window size 1st stage -Ridge -CCMpred -Ridge -CCMpred -DeepCNF -Map Features -Position Features

3 × 3 44.40% 36.33% 34.64% 14.33% 37.84% 42.75% 43.92%

5 × 5 45.44% 39.18% 36.81% 17.30% 38.93% 44.27% 44.66%

7 × 7 44.80% 40.04% 37.35% 19.42% 37.99% 44.24% 44.54%

9 × 9 44.30% 40.02% 37.22% 21.01% 37.09% 43.31% 43.60%

The table lists F1-scores of the re-conducted cross-validation without the corresponding features. Winner in each category is highlighted in bold
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most ranges, particularly at the high-Precision region
that reflects the quality of top-scored predictions.
Detailed comparison of the two methods at their re-

spective suggested cutoffs is listed in Table 5. Both
RDb2C and bbcontacts are quite robust between the
BetaSheet916 and BetaSheet1452 sets. In comparison to
the reported numbers in the original paper, performance
of bbcontacts increases substantially (residue-level F1-
score of ~ 56% vs. ~ 50% in the paper), possibly due to
the enhanced prediction accuracy of CCMpred with the
accumulation of sequence data in the past years. How-
ever, RDb2C still outperforms bbcontacts by ~ 6 percent-
age points at the residue level, in terms of F1-scores. At
the strand level, RDb2C and bbcontacts have different
preferences of Precision and Recall, but comprehensively
RDb2C achieves a higher level of F1-scores (~ 76%) and
outperforms bbcontacts by ~ 4 percentage points.
Subsequently, we systematically compared the F1-

scores of RDb2C and bbcontacts for individual proteins
in the BetaSheet916 and BetaSheet1452 sets (Fig. 4). At
the residue level, RDb2C outperforms bbcontacts on
69.32% targets of the BetaSheet916 set and 72.56%

targets of the BetaSheet1452 set, respectively, in terms of
F1-scores. The superiority of RDb2C over bbcontacts is
statistically significant (p-value < 10− 10) in both test sets.
At the strand level, RDb2C exhibits better performance on
61.57% and 63.36% targets of the BetaSheet916 and
BetaSheet1452 sets, respectively, and this advantage is also
statistically significant with p-values < 10− 10.
To compare with other previous methods that have

reported results only for DSSP-based predictions, we
evaluated the DSSP-based models for RDb2C and bbcon-
tacts at the residue level. As shown in Table 6, RDb2C
outperforms bbcontacts by 2–3 percentage points with
the knowledge of native secondary structures, while both
RDb2C and bbcontacts remarkably outperform previous
methods by large margins.
The advantage of RDb2C over bbcontacts in models

constructed with predicted secondary structures may
arise from two facets of differences: 1) different pro-
grams adopted for secondary structure prediction
(DeepCNF in RDb2C vs. PSIPRED pipelined with
HHsuite in bbcontacts); 2) difference in program design.
To test the former point, we first compared the predic-
tion power of DeepCNF and the PSIPRED pipeline used
in bbcontacts (Table 7). In all categories, DeepCNF has
comparable or slightly weaker prediction power than the
PSIPRED pipeline. Furthermore, we tested the bbcon-
tacts model constructed with DeepCNF prediction as
input. The DeepCNF-based bbcontacts model achieves
residue-level F1-scores of 55.17% and 56.19% in the
BetaSheet916 and BetaSheet1452 sets, respectively,
nearly indistinguishable with the original PSIPRED-
based model (55.91% and 56.75%, respectively). There-
fore, the superiority of RDb2C over bbcontacts is mainly
attributed to the unique design of our method, for in-
stance, the application of ridge detection and the novel
multi-stage framework.
In Fig. 5, we include three protein cases as examples

to show the improvement in the prediction of β-β con-
tacts using RDb2C and bbcontacts. In these examples,
the raw CCMpred maps are dominated by noises, which

Table 3 Residue-level performance of RDb2C constructed with DeepCNF-predicted and DSSP-assigned secondary structure
information

Secondary
structure

Models BetaSheet916 BetaSheet1452

Precision Recall F1-score Precision Recall F1-score

Predicted 1st stage 63.94% 41.84% 50.58% 57.61% 45.71% 50.97%

2nd stage 65.03% 55.99% 60.17% 64.50% 58.02% 61.09%

3rd stage 68.00% 55.62% 61.19% 67.91% 57.69% 62.38%

DSSP 1st stage 69.92% 49.94% 58.26% 62.71% 54.22% 58.16%

2nd stage 75.79% 64.00% 69.40% 75.74% 66.07% 70.58%

3rd stage 76.28% 65.94% 70.74% 76.56% 67.86% 71.95%

Performances of the models with the window size of 5 are listed here as the representatives of the first-stage models. Winner in each category is highlighted
in bold

Table 4 Strand-level F1-scores of all models in the 5-fold cross-
validation, BetaSheet916 and BetaSheet1452 sets

Evaluation 1st stage 2nd stage 3rd stage

Cross-validation 3 × 3 67.31% 77.60% 78.80%

5 × 5 67.39%

7 × 7 66.33%

9 × 9 65.84%

BetaSheet916 3 × 3 65.78% 74.49% 75.40%

5 × 5 66.80%

7 × 7 67.51%

9 × 9 67.16%

BetaSheet1452 3 × 3 64.50% 75.62% 76.55%

5 × 5 65.92%

7 × 7 65.93%

9 × 9 65.72%
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hinders visual identification of β-β interactions. Al-
though both RDb2C and bbcontacts are capable of find-
ing signals from the noises, the native β-β contacts
could be more successfully identified by RDb2C, at both
residue and strand levels.

Pipelined with RaptorX-contact
RDb2C is developed to refine the prediction of β-β con-
tacts from any predicted contact maps. To verify the
general applicability, we tested the performance of our
method on contact maps predicted by RaptorX-Contact,
one of the most successful residue contact predictors in
the latest CASP12 competition. The whole framework
was optimized in the same training set, except that the
raw maps were obtained from the RaptorX-Contact ser-
ver. Due to the failure in processing a few protein targets

by the server, available proteins in the training set reduce
to 383 CATH domains (Additional file 1: Table S1).
Considering the time consumption in server submission,
this test was conducted only on the BetaSheet916 set.
Similarly, the number of available proteins in the Beta-
Sheet916 set was shrunk to 858.
To evaluate the prediction powers of RaptorX-Contact

and CCMpred in the β regions, we collected the predic-
tion scores of all pairs of β residues as referred by DSSP
assignment. These scores were then sorted and an ad-
justable cutoff value was used to identify the positive
predictions. In this manner, Precision and Recall values
at various cutoff values could be collected, which enables
the plotting of PR curve as well as the calculation of op-
timal F1-score. Noticeably, the F1-scores derived in this
way may be overestimated, because knowledge of native

Fig. 3 The PR curves in the BetaSheet916 and BetaSheet1452 sets. The comparison is shown for RDb2C (green) and bbcontacts (blue), at the
residue level (top row) and strand level (bottom row) as well as in the BetaSheet916 (left column) and BetaSheet1452 (right column) sets,
respectively. Performances at the suggested cutoffs are marked as dots on the PR curves

Table 5 Performance comparison of RDb2C and bbcontacts at residue level and strand level

Evaluation Methods BetaSheet916 BetaSheet1452

Precision Recall F1-score Precision Recall F1-score

Residue level RDb2C 68.00% 55.62% 61.19% 67.91% 57.69% 62.38%

bbcontacts 58.12% 53.87% 55.91% 58.43% 55.16% 56.75%

Strand level RDb2C 85.01% 67.74% 75.40% 85.69% 69.17% 76.55%

bbcontacts 86.68% 60.99% 71.60% 88.26% 61.01% 72.14%

Winner in each category is highlighted in bold
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secondary structures is utilized and because the cutoff is
self-optimized rather than estimated independently. Re-
sults suggest that RaptorX-Contact provides significantly
more accurate residue contact prediction than CCMpred.
As for β-β contacts, CCMpred only achieves an F1-score
of 20.28%, while RaptorX-Contact attains 60.23%.
However, even starting from the poor contact maps

of CCMpred, RDb2C could improve the prediction of
β-β contacts to a level comparable to RaptorX-
Contact (~ 61%, see Table 3).
The evaluation of our models optimized on the

RaptorX-Contact maps is summarized in Table 8. Unlike
previous results (see Table 1), the model performance
shows negligible improvement in sequential stages,

Fig. 4 Comparison of RDb2C and bbcontacts for individual proteins of the BetaSheet916 and BetaSheet1452 sets. Each individual protein is
represented as a dot. The green dots and blue dots represent targets that are better predicted by RDb2C and by bbcontacts, respectively, in
terms of F1-scores. Tie cases are bisected to two methods. In both test sets and at both residue and strand levels, RDb2C outperforms bbcontacts
significantly (p-value < 10− 10)

Table 6 Performance comparison of DSSP-based RDb2C, bbcontacts and other methods at the residue level

Methods BetaSheet916 BetaSheet1452

Precision Recall F-measure Precision Recall F-measure

RDb2C 76.28% 65.94% 70.74% 76.56% 67.86% 71.95%

bbcontacts 72.39% 65.10% 68.55% 73.17% 65.39% 69.06%

BCov6* 42.40% 43.90% 43.10% 42% 45% 43%

BCov* 40.90% 42.40% 41.60%

MLN-2S* 47.30% 42.70% 44.90%

MLN* 46.10% 39.30% 42.40%

BetaPro* 38.00% 44.10% 40.80%

Data for BCov6/BCov and MLN-2S/MLN/BetaPro are taken from [31, 33], respectively. Winner in each category is highlighted in bold
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which indicates that prediction could terminate in early
stages when the input residue contact maps are of high
quality. Nevertheless, RDb2C finally reaches impressively
high F1-scores of 76.17% and 85.65% at the residue and
strand levels, respectively. Notably, performance of these
levels could ensure both prediction accuracy (Precision)
and coverage of native β-β contacts (Recall) at suffi-
ciently high values (> 70%), which thus would greatly
benefit the tertiary structure prediction of mainly β
proteins.
In comparison to CCMpred-based results (see Table 5)

, F1-scores are improved by ~ 15 percentage points,
which is mainly attributed to the greatly enhanced qual-
ity of residue contact map predicted by RaptorX-
Contact. As suggested by the evaluation of feature
importance (Table 9), ridge features and raw RaptorX-
Contact scores in combination still provide major con-
tribution to the prediction power. However, with the
remarkable improvement in the quality of the input
map, contribution of the individual ridge features be-
comes less important, when compared with CCMpred-
based predictions (see Table 2).
On the other hand, RDb2C is capable of further im-

proving the high-quality contact prediction of RaptorX-
Contact. In specific, the F1-score of β-β contacts
increases from an estimated number of ~ 60% to 76.17%.
The great improvement by RDb2C is also illustrated in
the PR curves (Fig. 6). Considering that knowledge of
native secondary structures is required in the generation
of RaptorX-Contact curve, we also included the PR
curve of the DSSP-based RDb2C model for a fair com-
parison. The DSSP-based RDb2C model could further
improve F1-score to 85.30%. Fig 7 shows the comparison
of RDb2C over RaptorX-Contact on two protein cases,
where the raw RaptorX-Contact maps are noisy but
native β-β contacts could be successfully recognized
after refinement using RDb2C.

Evaluation for the contribution in tertiary structure
prediction
In order to justify the effectiveness of our method in the
practical structure prediction, we chose 61 mainly β pro-
teins (with ≥50% of β residues) from the shrunk Beta-
Sheet916 set (Additional file 1: Table S2) and
constructed the tertiary structure models of them with
predicted contacts taken as constraints, following the
standard CONFOLD protocol [42]. As the numbers of
predicted and native β-β contact pairs are always less
than 0.5 L (Additional file 1: Table S2; L is the protein
length), which is not sufficient for structural modeling,
we retained all β-β contacts predicted by the RDb2C
model in pipeline with RaptorX-Contact at the suggested
cutoff as the highly reliable contact pairs, and then
enriched the list of contact pairs to 1 L by collecting the
high-ranked and non-redundant RaptorX-Contact pre-
dictions. These top 1 L residue contacts were used as
distance restraints to fold the protein. Specifically, a
strict restraint of 3.5-6 Å was applied to constrain the
Cβ atoms of residue pairs from the more reliable RDb2C
prediction, whereas a loose restraint of 3.5-10 Å was
adopted for the non-redundant residue pairs enriched
from RaptorX-Contact results because of their lower
confidence level. As a control, the top 1 L residue contacts
were directly chosen from the RaptorX-Contact prediction
and a uniform standard restraint of 3.5-8 Å was engaged
to constrain the Cβ atoms of these residue pairs.
For each tested protein, the model with the best TM-

score [43] within the top 5 models reported by CON-
FOLD was chosen for evaluation. According to our
results, models constructed with the top 1 L RaptorX-
Contact predictions reach an average TM-score of 0.442.
In contrast, when supplemented with the refined top 1 L
contacts by RDb2C, the average TM-score markedly in-
creases to 0.506. Specifically, among the 61 mainly β pro-
teins, prediction using RDb2C refinement outperforms

Table 7 Performance comparison of DeepCNF and PSIPRED in the BetaSheet916 and BetaSheet1452 sets

Test Set Method Secondary structure category Precision Recall F1-score

BetaSheet916 PSIPRED H 90.3% 85.9% 88.1%

E 86.8% 78.9% 82.6%

C 79.3% 86.8% 82.9%

DeepCNF H 92.6% 78.8% 85.2%

E 86.4% 76.9% 81.4%

C 75.1% 88.9% 81.4%

BetaSheet1452 PSIPRED H 90.4% 87.2% 88.8%

E 87.3% 79.1% 83.0%

C 79.2% 86.3% 82.6%

DeepCNF H 92.6% 80.4% 86.0%

E 87.4% 76.5% 81.6%

C 74.5% 88.9% 81.0%
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that using RaptorX-Contact raw scores in 83.61% and
85.25% of cases when evaluated by TM-score and
RMSD, respectively (Fig. 8 and (Additional file 1:
Table S2)). The superiority of RDb2C over RaptorX-
Contact is statistically significant (p-value < 10− 8) for
both RMSD and TM-score.
Figure 9 shows the comparison of one protein case,

where the RDb2C results successfully correct the top-
ology mismatch in the RaptorX-Contact model. Because
our predictions focus on the more detailed hydrogen
bonding interactions, instead of direct use as the dis-
tance restraints for residue Cβ atoms, it is possible to

further improve the structure prediction by utilizing our
prediction more delicately, for instance, to restrain the
respective hydrogen bonding donors and acceptors of
two paired β residues.

Runtime and memory consumption
We evaluated the running time of RDb2C on a Dell 5810
workstation (Intel Xeon E5–1620 v3 3.50 GHz CPU, 4
cores, 8 threads and 32 GB RAM) with 8 threads, based
on the BetaSheet916 set. Time consumption increases
with the size of target protein in a quadratic manner
(Fig. 10). A typical 400-residue protein needs 20 s to

Fig. 5 Case studies for CCMpred-based predictions. We illustrate three CCMpred-based case studies. In the left-handed panel, the upper left triangle is
the raw CCMpred map, while the lower right triangle is the prediction by RDb2C. In the right-handed panel, the upper left triangle is replaced by results
of bbcontacts to facilitate direct comparison with RDb2C (i.e. the lower right triangle). The native β-β contact regions are highlighted by red boxes
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complete the prediction. The general memory usage is
about 6.3GB. Generally speaking, the runtime and mem-
ory usage of RDb2C are acceptable for practical protein
structure prediction.

Usage of RDb2C
The package is available in the GitHub repository
https://github.com/wzmao/RDb2C or at http://166.111.
152.91/Downloads.html. One test sample is also in-
cluded in the package. The instruction for use of the
package could be found in the README file and the
sample script in the package. The testing results for
BetaSheet916 and BetaSheet1452 are also available
online. In addition, we provide a training script to apply
the pipeline to any predicted contact maps other than
CCMpred and RaptorX-Contact.

Conclusions
We developed a ridge-detection-based algorithm with a
multi-stage random-forest framework to refine the pre-
diction of β-β contacts from a predicted residue contact
map. The novel ridge features could effectively capture
the pattern of consecutive residue contacts in interacting
β strands. Our method could be pipelined with any resi-
due contact predictors. Tests on CCMpred and
RaptorX-Contact suggest that RDb2C could improve the
prediction of β-β contacts for residue contact predictors
of various levels of accuracy. The improvement of the
β-β contacts prediction could assist the prediction accur-
acy of the protein structure prediction and could

potentially provide more delicate constraints. The run-
time and memory of our method are acceptable for
practical use.

Methods
Dataset
We used two well-established datasets for testing: Beta-
Sheet916 [30] and BetaSheet1452 [33]. These two data-
sets have been widely accepted, thus allowing
performance comparison to previous methods. Both
datasets were filtered for redundancy. The β residues
were defined using DSSP [41], and both β-bridge and
extended β-strand residues (B and E in DSSP) were con-
sidered as β residues.
Like many state-of-the-art algorithms [2, 21, 34, 40],

we adopted the CATH database of protein domain
(version 4.1) [44] to build our training set. Since our
work focused on contacts in β strands, only β and α/β
domains were considered. In order to eliminate the
redundancy between the training set and test sets, we
removed all domains from the training set that belong to
the same CATH fold groups as proteins in the two test
sets. The fragmented and overly short (< 30 residues)
domains were also discarded. Finally, only domains in
the CATH S35 set [45] (a subset of CATH with pairwise
sequence identity < 35%) were kept to reduce the redun-
dancy inside the training set. Thus, there were 493
domains in our training set (Table 10 and (Additional
file 1: Table S1)).
In the training set, true β contacts were calculated fol-

lowing the DSSP definition with isolated β-bridge pairs
ignored. The DSSP assignment was simplified into 3
categories: H, E and C. The secondary structure prob-
abilities were predicted by DeepCNF [39, 40]. The MSAs
were built by HHblits [46] against the UniProt20 data-
base [47], from which residue contact maps were then
predicted by CCMpred. ProDy [48] was adopted as a
package in Python for dealing with PDB files and analyz-
ing protein structures.

Ridge features
We employed the ridge as a proxy to capture consecu-
tively distributed regions of relatively strong signals. The
ridge is an extended concept of a local maximum. In an
N dimensional space, a local maximum point should be

Table 8 Performance of RDb2C at residue level and strand level
on the 5-fold cross-validation and shrunk BetaSheet916 set

Level Stage Cross-validation BetaSheet916(858)

F1-score Precision Recall F1-score

Residue Level 1st stage 71.70% 81.02% 71.01% 75.69%

2nd stage 72.18% 79.48% 73.47% 76.36%

3rd stage 71.89% 78.84% 73.67% 76.17%

Strand Level 1st stage 82.28% 93.96% 77.94% 85.20%

2nd stage 86.80% 95.40% 78.61% 86.20%

3rd stage 88.10% 95.59% 77.57% 85.65%

Performances of the models with the window size of 5 are listed here as the
representatives of the first-stage models. Winner in each category is
highlighted in bold

Table 9 The feature importance in the first-stage models starting with RaptorX-Contact predictions

Window size 1st stage -Ridge -RaptorX -Ridge -RaptorX -DeepCNF -Map Features -Position Features

3 × 3 71.51% 71.02% 66.48% 13.04% 70.14% 71.34% 71.30%

5 × 5 71.70% 71.58% 66.77% 15.75% 70.50% 71.37% 71.37%

7 × 7 71.50% 71.47% 66.93% 17.95% 70.59% 71.31% 71.21%

9 × 9 71.43% 71.44% 66.70% 19.80% 70.39% 71.03% 71.08%

The table lists F1-scores of the re-conducted cross-validation without the corresponding features
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maximal in all N dimensions, while a ridge describes a
continuous curve each point of which is the local max-
imum in the N-1 dimensional subspace orthogonal to
the curve. Fig 11a demonstrates a ridge on a 2D image,
where the vertical axis stands for the signal strength.
Ridge is a good measure to characterize the central axis
of an elongated object, i.e. consecutive residue contacts
in interacting β strands on a residue contact map.
For any given point on the 2D map, we firstly esti-

mated the local 1st order and 2nd order derivatives to
build the local gradient ∇f and the Hessian matrix H via
an ordinary least squares on the extended surrounding
region with the size of 5 × 5. Then we calculated the two
principal curvatures (λp, λq) by performing eigendecom-
position to the Hessian matrix:

H ¼ vp vq
� � λp 0

0 λq

� �
vp vq½ �−1;

whereλp≤λq:
ð1Þ

We required at least one principal curvature is nega-
tive (i.e. concave) and the directional derivative along
the corresponding direction is zero to guarantee the
property of ridge points:

λp < 0
∇ f � vp ¼ 0

: ð2Þ

By locating such points on the contact map, we could
identify the axis of the elongated region with relatively
strong signals.

Fig. 6 The PR curves in the shrunk BetaSheet916 set. RDb2C (green for DSSP-based model and red for DeepCNF-based model) exhibits significant
improvement over the raw RaptorX-Contact prediction (blue). The dots on the PR curve illustrate model performance at the suggested RDb2C
cutoffs and the optimized RaptorX-Contact cutoffs

Fig. 7 Case studies for RaptorX-Contact-based predictions. We illustrate two RaptorX-Contact-based case studies: 1QMYA (left) and 1ROCA (right).
In each plot, the upper left triangle is the raw RaptorX-Contact map, while the lower right triangle is the prediction by RDb2C. The native β-β
contact regions are highlighted by red boxes
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However, straightforward ridge detection described
as above is not practical on discrete maps for several
reasons. Firstly, the ridge could not always locate
exactly on a discrete point. Secondly, straightforward
method will include all ridges without considering the
ridge height or strength. For the first issue, we could
roughly locate the ridge position by approximating
the neighboring region with a quadratic function ac-
cording to the estimated gradient and Hessian matrix

(Fig. 11b). Under the approximation, the ridge is a
straight line (Fig. 11c), from which we could identify
the direction (ϕ) and the distance from the original
given point (d) in the XY plane (Fig. 11d). To solve
the second issue, we introduced the γ-normalized
scale method developed by Lindeberg [38]. In specific,
we utilized the square principal curvature difference
(NL), a measure introduced in Lindeberg’s work, to
quantify the ridge strength:

Fig. 8 Comparison of the best of the top 5 models generated using the RaptorX-Contact prediction and the RDb2C refinement for individual
targets of the 61 mainly β proteins. The green dots and blue dots represent targets that are better predicted by RDb2C and by RaptorX-Contact
respectively. Detailed results are listed in (Additional file 1: Table S2). For both RMSD and TM-score, RDb2C outperforms RaptorX-Contact significantly
(p-value < 10− 8)

Fig. 9 Case study for structure prediction. We illustrate the predicted structures of 1OUSB based on the refined predictions by RDb2C (left) and
the raw RaptorX-Contact predictions (right), respectively. Comparing to the native structure (blue), the predicted structure based on RDb2C
(orange) has a higher TM-score (0.6172 vs. 0.3612) and smaller RMSD (4.13 Å vs. 10.84 Å) than the predicted structure based on the raw
RaptorX-Contact prediction (red)
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NL ¼ λ2p−λ
2
q

� �2
: ð3Þ

Here, we describe the procedure briefly. We smoothed
the map with a Gaussian filter at a series of scale σ.
However, NL is not guaranteed to reach maxima at the
scale of the ridge width. Lindeberg introduced γ-
normalized NL to solve this problem. By multiplying σλ

with a carefully-selected γ, the γ-normalized NL could
reach maxima at desired ridge width:

NLγ ¼ σ6 λ2p−λ
2
q

� �2
: ð4Þ

The γ-normalized scale method could provide an un-
biased estimate of the ridge width (w). We further esti-
mate the ridge height (h) via a similar process (Fig. 11e).
More details of the γ-normalized scale method and the
corresponding calculation protocol in processing contact
maps could be found in the (Additional file 1: Text S1).

Model features
For a given point on the predicted residue contact map,
we calculated the ridge features (including ridge direc-
tion ϕ, distance to the ridge d, ridge height h and ridge
width w (see Fig. 11b-e)). These features and scores of

the input map jointly constitute 5 N ×N matrices
(Fig. 12). We also incorporated the predicted secondary
structure probabilities (for H, E and C) from DeepCNF.
Furthermore, to describe positions of the target residue
pair, we included the difference in indices of the two resi-
dues as well as distances of each residue to both ends of
the protein in the amino acid sequence as position fea-
tures. To characterize the quality of the original contact
map, we employed the number of homologous sequences
in the MSA per residue as well as the standard deviation
of prediction scores as map features.

Model training and feature selection
We applied a 3-stage random forest framework to pre-
dict the β-β residue contacts using all features described
previously. All random forest models in all stages were
set up with 500 decision trees and were optimized by 5-
fold cross-validation using the scikit-learn package [49].
The cross-validation was applied in a protein-wise man-
ner, by which the training set proteins were randomly
partitioned into 5 mutually exclusive subsets with
roughly the same size. Combinations of four subsets
were then iteratively used to train the model and to pre-
dict the unselected subset. Since all proteins in the train-
ing set were predicted independently, the suggested
cutoffs were optimized in the cross-validation. Finally,
the whole training set was utilized to train a separate
model as the final model for evaluation in the test sets.
At the first stage, in addition to features of the target

residue pair, we adopted an adjustable window to con-
sider the effect of neighboring residues. Specifically, 2D
features (ridge features and the original contact map) of
all residue pairs falling within the square window cen-
tered at the focus point were included. Secondary struc-
ture features of all residues falling within the 1D
windows centered at the two target residues were also
extracted. Map property features and position features
were extracted for the target residue pair only, because
they were invariant for the target and neighboring resi-
due pairs. We employed various values of the window
size (ws), including 1, 3, 5, 7 and 9, to train multiple ran-
dom forest models at the first stage. Because of the scar-
city of β-β residue contacts, the negative (Neg) samples
greatly outnumbered the positive (Pos) ones with a Pos/
Neg ratio of about 1:600. To simplify the model training,
we under-sampled negative samples at different Pos/Neg
ratios from 1:1 to 1:40. The under-sampling was imple-
mented in a protein-wise manner. That is, for each pro-
tein, the number of negative samples was specifically set
based on the number of positive samples. Based on the
cross-validation results (Table 11), improvement in
model performance becomes saturated at Pos/Neg ratios
of 1:40. Therefore, each random forest model was
trained at 1:40 Pos/Neg ratios. At the same time, we

Fig. 10 The relationship between runtime and the number of
residues. The time consumed increases steadily with the rise of the
number of residues (the I/O time is not included)

Table 10 General information of the training and test sets

Numbers Training set BetaSheet916 BetaSheet1452

Proteins 493 916 1452

Residues 73,580 187,516 361,668

β residues 22,283 48,996 88,352

β-β contact residue pairs 13,278 31,638 56,552

β strands 4633 10,745 19,186

β strand pairs 2678 8172 14,241
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Fig. 11 Ridge features from the original map. (a) The orange line indicates the ridge on the 2D function surface. All ridge points on the ridge
line are the maxima in the directions perpendicular to the line (red arrows). The local maximum point (dark blue) is also a ridge point based on
the definition. (b) For each given point on the contact map, we select local region (i.e. the grid points) to approximate a quadratic function.
(c) On the quadratic function surface, we could identify the linear ridge and project it to the XY plane. (d) Direction of the ridge ϕ and distance
from the original given point to the ridge d could be obtained from the projection. (e) We could also identify the principal curvature direction on
the ridge and approximate the cross section curve with a Gaussian ridge. The height h and width w are defined as the height and the standard
deviation of the Gaussian function. Details are given in the (Additional file 1: Text S1)

Fig. 12 Summary of features adopted in our model. For each target protein with N residues, we have the original CCMpred map with the size of
N × N. We calculate the ridge features for each point on the map to get 4 N × N matrices (2 N × N matrices after feature selection). In total, we
have N × N × 5 (N × N × 3 after feature selection) 2D features. The secondary structure prediction from DeepCNF provides an N × 3 1D feature
matrix. In addition, we have 2 map features (the sequence/residue ratio and CCMpred standard deviation) and 5 position features (1 residue
index difference and 4 distances to protein ends). The data in this figure were generated from the protein 1AHQA
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noticed that the model with the window size of 1 signifi-
cantly underperforms models of the other window sizes.
Therefore, we selected window sizes of 3, 5, 7 and 9 for
further model optimization.
We performed the feature selection by removing fea-

tures group by group and re-conducting the 5-fold
cross-validation. We found that the ridge width w and
the distance from the ridge d are not essential for the
model. After removing these two sets of features, only
the ridge height h and the direction of the ridge ϕ were
kept as ridge features. Thus, we obtained the optimized
feature combination as indicated in Table 2. We further
optimized the shape of the window. Because β-β pattern
depends on the signals on diagonal and off-diagonal di-
rections, we used the cross-shaped masks with different
diagonal width (dw) besides the square window mask for
2D features (Fig. 13). For all window sizes, the best
masks were the ones with the diagonal width of 3
(Table 12). Eventually, we chose the models with the di-
agonal width of 3 as the final ones.
Predictions from the first-stage models were then fed

to models at the second stage. In specific, we retained
the output scores of the first-stage models as additional
2D features. Unlike the strong constraints applied by
bbcontacts that artificially restricts each residue to form
no more than two β-β contacts, we included the ranks
of each point among the output scores of each column
and row and allowed the random forest model to auto-
matically learn the geometry constraints. Hence, output
map from each first-stage model provided N ×N × 3 fea-
tures (1 N × N raw output and 2 N ×N rankings).

Subsequently, we performed the feature selection again
as the first stage. The first-stage raw scores, the first-
stage rankings, ridge features (ridge height h and ridge
direction ϕ) and predicted secondary structure informa-
tion by DeepCNF were finally retained after feature se-
lection (Fig. 14). The window size and the diagonal
width were both optimized at 3 (3 × 3 square). Then, we
combined features from the 4 first-stage models of
various window sizes to construct a comprehensive
second-stage random forest model. At the third stage,
we carried out a similar protocol as the second stage
and obtained a final third-stage random forest model.
The overall framework was constructed for two different

types of secondary structure information, prediction from
DeepCNF and assignment from DSSP, respectively. For
DSSP-based models, the secondary structure probability is
set to 1 for the native category and 0 for the others.

Evaluation
Performance was evaluated at both residue and strand
levels, using measures including Precision, Recall as well
as F1-score. Precision and Recall quantify proportions of
true positives within all predicted and all native β-β con-
tacts, respectively, while F1-score is the harmonic mean
of Precision and Recall:

Precision ¼ TP
TP þ FP

Recall ¼ TP
TP þ FN

F1‐score ¼ 2� Precision� Recall
Precisionþ Recall

;

ð5Þ

Table 11 The cross-validation F1-scores for different window sizes and Pos/Neg ratios.

Winner in each category is highlighted in bold. The row of the selected Pos/Neg ratio is shown in shadow
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Fig. 13 An illustration of the window mask. The selected features are labeled in dark colors. The final window masks that were selected are marked in red

Table 12 The cross-validation F1-scores for different window sizes and diagonal widths.

Winner for each window size is highlighted in bold. The column of the selected diagonal width is shown in shadow
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where TP, FP and FN denote true positives, false posi-
tives and false negatives, respectively.
Although our method was developed with predicted

secondary structure information for practical protein
structure prediction, we performed evaluation for
models fed with predicted and DSSP-assigned secondary
structures respectively to simplify comparison with pre-
vious methods. Since bbcontacts is the best method so
far and exhibits significantly superior performance to all
previous ones, we mainly compared our method with
bbcontacts. Results of bbcontacts were obtained follow-
ing the protocol of the original paper, with secondary
structures predicted by PSIPRED [50]. The residue-level
evaluation is straightforward, while the strand-level
evaluation, however, could only be conducted with the
knowledge of clearly defined secondary structures. Thus,
we only provide the strand-level results for DSSP-based
models. As for the definition of strand pairing, we regard
a pair of β strands as interacting if at least one pair of
residues on the two strands is predicted as contacting.

Structure modeling using predicted contacts
All 61 mainly β proteins (with ≥50% of β residues) were
chosen from the shrunk BetaSheet916 set (Additional
file 1: Table S2), and tertiary structure models of them
were constructed with predicted contacts taken as con-
straints, using the downloadable programs of Crystallog-
raphy & NMR System (CNS) [51] suite and CONFOLD
package [42]. We retained all β-β contacts predicted by
the RDb2C model in pipeline with RaptorX-Contact at
the suggested cutoff as the highly reliable contact pairs,
and then enriched the list of contact pairs to 1 L by
collecting the high-ranked and non-redundant RaptorX-
Contact predictions from the region outside the pre-
dicted β-β region of RDb2C (All contacts falling within
the square window covering the RDb2C prediction
points or lines are considered as redundant). These top
1 L residue contacts were used as distance restraints to
fold the protein following the standard CONFOLD
protocol, with the DeepCNF results supplemented as
predicted secondary structures [42]. A strict restraint of

Fig. 14 An illustration of the multi-stage framework. In our 3-stage framework, we firstly construct models with different window sizes. We
then integrate four models to get the second-stage results. The final result is obtained from the third-stage model. The data in this figure were
generated from the protein 1AHQA
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3.5-6 Å was applied to constrain the Cβ atoms for the
more reliable contact pairs of RDb2C prediction,
whereas a loose restraint of 3.5-10 Å were adopted for
the non-redundant contact pairs enriched from
RaptorX-Contact because these complement pairs are of
lower confidence levels. In the control experiment, the
top 1 L residue contacts were directly chosen from the
RaptorX-Contact results and a uniform standard re-
straint of 3.5-8 Å was engaged to constrain all contact
pairs. For each tested protein, 20 models were generated
by CONFOLD, and the 5 models that fit the restraints
best were retained. The model with the highest TM-
score among the top 5 models was then taken as the
representative one for evaluation.

Additional file

Additional file 1: Text S1. Technical details of the γ-normalized scale
method for ridge detection; Table S1. List of domains in the training set;
Table S2. Results of structure prediction for 61 mainly β proteins.
(PDF 537 kb)
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